Midterm

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV
ksmani@csee.wvu.edu

1 Instructions

Each section is worth 10 points for CS 391 students and 8 points for CS 491 students. CS 391 students can pick any 4 out of 5 questions. (Go ahead and answer all 5; I will take the top 4!)

2 Constraints

Let $S = {\vec{\mathbf{x}} : \mathbf{A}.\vec{\mathbf{x}} < \vec{\mathbf{b}}}$ and let z^* be the optimum value of the objective function max $\vec{\mathbf{c}}.\vec{\mathbf{x}}$.

- 1. Let z' be the optimum value obtained after a new constraint has been added. What is the relationship between z' and z^* ?
- 2. Let z' be the optimum value obtained after an existing constraint is deleted. What is the relationship between z' and z^* ?

3 Theorems of the Alternative

Let **A** be an $m \times n$ rational matrix. Prove the following theorem

Theorem: 3.1 Either I: $\exists \vec{\mathbf{y}} \in R^m, \vec{\mathbf{y}}.\mathbf{A} = \vec{\mathbf{c}}, \text{ or (exclusively)}$ II: $\exists \vec{\mathbf{x}} \in R^n, \mathbf{A}.\vec{\mathbf{x}} = \vec{\mathbf{0}}, \text{ and } \vec{\mathbf{c}}.\vec{\mathbf{x}} = 1.$

(Note: This theorem is known as Gale's theorem for equations)

4 Polytopes

Given two bounded polyhedral sets $S = \{\vec{\mathbf{x}} : \mathbf{A}.\vec{\mathbf{x}} \leq \vec{\mathbf{b}}\}$ and $S' = \{\vec{\mathbf{x}} : \mathbf{A}'.\vec{\mathbf{x}} \leq \vec{\mathbf{b}'}\}$, design an efficient procedure to check whether $S \subseteq S'$. You may assume that \mathbf{A} has size $m \times n$, while \mathbf{A}' has size $m' \times n$. (Hint: Assume the existence of an oracle that solves linear programs efficiently. If it helps, assume that the polyhedral sets are bounded.)

5 Integer Modeling

Let $\mathbf{G} = \langle \mathbf{V}, \mathbf{E} \rangle$ be a directed graph and let $s \in V$ be a source. Associated with the edges is a cost function $c : \mathbf{E} \Rightarrow \mathbf{R}_+$ which associates a positive cost for going from Vertex i to vertex j, using edge (i,j). If edge $(i,j) \notin \mathbf{E}$, we assume that $c(i,j) = \infty$. The Single-Source Shortest Path Value Problem is concerned with finding the distance from the source to each vertex in the graph. Formulate a Mathematical Programming Model for this problem. Argue its correctness.

6 Unimodularity

Show that

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

is not totally unimodular, but $\{\vec{x}: A.\vec{x} = \vec{b}\}$ is integral for all integral vectors \vec{b} . (Are we disproving the Hoffman-Kruskal theorem?!%\$)