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CS491I Approximation Algorithms 
Lecture Notes 

Lan Guo 
 
 
Turing Machine 

A Turing machine Μ can be viewed as a computing device (Figure 1) provided with: 

1. A set Q of internal states, including a start state S and an accepting state qA. 

2. An infinite memory, represented by an (semi-) infinite tape consisting of cells, 

each of which contains either a symbol in a work alphabet Γ or the special blank 

symbol λ. 

3. A tape head that spans over the tape cells and at any moment identifies the 

current cell. 

4. A finite control (program) δ whose elements are called transition rules: any such 

rule ((qi, ak), (qj, al, r)) specifies that if qi is the current state and ak is the symbol 

in the cell currently under the tape head, then a computing step can be performed 

that makes qj the new current state, writes al in the cell, and either moves the tape 

head to the cell immediately to the right (if r = 1) or to the left (if r = -1) or leaves 

the tape head on the same cell (if r= 0). [1] 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  A Turing Machine        
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Turing machine: A Turing machine M is a 6-tuple M = (Q, ∑, Γ, δ, S, F) where: 

1. Q is a finite set of internal states. 

2. The input alphabet Σ is a finite set of symbols (not including the special symbol 

λ). 

3. The work alphabet Γ is a finite set of symbols that includes all symbols in Σ and 

does not include λ. 

4. The set of transition rules δ is a subset of (Q x (Γ ∪  {λ})) x (Q x (Γ ∪  {λ}) x {0, 

1, -1}). 

5. F includes {qY, qN}. S ⊆  Q and F ⊆  Q, which are the starting and the final states, 

respectively. [1] 

 

Language L is decided by a Turing machine M if L ⊆  Σ*, i.e. if 

1. For all strings x ∈  L, M halts in qY 

2. For all strings x ∉  L, M halts in qN 

 

Language L is accepted by a Turing machine M, if for all strings ∈  L, M halts in qY. 

 

Complement of language L, L , is defined as L = ∑* - L, where ∑0 = Φ, ∑1 =∑ �∑i  = 

∑i-1 ∪ {∑}, ∑*= ∞
=∪ 0i ∑i. For example, if L is the set of graphs that contain Hamilton 

Path, L  is the set of graphs that do not contain Hamilton Path. 

 

Types of Problems 

(D) Decision problem: the problem with answer Yes/No. For example, Does there exist 

x , such that A x ≤  b ? 

(S) Search problem: can you give me that x ? 

(O) Optimization problem: maximize/minimize a function, i.e. give me the x  that 

maximize f( x ). 

We can use (D) for (S) and (O). One such example is SAT: given a Boolean expression 

with conjunction of disjunctions and an oracle to decide if this Boolean formula is 
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satisfiable, can we find an assignment such that the result of this Boolean expression is 

true? It is a search problem, whose solution is based on the decision problem. We can use 

the oracle for decision to produce the actual assignment. If the oracle returns �yes� for the 

SAT instance, we know that it is satisfiable. Then, we can get the truth assignment as 

following. First, we can decide the value of x1. We can put x1 = 0, and 1x  = 1. If the 

oracle return �yes� indicating that it is a truth assignment, we get the value for x1; 

otherwise, x1 = 1 and 1x  = 0. We can substitute x1 value in the original formula and get a 

new one. Similarly, we can get the assignment for the rest of the variables. This algorithm 

can be finished in polynomial time. Following procedure can solve the search problem: 

 

Function Search_SAT_Assignment (F) 

    If oracle (F) = �yes� then  

        For each variable xi in the formula F loop 

             Assign (xi = 0; 1x = 1) in F and get new formula F�  

       If oracle (F�) = �yes� then F = F� 

             Else      

                   Assign  (xi = 1; 1x = 0) in F and get new formula F� 

                    F = F� 

        End if; 

   End loop;  

   Return F; 

 Else 

      Return �not satisfiable�; 

 End if; 

End; 

  

 

 

Non-determinism 

Non-deterministic Turing Machine (NDTM): NDTM is a Turing machine that an 

arbitrary finite number of computing steps can be applicable to a given configuration C, 
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i.e. for transition rule δ: (Q x (Γ ∪  {λ})) → (Q x (Γ ∪  {λ}) x {0, 1, -1}) is a relation, 

instead of a (partial) function. NDTM has a witness, and we can guess a computing path 

and check its result in polynomial time.  

We say that a string σ ∈  ∑* is accepted by a NDTM if at least one such path leads the 

Turing machine to halt in state qA. One the other hand, σ is rejected by this NDTM if all 

computation paths starting from the initial configuration are rejecting [1]. Such 

computing paths form a tree. At the level of the leaves, it is easy to verify if this 

computing path is accepted or rejected. 

It is generally believed that Deterministic Turing Machine (DTM) is less powerful than 

NDTM. Whether or not DTM is strictly less powerful is an open problem. 

 

Time and Space Complexity 

There are two ways to determine the execution cost of a Turing machine: 

1. The number of computing steps performed by the machine (time complexity). 

2. The amount of different tape cells visited during the computation (space 

complexity). 

 

P and PSPACE: 

1. The class of all problems solvable in time proportional to a polynomial of the 

input size: P = 
k

k
nTimeU

∞

=0
( ); 

2. The class of all problems solvable in space proportional to a polynomial of the 

input size: PSPACE = 
k

k
nSpaceU

∞

=0
( ); 

 

NP: Set of the problems that can be decided in polynomial time by using a NDTM. 

 

Co-NP: Set of problems whose complement can be decided in polynomial time by   

              using a NDTM. 

 

NP-Complete: a problem L is NP-Complete if: 

1. L ∈  NP 
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2. L0 ≤  L, for any L0 ∈  NP. (≤  is reduction relationship.) 

It is generally believed that NP ≠  Co-NP, and P ⊆  NP.  The relationship between 

complexity classes can be pictured as Figure 2. 
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Figure 2. Relationship between complexity classes 

 

It is easy to prove that CoP = P.  

Proof: For the CoP problem, we can run the verifier that determines the P problem in 

polynomial time, if the verifier returns �yes� for the P problem, then the answer for the 

CoP should be �no�; if verifier returns �no� for the P problem, then the answer for the 

CoP should be �yes�. 

 

Problem and Language are interchangeable. A Turing machine decides a language. 

 

Instance: An instantiation of parameters for a problem. 

 

Generally, Co-NP is not easy.  For instance, NON-Hamilton Path is in Co-NP. It is not 

easy since you need to prove that EVERY path in the given graph is not a Hamilton Path. 

Therefore, to verify a NON-Hamilton Path instance needs exponential time in 

computation. Generally speaking, �No� certificate is easy for a Co-NP problem, while 

�Yes� certificate is easy for a NP problem. For example, it is easy to verify that a given 
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graph is NOT a NON-Hamilton Path instance by a Hamilton Path as a witness. In 

contrast, it is easy to verify that a graph is a Hamilton Path instance by a Hamilton Path 

as a witness. 

 

Reducibility and Reduction 

Ordering: 

Given two numbers, we can compare them based on ordering as a ≤ b, or b ≤ a. 

Given two languages, the ordering is based �hardness� or �complexity�. L1 ≤  L2, if L2 is 

as least as hard as L1. 

 

Reduction: L1 ≤  L2 if there exists a function f computable in polynomial time or log 

space, such that x∈ L1 iff f(x) ∈ L2. 

Note: the reduction function f has to be computable in polynomial time or log space, 

otherwise, we can derive an erroneous conclusion. One such example is Hamilton Path 

problem ≤  graph reachability. We can generate path for all reachable pairs, and test if 

there is such HM path (exponential time). Hence, graph reachability is at least as hard as 

HM problem. This conclusion is obviously wrong, since HM Path is hard, while graph 

reachability is easy (We can use either BFS or DFS in poly time). Why we reached such 

conclusion? The reason is that function f is not computable in polynomial time or log 

space. Therefore, we should have restrictions on f. It should be computable in either log 

space (denoted as L≤ ) or polynomial time (denoted as P≤ ).  

 

Given L1 ≤ L L2, we know that: 

1. If L2 ∈  P, then L1 ∈  P 

2. If L1 ∈  NP, then L2 ∈  NP. 

 

Closure: For a given reduction γ (polynomial time or log space), complexity class C is 

said to be closed with regard to γ, if L1 ≤ γ L2 and L2 ∈ C, then L1 ∈ C. 

 

Hardness: A language L is said to be �hard� for complexity class C or �C-hard�, if for 

every L�∈ C, L�≤ γ L. 
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Completeness: L is C-Complete, if it is C-hard and L∈ C (C-easy). 

 

NP-Complete (NPC): L is NP-Complete if 

1. L ∈ NP 

2. For every L�∈ NP, L�≤ γ L. 

 

Theorem: SAT is NPC.  

Given conjunction of disjunctions, (x1 ∨  x2 ∨ x3� ∨ xk) ∧ ( 1x ∨ x2 ∨ x3� ∨ xk)� to decide 

if there is a truth assignment for this Boolean formula is NP-Complete. 

 Proof: See [1] for detail. 

 

Theorem: 3-SAT is NP-Complete. 

3-SAT is a SAT instance that every clause contains 3 variables. 

If we can reduce SAT to 3-SAT, i.e. 3-SAT ≤  SAT, we prove 3-SAT is NP-Complete (3-

SAT in NP is trivial). 

Proof: Let Ci be any clause of the instance of SATISFIABILITY. Then Ci is transformed 

into the following subformula Ci�, where the y variables are new ones: 

1. If Ci = xi, then Ci� = (xi ∨ yi,1 ∨ yi,2) ∧ (xi ∨ yi,1 ∨ i,2y ) ∧ (xi ∨ 1,iy ∨  yi,2) 

∧ (xi ∨ 1,iy ∨ i,2y ). 

2. If Ci = xi,1 ∨ xi,2, then Ci� = (xi,1 ∨ xi,2 ∨ iy  ) ∧ ( xi,1 ∨ xi,2 ∨ yi). 

3. If Ci = xi1 ∨ xi,2 ∨ � ∨ xi,k with k>3, then Ci� = (xi,1 ∨ xi,2 ∨ yi,1) ∧ ( 1,iy ∨ xi,3 ∨ yi,2) 

∧ � ∧ ( 4, −kiy ∨ xi, k-2 ∨ yi, k-3) ∧ ( 3, −kiy ∨ xi, k-1 ∨ xi, k). 

Specifically, if Ci = xi,1 ∨ xi,2 ∨ xi,3 ∨ xi,4, we can transform Ci to Ci� =(xi,1 ∨ xi,2 ∨ iy  ) ∧ ( 

xi,3 ∨ xi,4 ∨ yi). 

Clearly, this reduction can be done in polynomial time. In addition, it is easy to prove that 

the original formula is satisfiable iff the transformed formula is satisfiable. [1] 

 

Theorem: Vertex cover (VC) is NPC. 
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We already proved that 3-SAT is NPC. If 3-SAT ≤  VC, we prove that vertex cover is 

NPC (VC in NP is trivial). 

Vertex cover is the problem that given a graph G = (V, E) and a number k, is there a 

subset V� ⊆ V, such that |V�|≤k, and for every edge (u, v)∈ E, either u ∈ V� or v∈ V�. 

Proof: Let I be an instance of 3-SAT with n variables and m clauses. We can transform I 

to an instance S of vertex cover with 2n+3m vertices and n+6m edges as following: for 

each variable xi in I, we create two vertices xi and ix  in graph G, and put an edge 

between them; for each clause Ci in I, we create a triangle ai1ai2ai3 in graph G, and 

connect each vertex in this triangle with one variable in clause Ci. For example, if 

C1=x1 ∨ 2x ∨ xn, we connect a1 with x1, a2 with 2x , and a3 with xn. Figure 3 is the graph 

we constructed for vertex cover from 3-SAT. For every clause in 3-SAT, we pick 2 

vertices in the triangle, and for every variable, we pick 1 vertex according to their form in 

the clause for vertex cover. Every edge is covered in Figure 3. We get k=n+2m. 3-SAT is 

satisfiable iff there is a vertex cover of size k = n+2m in graph G (See [2] for detail.). 

Obviously, this construction can be done in polynomial time.  

 

 

               x1                        1x               x2                                2x                                xn                   nx  
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Figure 3. Vertex Cover Transformed from 3-SAT 

 

Theorem: Integer Programming is NPC. 

Proof: Let�s reduce 3-SAT to Integer Programming (IP), i.e. 3-SAT ≤P IP. Once again, 

IP in NP is trivial. 
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Let Ci be a clause in 3-SAT, if Ci = (x1, x2, x3) in disjunction form, we construct an 

inequality equation as x1 + x2 + x3 ≥ 1. If variable xi is in the negate form in clause Ci, we 

represent it as 1-xi in the inequality equation. Therefore, we can transform an instance of 

3-SAT with n variables and m clauses to an instance of IP, A x ≥ b , with A (m x n), and 

b an integral vector, x∈ {0, 1}. This transformation can be done in polynomial time.  

3-SAT is satisfiable iff IP has a feasible solution. 

1. If 3-SAT is satisfiable, IP is feasible. If 3-SAT is satisfiable, for each clause, there 

has to be at least one variable xi is true, i.e. xi = 1, or ix =1 (if the truth assignment 

is in negate form). In the second case, 1- xi =1. Without loss of generality, each 

clause of 3-SAT can be represented as xi1 + xi2 + xi3 ≥1, or 1-xi1 + xi2 + xi3 ≥ 1, 

which is �xi1 + xi2 + xi3 ≥ 0. In either case, it is one feasible inequality equation in 

the IP model.  Therefore, IP is feasible if 3-SAT is satisfiable. 

2. If IP is feasible, 3-SAT is satisfiable. If IP is feasible, for each inequality 

equation, we have xi1 + xi2 + xi3 ≥ 1, corresponding to a clause Ci in 3-SAT (If one 

of the variable xi in 3-SAT is in the negate form, we represent it as 1 � xi in the 

inequality equation in the IP model.). Since xi ∈  {0, 1}, there has to be at least 

one variable xi = 1 in each inequality equation ( ix  =1 if it is in negate form in 3-

SAT formula). We can assign the corresponding variable xi (or ix ) in 3-SAT 

formula to true for each clause Ci. That satisfies each clause Ci in 3-SAT instance. 

Therefore, 3-SAT is satisfiable if IP is feasible. 

  

Question: Is Linear Program A x ≥ b in NP? 

We know that LP is P. So it should be in NP (P ⊆ NP). However, we can�t just jump to 

say that we can guess a solution and verify it in poly-time, and conclude that LP is NP. 

For continuous problem, it is hard to show that it is in NP. A way to solve it is that if A is 

rational, the extreme points are always rational and small. Hence, we can guess an 

extreme point and verify it in poly-time. 
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