Midterm - Practice Questions

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV
ksmani@csee.wvu.edu

1. Suppose my linear program \(A\mathbf{x} \leq \mathbf{b} \) has the specification that all variables except \(x_1 \) are \(\geq 0 \); \(x_1 \) is an unrestricted variable. How would you model it in the standard form with all variables \(\geq 0 \)?

2. Suppose that all \(n \) variables are unrestricted variables. Show that you can replace this set with a set of \(n + 1 \) variables that are constrained to be non-negative?

3. **Definition: 0.1** Polytope - A bounded polyhedron

 Definition: 0.2 \(\epsilon \)-neighbourhood - The \(\epsilon \)-neighbourhood of a point \(\mathbf{x} \), denoted by \(N_\epsilon(\mathbf{x}) \), is defined as a ball of radius \(\epsilon \) centred around \(\mathbf{x} \).

 Definition: 0.3 A point \(\mathbf{x} \) is said to be in the closure of a set \(S \), if for all \(\epsilon > 0 \), \(N_\epsilon(\mathbf{x}) \cap S \neq \emptyset \). The set of all points in the closure of \(S \) are denoted by \(\text{cl } S \). \(S \) is said to be closed if \(S = \text{cl } S \).

 Show that a polytope defined in the usual way is closed.

4. Show that the set of optimal points of a Linear Program is a convex set.

5. Can a pivot of the Simplex Algorithm move the feasible point in the basis, while leaving the cost unchanged?

6. Prove or disprove: If an LP is unbounded then there exists a vector \(\mathbf{a} \) such that for any feasible \(\mathbf{x} \), \(\mathbf{x} + k\mathbf{a} \) is also feasible, for all \(k > 0 \).

7. Use the Simplex Method to solve

 \[
 \begin{align*}
 \text{max } z &= 3x_1 + 10x_2 + 5x_3 + 11x_4 + 7x_5 + 14x_6 \\
 \text{s.t.} & \quad x_1 + 7x_2 + 3x_3 + 4x_4 + 2x_5 + 5x_6 = 42 \\
 & \quad x_1, x_2, x_3, x_4, x_5, x_6 \geq 0
 \end{align*}
 \]

8. Show that the point \(\mathbf{x} = [10, 0, 16, 6] \) is an optimal solution to the problem:

 \[
 \begin{align*}
 \text{max } z &= x_1 + 2x_2 + 5x_3 + x_4 \\
 \text{s.t.} & \quad x_1 + 2x_2 + x_3 - x_4 \leq 20 \\
 & \quad -x_1 + x_2 + x_3 + x_4 \leq 12 \\
 & \quad 2x_1 + x_2 + x_3 - x_4 \leq 30 \\
 & \quad x_i \geq 0, i = 1, 2, 3, 4
 \end{align*}
 \]
9. Consider the following linear program:

$$\begin{align*}
\min z &= b^T \cdot w - c^T x \\
\text{s.t.} & & \\
A \cdot x &\leq b \\
A^T \cdot w &\leq c^T x \\
\bar{x} &\geq 0 \\
\bar{w} &\geq 0
\end{align*}$$

where A is $m \times n$, b is $m \times 1$, c is $n \times 1$. Show that the optimal objective value is 0 or the problem is infeasible.