CS 791I - Online Algorithms - (Spring 2002)

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV
ksmani@csee.wvu.edu

1 Preview

This course is intended for a graduate audience in the CSEE, Industrial Engineering, Mathematics and Statistics Departments. It will serve as a thorough introduction to the fundamentals of design and analysis in the online realm, i.e. when all problem parameters are not known in advance. We shall study a number of real-world applications including Paging, Scheduling and Portfolio Optimization.

2 Pre-requisites

A course on Analysis of Algorithms; some exposure to the basic concepts of Randomized Algorithms and Approximation Algorithms is preferred, but not required.

3 Syllabus sketch

1. Introduction - Competitive Analysis and its Applications
2. Self-Organizing Data Structures - Unsorted Linear Lists and Binary Search Trees
4. Metrical Task Systems and the k-Server Problem
5. Distributed Paging - File Migration and File Allocation
6. Competitive Analysis of Distributed Algorithms
7. Online Load Balancing - Permanent tasks, Temporary tasks with unknown duration
8. Online Scheduling - Scheduling jobs one by one, Unknown running times, Jobs arriving over time
9. Online Network Optimization Problems
10. Online Financial Problems - Two way trading and Portfolio Selection.

4 Material

All the material for this course will be based on selected Chapters of [FW98] and [BEY98].
5 Important Dates

1. Quiz I - Posted February 19; Collected February 25
2. Midterm - Posted March 7; Collected March 14
3. Quiz II - Posted April 11; Collected April 18
4. Final - Posted May 2; Collected May 9

All assignments including the final will be posted on the class Website and are take home.

6 Grading

1. Lecture Notes (20%)
2. Quizzes (20%)
3. Midterm (30%)
4. Final (30%)

A maximum of 10 points is reserved for class performance, which includes regular attendance, participating in class discussions and presenting a research paper.

7 Grade Boundaries

1. A - ≥ 80
2. B - 65 – 79
3. C - 50 – 64

References
