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1 The Method

Exercise 3 on Page 62 of [KV00] describes a method of solving linear programs called Fourier-Motzkin elimination.
This method was discovered first by Fourier [Fou24] and then elaborated on in [DE73]. The Fourier-Motzkin
elimination method is the linear programming equivalent to Gaussian elimination for solving systems of linear
equations. Observe that given a system A.X = l_;, where A is an n X n matrix of full row rank, Gaussian elimination
proceeds by pivoting on each (%,7) element i = 1,...,n. To begin with we make the element A[l,1] = 1 through
appropriate multiplication. Then we make the co-efficent of z; in all rows 2, ...n zero, through appropriate scalar
multiplication and addition. This process continues till we are left with an upper triangular matrix, from which
the computation of the variable values is relatively straightforward. If the given system is infeasible, then we
arrive at the equation 0.z, = 1. Also see [Str88].

Fourier observed that a similar elimination procedure could be used to solve systems of linear inequalities. In
class, we argued that solving systems of linear inequalities is equivalent to linear programming in that given an
oracle to decide the feasibility problem, we can construct a solution that maximizes an arbitrary linear function
over the same polyhedron, taking time at most log z* x T'(£), where z* is the optimum value of the function being
optimized and T'(L) is the time taken to answer a single feasibilty question. Thus Fourier’s method could be used
to solve linear programs. The key component of Fourier’s algorithm is the following theorem.

Theorem: 1.1 Let us say that we have a system in the form A.X < B, where A has m rows and n columns.
Without loss of generality, the system can be written in the following form:

(1)

where X' is [Ty, 3,...,2,]" i.e. the same set of variables without .

What we have done is express each constraint in the form: z; < () ( F(X) ), z1 > () ( E(X) ) and the
constraints which do not have 1 in them ( D(Z) )
Now consider the system defined below defined by:

D(X) : a;.7§bi,i: R ]

aj.x’—bjSbk—ai{.x’,j:ml—l—l,...,mg,k:mg—l—l,...m

Then System (1) has a solution if and only if System (2) has a solution.



Proof: Let us say that System (1) has a solution i.e. we have a vector X = [x1, %2, ..., Zy,] satisfying System (1).
The value of x1 chosen has to satisfy

21> by —alx\Vji=mi+1,...,my (3)
mlga_’l;.)?—bk,‘v’k:mg—i—l,...,m (4)

Hence System (2) is trivially satisifed.

We now show the converse, i.e. if System (2) is satisifed, then System (1) is also satisfied. Consider a solution
x' = [z, 23,..., 2] to System (2). Letl = max(z;’..)z’ —b;,j =mi+1,...my) and u = min(by — a_’ll.)Z’,k =
mg 4+ 1,...m). Ifl > u, then one of the constraints of System (2) has been violated. Sol < u. An assignment of
z1 to any value in the range [l, u] trivially satisfies System (1). O

This elimination procedure clearly gives an algorithm for deciding feasibility of a linear system of inequalities.
First eliminate z1, then z5 and so on till you have only z,, left. If z,, occurs as a feasible range [a, b],a < b, then
the system is feasible. Otherwise, we get 0.8 < —1, which is a contradiction.

One can also look at the elimination procedure as a way of projecting the input polyhedron onto successive
smaller dimensional spaces, while preserving the solution space [Sch87].

2 Two examples
Ezample (1): Consider the problem

maxz = 2.x1 + 3.2
s.t.

r1 —2.29<4
2.1+ 22, <18

zy < 10

1, T2 Z 0

We replace the objective function with the relationship z < 2.xz1 + 3.x9. The idea is that to mazimize z we are
driving it to the largest possible value that can be assumed by 2.z, + 3z5 ' We then have the system

z—2.x1—3.22<0
r1—2.25<4
2.1+ 22, <18

zy < 10

L1, L2 Z 0

To eliminate z1, we rewrite the system in the form of System (1).

3 1
—r1 — —.x9 + iz <0

2
I1—2.;l‘2 §4
1+ §l2 <9
Igglo

L This was the cause of confusion in class!
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Pairing off the constraints in which x| appears with opposite signs, we get,

3 -8
—§.m2§4+2.x2:>x22 ZT
z
2
0<442.z9= 29> -2

3
_E.xQ <9-12.z3= 22> -9+

1
0§9—§.:E2:>I‘2§18
—IQSO

Now, observe that the constraint x4 > —2 is redundant, since xy > 0 is already present. Likewise, xo < 18 is
redundant, on account of the harsher constraint xo < 10. Accordingly, the new set of constraints is:

z—8

9 7
z
1’22—9-1-5
zg < 10xz3 >0

Pairing off constraints to eliminate xo we get

z—38

<10=2< 78

—9+%§10:>z§38
0< 10

Since z < 38 is the more binding constraint, it the optimum wvalue. This can be verified through graphical
procedures.

Ezample (2):  Solve the system

maxz = .21 + 2
s.t.

2.1+ 22>5
x> 1

2.1+ 3.2 <6

L1,L2 Z 0
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