Final exam

K. Subramani Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV ksmani@csee.wvu.edu

1. Consider the following greedy strategy to solve the vertex cover problem:

```
Function Vertex-Cover (G = < V, E >)

1: Cover = \phi

2: while ( there exist uncovered edges in E) do

3: Select the vertex v' with the largest degree

4: Cover = Cover \cup v'

5: Delete from the edge set E, all edges that are incident to v'

6: end while

7: return(Cover)
```

Algorithm 0.1: A greedy algorithm for Vertex Cover

Show that Algorithm (0.1) is not optimal by providing a counter-example? How good is the quality of the approximation? (*Hint: Set Cover*) (10 pts.)

- 2. Formulate a Dynamic Programming algorithm to solve the minimum partition problem. Argue correctness and provide an analysis of the running time. (10 pts.)
- 3. Show that the β in the semidefinite programming approximation algorithm for the MAX-CUT problem is at least 0.87. You may use analytical or software techniques. (10 pts.)
- 4. In class we analyzed the *First-Fit Decreasing* heuristic for the bin-packing problem. Show that the bound of $\frac{3}{2}.OPT + 1$ is tight by providing an example. (10 pts.)
- 5. There are m people and n jobs. Let w(i, j) denote the affinity of person i for job j. We want to assign people to jobs, such that
 - (a) Each person is assgned to at most 1 job,
 - (b) Each job gets exactly one person,
 - (c) The overall affinity is maximized.

You can assume that $m \geq n$.

- (a) Formulate the above problem as an Integer Program
- (b) Formulate the above problem as a Linear Program
- (c) Write the dual of the Linear Program.

(10 pts.)