
 CS491I Approximation Algorithms

 The Vertex-Cover Problem

 Lecture Notes

 Xiangwen Li

 March 8th and March 13th, 2001

 Absolute Approximation

Given an optimization problem P , an algorithm A is an
approximation algorithm for P if, for any given instance Ix ∈ ,
it returns an approximation solution, that is a feasible solution

)(xA .

 Definition 1 Given an optimization problem P , for any instance x of P and an arbitrary
feasible solution y .

Denote)(* xm the optimum value of x and),(yxm the value of
function at feasible point y for the instance x . The absolute
error of y with respect to x is defined as

 .|),()(| * yxmxm −

Given an NP-hard optimization problem, it would be very
satisfactory to have a polynomial-time approximation algorithm
that is capable of providing a solution with a bounded absolute
error for every instance x .

 Definition 2 Given an optimization problem P and an approximation
algorithm A for P , we say that A is an absolute approximation
algorithm if there exists a constant k such that, for every
instance x of P , .|))(,()(| * kxAxmxm ≤− .

 Example Let us consider the problem of determining the minimum
number of colors needed to color a planar graph. It is well-known
that a 6-coloring of a planar graph can be found in polynomial

time[1]. It is also known that establishing whether the graph is
1-colorable (that is, the set of edges is empty) or 2-colorable(
that is, the graph is bipartite) is decidable in polynomial time
whereas the problem of deciding whether three colors are enough
is NP-complete(see [2] for detail).

 Algorithm D

begin
 If the graph is 1- or 2-colorable,
 return either a 1- or a 2-coloring of the vertices of G.

 else
 return a 6-coloring of the vertices of G.

end

Then we obtain an approximate solution with absolute error bounded
by 3,
 .3|*| ≤− Dmm

Consider the Knapsack Problem. This problem is characterized by n
objects nOOO ,,,, 21 where each iO is associated with a profit iP and

a weight iW . We want to choose a subset of objects to maximize the

profit without violating the fact that the knapsack has a limit
weight W . The Integer Programming Formulation is:

 ∑
=

n

i
ii xp

1

max

}1,0{
1

∈

≤∑
=

i

n

i
ii

x

Wxw

Let g be an instance of the Knapsack problem n items with profits

nPPP ,,,, 21 and sizes nWWW ,,,,, 21 . Suppose that the problem has a

polynomial time approximation algorithm A with absolute error k
and suppose that *m and Am are the optimum solution and the
approximation solution respectively. Then

 .|*| kmm A ≤−
 Let y be instance of n items with profits

nPkPkPk)1(,,,,)1(,)1(21 +++ and sizes nWWW ,,,,, 21 . Suppose that *'m and 'Am
are the optimum solution and the approximation solution
respectively. Then
 kmmA >− |'*| ' for .1≥∀k

(for more detail see[1]).
See the following Fig.

 k≤ >k+1

 Am *m 'Am '*m

Thus we have the following theorem.

 Theorem 1 Unless P=NP, no polynomial-time absolute approximation
algorithm exist for Knapsack Problem.

 Definition 3 Given an optimization problem P , for any instance x of
P and for any feasible solution y of x , the relative error of y
with respective to x is defined as

)
),(

)(*
,

)(*

),(
max(),(

yxm

xm

xm

yxm
yxR =

By the definition, given any instance x of P and R , there is an
algorithm A such that

)(*))(,(xmRxAxm ≤ .

 Weighted Vertex Cover

A vertex cover of a undirected graph),(EVG = is a subset VV ⊆'
such that if (u, v) is an edge of G , then either 'Vu ∈ or 'Vv ∈ . If
a non-negative weight iw is associated with each vertex iv , we want

to find a vertex cover having minimum total weight. We call this
problem minimum weighted vertex cover. Given a weighted graph

),(EVG = , minimum weighted vertex cover can be formulated as the

following integer linear program ILP

 ∑
∈Vv

ii

i

xwmin

 ,),(1 Exxxx jiji ∈∀≥+

 }.1,0{∈ix

Let LP be the linear program obtained by relaxing the integrality
constraints to simple non-negativeness constraints (i.e., 0≥ix for

each Vvi ∈).

 Program A

begin
0. 'V 0= ;
1. Relax ILP to LP , by replacing the constraints }.1,0{∈ix with

].1,0[∈ix ;i.e. xi is a continuous variable between 0 and 1.

2. For each iv such that
2

1
≥ix

 '' VV = }{ iv∪
return 'V

 end

 Theorem 2 Given a graph G with non-negative vertex weights,
Program A finds a feasible solution of minimum weighted vertex

cover with value)(GmLP such that)(GmLP)(*2 Gm≤ .

 Proof. Let 'V be the solution returned by the algorithm. The
feasibility of 'V can be easily proved by contradiction. Assume

that 'V does not cover edge),(ji vv . This implies that both)(* Gxi and

)(* Gx j are less than 0.5 and hence)(* Gxi +)(* Gx j <1, a contradiction.

Let)(* Gm be the value of an optimal solution and let)(* GmLP be
the optimal value of the relaxed linear program.

Since the value of an optimal solution is always larger than the
optimal value of the relaxed linear program, we have

)()(* * GmGm LP≥ .

If ,'Vvi ∈ then
2

1
≥ix and

 .)(2
'

*

'
∑∑
∈∈

≤
Vv

ii
Vv

i

ii

Gxww

Since VV ⊆' ,

 2∑
∈Vv

ii

i

Gxw)(* ∑≤).(2 * Gxw ii

By the linear program algorithm,

).(2)(2)(2 **

'

* GmGmGxw IPLP
Vv

ii

i

≤≤∑
∈

Therefore the theorem follows.

 Primal-dual algorithms

The implementation of program A requires the solution of a linear
program with a possibly large number of constrains. Therefore it
is computationally expensive. Another approach known as primal-
dual allows us to obtain an approximate solution more efficiently.
The chief idea is that any dual feasible solution is a good lower
bound on the minimization primal problem. We start with a primal
dual pair (x*, y*), where x* is a primal variable, which is not
necessarily feasible, while y* is the dual variable, which is not
necessarily optimal. At each step of the algorithm, we attempt to
make y* “more optimal” and x* “more feasible”; the algorithm stops
when x* becomes feasible. Given a weighted graph),(EVG = , the dual

of the previously defined LP is the following program DLP :

Evvy

Vvwy

y

jiij

i
Evv

iij

Evv
ij

ji

ji

∈∀≥

∈∀≤∑

∑

∈

∈

),(,0

,

min

)(

)(

,

,

Note that the solution in which all ijy are zero is a feasible

solution with value 0 of DLP . Also note that there is no dual for
an integer program; we are taking the dual of the linear
programming relaxation of the primal integer program. The primal
dual algorithm is described the following.

 Program B

 begin

 for each dual variable ijy do 0=ijy

0'=V

 while 'V is not a vertex cover do

Select some edge),(ji vv not covered by 'V ;

Increase ijv till one of the end-points is hit. i.e., iij wy =

or jij wy =

 If iij wy = then

 }{'' ivVV ∪=

else

}{' jvV ∪
end while

return 'V

end

 Theorem 3 Given a graph G with non-negative weights, program B
finds a feasible solution of minimum weighted vertex cover with
value)(GmDLP such that).(*2)(GmGmDLP ≤

Proof Let 'V be the solution obtained by the algorithm. By
construction 'V is a feasible solution. We observe that for every

'Vvi ∈ we have ∑
∈Evv

ij

ji

y
),(

iw= . Therefore

 ∑
∈

==
'

)(
Vv

iDLP

i

wGm ∑
∈ 'Vv

∑
∈Evv

ij

ji

y
),(

.

Since VV ⊆' ,

 ∑
∈ 'Vv

∑
∈Evv

ij

ji

y
),(

≤ ∑
∈Vvi

∑
∈Evv

ij

ji

y
),(

.

Since every edge of E counts two times in ∑
∈Vvi

∑
∈Evv

ij

ji

y
),(

,

 ∑
∈Vvi

∑
∈Evv

ij

ji

y
),(

=2 ∑
∈Evv

ij

ji

y
),(

.

Since ∑
∈Evv

ij

ji

y
),(

)(* Gm≤ , the theorem follows.

Randomization

Let X be a discrete random variable and take the values naaa ,,,,, 21 ,

with probabilities)(),..(),(2 ni apapap . The expectation of X is

defined as

 ∑
=

=
n

i
ii apaXE

1

)()(.

Linearity properties of Expectation

1.).()()(2121 XEXEXXE +=+

2.),()(XaEaXE = where a is a positive, real number.

Example 1 Suppose that there are 40 sailors and 40 keys one of
which is for one room. Suppose that each sailor takes one key
randomly and opens his room with this key. What is the
Expected number of sailors in their own rooms?

 Let 1=ix if sailor i enters his room, 0=ix otherwise.

By using linearity of expectation, we have

 ∑ ∑
= =

=+==
40

1

40

1

.1))0(
40

39
)1(

40

1
(40)()(

i i
ii XEXE

We have used the fact that)1.(0.1)(iii ppXE −+= , since this is a

binary event. Thus,)40/1()(=iXE , for all i

Example 2
A Boolean expression is said to be in k-conjunctive normal form (
k-SAT) if it is the conjunction of clauses such that each clause
contains exactly k variables. Suppose that there are m clauses and
n variables in the Boolean expression. The goal is to find an

assignment of {True/False} to each of the variables, so that the
given Boolean expression is satisfied. The corresponding
optimization problem is to maximize the number of clauses that are
satisfied (The optimization problem is called MAX-SAT and is also
NP-complete.). Consider a random assignment of {True/False} to
the variables i.e. each variable xi is set to True or False,
depending upon the random outcome of flipping a fair coin. It is
easy to see that the probability that

A single clause is not satisfied is at most
k2

1
, since in order to

falsify a given clause, all its variables must be set to False, in

the random assignment. Hence, with probability (
k2

1
1−), each clause

is satisfied. We want to know the expected number of clauses that
are satisfied by our random assignment.
By using linear properties of expectation, we have

 ∑ ∑∑
= ==

−=−==
m

i

m

i
kki

m

i
i mXEXE

1 11

).
2

1
1()

2

1
1()()(

Note that the maximum number of clauses that can be satisfied
under any assignment is m. Hence, our random assignment is an

approximation algorithm with approximation factor (
k2

1
1−).

(Exercise: Substitute various values of k and see how good the
approximation gets.)

Reference:
[1] B.korte and J.Vygen, Combinatorial Optimization, Springer-
Verlag, 2000.
[2] M. R. Garey and D. S. Johnson, Computers and intractability—a
guide to the theory of NP-completeness, 1979.

