Automata Theory - Homework I

K. Subramani
LCSEE,
West Virginia University,
Morgantown, WV
{ksmani@csee.wvu.edu}

1 Instructions

1. The homework is due on February 6, in class.
2. Attempt as many problems as you can. You will be given partial credit.

2 Problems

1. Given sets R, S and T, show that

$$R \cap (S \cup T) = (R \cap S) \cup (R \cap T)$$

(2 points)

2. Argue using Mathematical Induction

$$\sum_{i=1}^{n} i^3 = \left[\frac{(n)(n + 1)}{2} \right]^2$$

(3 points)

3. Draw the transition diagram for a DFA accepting all strings $x \in \{0,1\}^*$, having 011 as a substring. (2 points)

4. Convert the NFA $N = \langle Q, \Sigma, \delta, q_0, F \rangle$ to a DFA, where

- $Q = \{p,q,r,s,t\}$,
- $\Sigma = \{0,1\}$,
- $\delta = \begin{array}{c|cc}
 & 0 & 1 \\
 p & \{p,q\} & \{p\} \\
 q & \{r,s\} & \{t\} \\
 r & \{p,r\} & \{t\} \\
 s & \phi & \phi \\
 t & \phi & \phi
 \end{array}$

- $q_0 = p$,
- $F = \{s,t\}$

(3 points)