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1 Constraint Matrices of network flow graphs

The following conventions are used to write down the constraint matrices of network flow graphs:
1. All supply is positive,
2. All demand is negative,

3. For a given node, flow entering the node is taken to be negative, while flow leaving the node is taken to be
postive.

Accordingly for Figure (1), we get the following constraint set:

2

@® (o

(10)

1@ -7 @ a4

Figure 1: Flow Graph

Node 1 :y19 +y13 =10
Node 2 : yaz + yas —y12 =0
Node 3 : y3q4 —y13 — Y23 = —3
Node 4 : —y3q4 — yos = —7

Note the quantity within the parentheses represents the supply/demand at that node.



Hence the constraint system is:

1 0 1 0 0 Y12 10
1 0 1 1 0 Y13 0
0 -1 -1 0 1 yr | = | _3 (1)
0 0 0 -1 -1 Y24 7
Y34
yij > 0for all edges (2)

Observation: 1.1 This notation is only a convention. If you want to choose all the supply nodes to be negative
and all the demand nodes to be positve, all the equations will change accordingly and flow entering a node will be
positive and flow leaving a node will be negative.

Observation: 1.2 All entries in the matriz are in the set {0,1,—1}. Further, if you add all the rows, you get
the 0 vector, which indicates that the rows are linearly dependent. To apply Simplex, we add a dummy arc called
root arc, from node 4 without any end-point. Then the constraint matrix becomes

Y12
1 0 1 0 0 0 Y13 10
-1 0 1 1 0 0 Y23 _ 0 (3)
0 -1 -1 0 1 0 Y24 - -3
0 0 O -1 -1 1 Y34 -7
Ya
yi; > 0for all edges (4)
2 Total Dual Integrality
Definition: 2.1 A system A.X < b is said to be totally dual integral ( TDI ) if
{max&%: AX<b}={minyb:yA=¢y>0} (5)

is reached at an integral ¥ for all integral €, where the optima are finite.
An immediate corollary of the definition and (g) = (f) of Theorem (5.12) in [KV00] is:

Corollary: 2.1 Let AX < b be a TDI system, with A rational and b integral. Then the polyhedron A.X < b is
integral.

Proof: FEzercise. O

We note that being TDI or not is not a characteristic of the polyhedron under consideration, but of the linear
system used to describe that polyhedron. For instance, the polyhedron in Figure (2) can be described by System
(6) and System (7). However, only System (6) is TDI.

Lo <[’31]< 0 (6)
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Proof: We first show that System (7) is not TDI. Let € = [c1, c2] be an integral vector. Taking {maxcy.z1 +c2.22 :
System (7)} as the primal, the dual is:
min y‘B
y1+y2=a
Y1 — Y2 =¢C2

y1,y2 >0



/\ ,<0  ( redundant )

X;-X, <0

X;+X, <0

Figure 2: Polyhedron with redundant inequality

The only solution to this system is:

Y1 = % and yo = 252, If ¢y is odd and cy is even, then both y1 and yo are fractional, thus proving that

System (7) is not TDI. (Exercise: If ¢; < co the dual is infeasible. Give an explanation based on Figure (2)! )
If the polyhedron is described by System (6), the dual is:

miny'.l_;
Y1 +y2+ys=c
Y1 —Ys3 =¢C2

Y1,¥Y2,Y3 Z 0
9)

The chief difference between System (9) and System (8) is that System (9) has an extra variable ( yo ) that
allows us some freedom. We consider the following cases:

1. Both c¢; and cy even: Choose ya to be 0 and you have one single integral solution for y1 and ys;
2. Both c1 and co odd: Choose ys to be 0 and you have one single integral solution for y1 and ys;

3. ¢1 odd and cy even: Choose ya = 1 and you have one single integral solution for y1 and ys, because ¢1 — ya
s even;

4. c1 even and ca odd: Choose ya =1 and you have one single integral solution for y1 and ys.

In all cases, we can find an integral optimum for the dual and hence the primal system is totally dual integral. O
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