Theorems and test Problems

K. Subramani Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV ksmani@csee.wvu.edu

1 Two theorems

Theorem: 1.1 Consider the polyhedral set $S = \{\vec{\mathbf{x}} : \mathbf{A}.\vec{\mathbf{x}} = \vec{\mathbf{b}}, \vec{\mathbf{x}} \geq \vec{\mathbf{0}}\}$, where \mathbf{A} is an $m \times n$ rational matrix and $rank(\mathbf{A}) = m < n$. A point $\vec{\mathbf{x}}' \in S$ is an extreme point if and only if it represents the intersection of n linearly independent hyperplanes.

<u>Proof:</u> Let $\vec{x'}$ be an extreme point of S. We need to show that it represents the intersection of n linearly independent hyperplanes of S. Clearly $\vec{x'}$ must satisfy the m constraints of $A.\vec{x} = \vec{b}$. Hence it lies at the intersection of at least m linearly independent hyperplanes. (Remember that the rows of A are linearly independent hyperplanes since its rank is m.) For the remaining n-m linearly independent hyperplanes we look at the hyperplane set $\vec{x} \geq \vec{0}$, which is a collection of n hyperplanes $x_1 = 0, x_2 = 0, \ldots, x_n = 0$. If it is the case that there are fewer than n-m of these hyperplanes which are binding at $\vec{x'}$ then we can write

$$x_i' = 0, i = 1, 2, \dots p \tag{1}$$

$$x'i > 0, i = p + 1, \dots n \tag{2}$$

(3)

where p < n - m. Thus the point $\vec{\mathbf{x}'}$ satisfies the system

$$\mathbf{A}.\vec{\mathbf{x}} = \vec{\mathbf{b}} \tag{4}$$

$$x_i = 0, i = 1, 2, \dots p$$
 (5)

(6)

We can rewrite System (4) as

$$\mathbf{Q}.\vec{\mathbf{x}} = \vec{\mathbf{h}} \tag{7}$$

Observe that System (7) is a linear sysem with m+p equations and n variables, where m+p < n. Clearly this means that the columns of \mathbf{Q} are linearly dependent; hence we must have a vector $\vec{\mathbf{y}} \neq \vec{\mathbf{0}}$, $\in \mathbb{R}^n$ such that

$$\mathbf{Q}.\vec{\mathbf{y}} = \vec{\mathbf{0}} \tag{8}$$

Now consider the two points $\vec{\mathbf{x}^{\prime\prime}}$ and $\vec{\mathbf{x}^{\prime\prime\prime}}$ described by:

$$\vec{\mathbf{x}''} = \vec{\mathbf{x}'} + \lambda \cdot \vec{\mathbf{y}} \tag{9}$$

$$\mathbf{x}^{\vec{n}i} = \vec{\mathbf{x}}' - \lambda \cdot \vec{\mathbf{y}} \tag{10}$$

(11)

 $\lambda > 0$. Now observe that $\mathbf{Q}.\vec{\mathbf{x}''} = \mathbf{Q}.[\vec{\mathbf{x}'} + \lambda.\vec{\mathbf{y}}] = \mathbf{Q}.\vec{\mathbf{x}'}$ and $\mathbf{Q}.\vec{\mathbf{x}'''} = \mathbf{Q}.[\vec{\mathbf{x}'} - \lambda.\vec{\mathbf{y}}] = \mathbf{Q}.\vec{\mathbf{x}'}$ since $\mathbf{Q}.\vec{\mathbf{y}} = \vec{\mathbf{0}}$. Thus the points $\vec{\mathbf{x}''}$ also satisfy the system $\mathbf{Q}.\vec{\mathbf{x}} = \vec{\mathbf{h}}$ and hence the combined systems represented by System (4).

Further note that, we can choose λ in such a way that $x''i = x'i + \lambda y_i \geq 0, i = p+1, \ldots n$ and $x'''i = x'i - \lambda y_i \geq 0, i = p+1, \ldots n$. This means that both \mathbf{x}'' and \mathbf{x}''' belong to the set S. However, $\mathbf{x} = \frac{1}{2}\mathbf{x}'' + \frac{1}{2}\mathbf{x}'''$ thereby contradicting the hypothesis that \mathbf{x}' is an extreme point of S.

We now have to show the converse i.e. if $\vec{\mathbf{x}}'$ is the intersection of n linearly independent hyperplanes, it must be an extreme point. Without loss of generality, let us assume that the n linearly independent hyperplanes intersecting at $\vec{\mathbf{x}}'$ are

$$\mathbf{A}.\vec{\mathbf{x}} = \vec{\mathbf{b}} \tag{12}$$

$$x_i = 0, i = 1, 2, \dots, n - m$$
 (13)

(14)

If $\vec{\mathbf{x}}'$ is not an extreme point, then it can be expressed in the form

$$\vec{\mathbf{x}'} = \alpha \cdot \vec{\mathbf{x}''} + (1 - \alpha) \cdot \vec{\mathbf{x}'''}, \alpha \in (0, 1)$$
(15)

Consider the first n-m coordinates of the points, $\vec{\mathbf{x'}}, \vec{\mathbf{x''}} \vec{\mathbf{x'''}}$. We must have

$$x_i' = \alpha \cdot x_i'' + (1 - \alpha) \cdot x_i''' \tag{16}$$

Since both α and $(1-\alpha)$ are greater than 0, while $x_i'=0$, x_i'' and x_i''' must be 0 for $i=1,2,\ldots n-m$. Since, we have $\mathbf{A}.\vec{\mathbf{x}'}=\mathbf{A}.\vec{\mathbf{x}''}=\mathbf{A}.\vec{\mathbf{x}''}$, we must have

$$\sum_{j=n-m+1}^{n} x'_{j}.\mathbf{a}_{j} = \sum_{j=n-m+1}^{n} x'_{j}.\mathbf{a}_{j} = \sum_{j=n-m+1}^{n} x'_{j}.\mathbf{a}_{j} = \vec{b}$$
(17)

where $\mathbf{A} = [\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}]$ i.e. the $\mathbf{a_i}$ are column vectors of \mathbf{A} . But the columns $\mathbf{a_{n-m+1}}, \dots, \mathbf{a_n}$ are linearly independent since $\vec{\mathbf{x}}'$ is the unique solution to System (12). This forces $x_i' = x_i'' = x_i'''$ for $i = m - n + 1, \dots n$ and we are done. \square

Theorem: 1.2 Consider the polyhedral set $S = \{\vec{\mathbf{x}} : \mathbf{A}.\vec{\mathbf{x}} = \vec{\mathbf{b}}, \vec{\mathbf{x}} \geq \vec{\mathbf{0}}\}$, where \mathbf{A} is an $m \times n$ rational matrix and $rank(\mathbf{A}) = m < n$. A point $\vec{\mathbf{x}}' \in S$ is an extreme point if and only if it is a basic feasible solution.

Proof: First assume that $\vec{x'} \in S$ is an extreme point. From the previous theorem, we know that $\vec{x'}$ must lie at the intersection of n linearly independent hyperplanes. Without loss of generality, we can assume that these hyperplanes are the m hyperplanes defining \mathbf{A} and n-m from the set $\vec{x'} \geq \vec{0}$, i.e. $x'_i = 0, i = 1, 2, \ldots, n-m$. In order to show that $\vec{x'}$ is a basic feasible solution, we need to show that it is feasible and basic. Since it is an extreme point, it is clearly a point of the set S and hence feasible. All that we need to show now is that $\vec{x'}$ is basic. Since n-m variables (components of $\vec{x'}$ are set to zero, we can regard them as our vector of non-basic variables $\vec{x'}_N = \vec{0}$. Then \vec{x} is the unique solution of the n linearly independent hyperplanes $A.\vec{x} = \vec{b}, \vec{x} \geq \vec{0}$. Let $\vec{x'}_B$ represent the remaining m components of $\vec{x'}$. We can partition \vec{A} to correspond to the vectors $\vec{x'}_B$ and $\vec{x'}_N$ i.e. A = (B: N). Then the extreme point $\vec{x'}$ is the unique basic solution of the system $B.\vec{x'}_B + N.\vec{x'}_N = \vec{b}$.

Now assume that $\vec{x'}$ is a basic feasible solution. This implies that there exists a basis matrix **B** such that

$$\vec{\mathbf{x}'} = \begin{pmatrix} x'_B \\ x'_N \end{pmatrix} = \begin{pmatrix} \mathbf{B^{-1}} \cdot \vec{\mathbf{b}} \\ \vec{\mathbf{0}} \end{pmatrix}$$
 (18)

This implies that $\vec{\mathbf{x}'}$ is the unique solution of the system $\mathbf{B}.\vec{\mathbf{x_B}} + \mathbf{N}.\vec{\mathbf{x_N}} = \vec{\mathbf{b}}$, or equivalently $\mathbf{A}.\vec{\mathbf{x}} = \vec{\mathbf{b}}, \mathbf{x_N} = \vec{\mathbf{0}}$. Hence $\vec{\mathbf{x}'}$ lies at the intersection of n linearly independent hyperplanes and is therefore extreme. \Box

Definition: 1.1 A set S is said to be convex if given two points $x_1, x_2 \in S$, the point $x_3 = \alpha.x_1 + (1-\alpha).x_2 \in S$, for all $\alpha \in [0, 1]$. x_3 is said to be a convex combination of x_1 and x_2 . If $\alpha > 0$, x_3 is said to be a strict convex combination.

2 Quiz problems

- 1. Show that the set $\{\mathbf{A}.\vec{\mathbf{x}}\{\leq,=,\geq\}\vec{\mathbf{b}},\vec{\mathbf{x}}\geq\vec{\mathbf{0}}\}$ is convex;
- 2. Solve graphically:

$$\min z = 4.x_1 + 5.x_2 \tag{19}$$

$$3.x_1 + 2.x_2 \le 24 \tag{20}$$

$$x_1 \ge 5 \tag{21}$$

$$3.x_1 - x_2 \le 6 \tag{22}$$

$$x_1, x_2 \ge 0 \tag{23}$$

- (24)
- 3. Show that the halfspace $\mathbf{H}^- = \{\vec{\mathbf{x}} : \vec{\mathbf{a}}.\vec{\mathbf{x}} \leq \alpha\}$ is convex.
- 4. Given three vectors, $\vec{a} = [4, 2]^T$, $\vec{b} = [-2, 6]^T$, $\vec{c} = [2, 5]^T$, illustrate graphically
 - (a) The set of all linear combinations of $\vec{a}, \vec{b}, \vec{c}$,
 - (b) The set of all non-negative linear combinations of $\vec{a}, \vec{b}, \vec{c}$,
 - (c) The set of all convex combinations of $\vec{a}, \vec{b}, \vec{c}$.