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Absolute Approximation

G ven an optim zation problem P, an algorithm A is an
approximation algorithmfor P if, for any given instance x1 1,
it returns an approximation solution, that is a feasible solution
A(X).

Definition 1 Given an optimization problem P, for any instance x of P and an arbitrary
feasible solution y.

Denote m(x) the optinum value of x and m(x,y) the val ue of
function at feasible point y for the instance x. The absol ute
error of y with respect to x is defined as

[m () - m(x, y)|.

G ven an NP-hard optim zation problem it would be very
satisfactory to have a polynom al -tine approxi mati on al gorithm
that is capable of providing a solution wth a bounded absol ute
error for every instance X.

Definition 2 G ven an optim zation problem P and an approxi mation
algorithm A for P, we say that A is an absol ute approxi mation
algorithmif there exists a constant k such that, for every

instance x of P, |m(x)- m(x,AX))EK..

Example Let us consider the problem of determ ning the m nimm
nunber of colors needed to color a planar graph. It is well-known
that a 6-coloring of a planar graph can be found in polynom al



time[1l]. It is also known that establishing whether the graph is
l-colorable (that is, the set of edges is enpty) or 2-col orable(
that is, the graph is bipartite) is decidable in polynomal tine
wher eas the problem of deciding whether three colors are enough
is NP-conplete( see [2] for detail).

Algorithm D

begin
If the graph is 1- or 2-col orable,
return either a 1- or a 2-coloring of the vertices of G

el se
return a 6-coloring of the vertices of G

end

Then we obtain an approximate solution with absolute error bounded
by 3,
|m*-my [E 3.

Consi der the Knapsack Problem This problemis characterized by n
obj ects O,,0,,,,0, where each O is associated with a profit P and

a weight W. W want to choose a subset of objects to maxim ze the

profit without violating the fact that the knapsack has a limt
wei ght W. The Integer Programm ng Fornul ation is:

n

]
max g pX

i=1

é wx £W

i=1

x 1 {03

Let g be an instance of the Knapsack problem n itens with profits
P.,R,,,P, and sizes W,W,,,,,W,. Suppose that the problemhas a
pol ynom al time approximation algorithm A with absolute error k

and suppose that m and m, are the optinum solution and the
approxi mati on solution respectively. Then

|m*-m, [E k.
Let y be instance of n itens with profits



(k+)P,(k+DP,,,,,(k+1)P, and sizes W,W,,,,,W,. Suppose that m" and m,

are the opti mum solution and the approxi mati on sol ution
respectively. Then

|m, - m*|>k for "k31

(for nore detail see[l]).
See the foll ow ng Fig.

£k >k+1

m, m* m, m'*

Thus we have the follow ng theorem

Theorem 1 Unl ess P=NP, no polynom al -tinme absol ute approxi mati on
al gorithm exi st for Knapsack Probl em

Definition 3 G ven an optim zation problem P, for any instance x of
P and for any feasible solution y of x, the relative error of vy
with respective to x is defined as

m(X, m* (X

RO, y) = max(TY) M (),
m* (x) m(x,y)

By the definition, given any instance x of P and R, there is an
al gorithm A such that

m(x, A(X)) £ R m* (x).

Weighted Vertex Cover

A vertex cover of a undirected graph G=(V,E) is a subset V'l V
such that if (u, v) is an edge of G, then either ul V' or viVv' If
a non-negative weight w is associated with each vertex v,, we want

to find a vertex cover having mnimumtotal weight. W call this
probl em m ni mum wei ght ed vertex cover. G ven a wei ghted graph
G=(V,E), mninmmwei ghted vertex cover can be fornulated as the

follow ng integer |linear program ILP



min g w.x,
viv
X +x,31 " (x,x)1 E,
x 1{0.
Let LP be the linear program obtained by relaxing the integrality
constraints to sinple non-negativeness constraints (i.e., x 30 for

each v, 1V).

Program A
begin
0. V'=0;
1. Relax ILP to LP, by replacing the constraints x1{0L. with
x1[01.;i.e. xi is a continuous variable between 0 and 1.

2. For each v, such that xﬁ%

V'=V'E{v}
return V'

end

Theorem 2 G ven a graph G with non-negative vertex weights,
Program A finds a feasible solution of m nimm wei ghted vertex

cover with value m,(G) such that m,(G) £ 2m* (G).

Proof. Let V' be the solution returned by the algorithm The
feasibility of V' can be easily proved by contradiction. Assune

that V' does not cover edge (v,v;). This inplies that both X (G) and
X;(G) are less than 0.5 and hence x(G)+X;(G)<1, a contradiction.

Let m*(G) be the value of an optinal solution and let m,(G) be
the optinmal value of the relaxed |inear program

Since the value of an optimal solution is always |arger than the
opti mal value of the relaxed |inear program we have

m*(G)* m,(G).



If v, TV, then &3-% and

aw£23 wx (G).

viv' viv

Since V'l V,
24 wx (G) £2§ wx (G).

ViV

By the linear program al gorithm

24 WX (G) £ 2m;(G) £ 2m;, (G).

viv
Therefore the theorem fol |l ows.

Primal-dual algorithms

The inplenentation of program A requires the solution of a |inear
programwi th a possibly | arge nunber of constrains. Therefore it
is conputationally expensive. Another approach known as prinal -
dual allows us to obtain an approxi mate solution nore efficiently.
The chief idea is that any dual feasible solution is a good | ower
bound on the mnimzation prinmal problem W start with a prinmal
dual pair (x*, y*), where x* is a priml variable, which is not
necessarily feasible, while y* is the dual variable, which is not
necessarily optimal. At each step of the algorithm we attenpt to
make y* “nore optimal” and x* “nore feasible”; the algorithm stops
when x* becones feasible. Gven a weighted graph G=(V,E), the dua

of the previously defined LP is the follow ng program DLP:

min g y,
(v E
é Yij £Ew,’ ViT v
(vi‘vi)T E
y; 20" (Vi’Vj)T E
Note that the solution in which all vy, are zero is a feasible

solution with value 0 of DLP. Also note that there is no dual for
an integer program we are taking the dual of the linear
progranmm ng rel axation of the primal integer program The pri nmal
dual algorithmis described the follow ng.



Program B

begin

end

for each dual variable y, do y,; =0
V'=0

while V' is not a vertex cover do

Sel ect sone edge (v,v;) not covered by V';

Increase v; till one of the end-points is hit. i.e., y,=w

or y, =w,
If y; =w then
V'=V'E{v}
else

V'E{v}
end while

return V'

Theorem 3 G ven a graph

G with non-negative weights,

program B

finds a feasible solution of m ninmmweighted vertex cover with

val ue

My (G) such that my,(G) £ 2m* (G).

Proof Let V' be the solution obtained by the algorithm By
ruction V' is a feasible solution. W observe that for every

const
viv

Si nce

we have éyij =w. Therefore
(v E

mDLP(G):é\Ni: é éyij'

viv: viv' (v E

V'i Vv,



é éyijEé. éyij'

viv' (v E iV (v E

Since every edge of E counts two times in § é_yij,
viv (v E

é éyU:Z éyij'

vwiv (v E vV E

Si nce 601 y; Em*(G), the theorem follows.
(v E

Randomization
Let X be a discrete randomvariable and take the values a,a,,,,,a,,
with probabilities p(a),p(a,)..p(@). The expectation of X is

defined as
E(X)=a ap@).

i=1
Linearity properties of Expectation
1. E(X,+X,)=E(X,)+E(X,).
2. E(aX)=aE(X), where a is a positive, real nunber.

Example 1 Suppose that there are 40 sailors and 40 keys one of
which is for one room Suppose that each sail or takes one key
randomy and opens his roomw th this key. What is the

Expect ed nunber of sailors in their own roons?

Let x,=1if sailor i enters his room x, =0 otherw se.

By using linearity of expectation, we have

E@ X) =& E(X) =400 @+ (0) =1

W have used the fact that E(X,)=1p +0.(1- p), since this is a
bi nary event. Thus, E(X,)=(/40), for all i

Example 2

A Bool ean expression is said to be in k-conjunctive normal form (

k-SAT ) if it is the conjunction of clauses such that each cl ause

contains exactly k variables. Suppose that there are mcl auses and
n variables in the Bool ean expression. The goal is to find an



assi gnnent of {True/Fal se} to each of the variables, so that the
gi ven Bool ean expression is satisfied. The correspondi ng

optim zation problemis to naxim ze the nunber of clauses that are
satisfied ( The optim zation problemis called MAX-SAT and is al so
NP-conpl ete. ). Consider a random assi gnnment of {True/False} to
the variables i.e. each variable x;j is set to True or Fal se,
dependi ng upon the random outcome of flipping a fair coin. It is
easy to see that the probability that

A single clause is not satisfied is at npst since in order to

2

falsify a given clause, all its variables nust be set to False, in

the random assi gnnent. Hence, with probability (1-i%), each cl ause
2

is satisfied. W want to know t he expected nunber of clauses that
are satisfied by our random assi gnnent .
By using |linear properties of expectation, we have

m m m 1 1
E(@ X)=a E(X)=a Q- o) =m- ).
i=1 i=1 i=1
Not e that the maxi num nunber of clauses that can be satisfied
under any assignnent is m Hence, our random assignnment is an

approxi mation algorithmw th approxi mati on factor (1-5%).

( Exercise: Substitute various values of k and see how good the
approxi mati on gets. )
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