1 Problems

1. Consider the $\varepsilon-NFA$ defined below:

<table>
<thead>
<tr>
<th>ε</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>\emptyset</td>
<td>${p}$</td>
<td>${q}$</td>
</tr>
<tr>
<td>q</td>
<td>${p}$</td>
<td>${q}$</td>
<td>${r}$</td>
</tr>
<tr>
<td>r</td>
<td>${q}$</td>
<td>${r}$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

(a) Compute the ε-closure of each state. (3 points)

Solution:

ε-closure$(p) = \{p\}$

ε-closure$(q) = \{p, q\}$

ε-closure$(r) = \{p, q, r\}$

(b) Convert the automaton to a DFA. (4 points)

Solution: □

2. Let $\Sigma = \{a, b, c\}$. Write a regular expression for the language consisting of the set of strings containing at least one a and at least one b. (4 points)

Solution: Observe that the simplest approach is to consider those strings in which the first a precedes the first b separately from those where the opposite occurs. The regular expression is:

$c^*a(a + c)^*b(a + b + c)^* + c^*b(b + c)^*a(a + b + c)^*$. □

3. Let $\Sigma = \{0, 1\}$. Which of the following languages is regular? Provide an explanation in each case. (6 points)

(a) $L = \{0^n1^m \mid n \leq m, n, m \geq 0\}$

Proof:
i. Player 1 picks the language L to be proved nonregular, where $L = \{0^n1^m|n \leq m, n, m \geq 0\}$.

ii. Player 2 picks n.

iii. Player 1 picks $w = 0^n1^{n+1}$.

iv. Player 2 breaks w into xyz, in which $y \neq \epsilon$ and $|xy| \leq n$.

v. Player 1 wins. Since $|xy| \leq n$ and xy comes at the front of w, we know that x and y consist of only 0’s. Thus, $y = 0^k$ for $0 < k \leq n$, since $y \neq \epsilon$. The Pumping Lemma tells us that xy^kz is in L if L is regular. If we choose $k = 2$, the resulting string is $w' = 0^{n+2}1^{n+1}$. Clearly w' is not in L. Therefore, we have contradicted our assumption that L is regular.

\[\square\]

(b) $L = \{0^n1^m|n \geq m, n, m \geq 0\}$

Proof:

i. Player 1 picks the language L to be proved nonregular, where $L = \{0^n1^m|n \geq m, n, m \geq 0\}$.

ii. Player 2 picks n.

iii. Player 1 picks $w = 0^n1^n$.

iv. Player 2 breaks w into xyz, in which $y \neq \epsilon$ and $|xy| \leq n$.

v. Player 1 wins. We know that $|xy| \leq n$ and $y \neq \epsilon$. Since xy comes at the front of w, we know that x and y consist of only 0’s, and that y must contain at least one 0. The Pumping Lemma tells us that xz is in L if L is regular, however, xz has n 1’s, since all of the 1’s of w are in z. However, xz also has fewer than n 0’s, because we have lost the 0’s of y. Since $y \neq \epsilon$, we know that there can be no more than $n-1$ 0’s among x and z. We have assumed L to be a regular language, but have proved that xz is not in L. Therefore, we have contradicted our assumption that L is regular.

\[\square\]

(c) $L = \{0^n1^m|n, m \geq 0\}$

Solution: Observe that the following regular expression 0^*1^* corresponds to L. Since we can write a regular expression for L, we know that L is regular. \[\square\]

4. Let $\Sigma = \{0, 1\}$. Let L be the language that consists of strings having either 01 repeated one or more times or 010 repeated one or more times. Is L regular? Explain. (4 points)

Solution: Observe that L can be written as the following regular expression $((0+1)^*01(0+1)^*01(0+1)^*) + ((0+1)^*010(0+1)^*010(0+1)^*)$. Since we are able to write L as a regular expression, we know that L is regular. (Note each pattern must occur twice in order to be repeated once!) \[\square\]

5. Assume that a regular language L is provided to you as a DFA $A = < Q, \Sigma, \delta, q_0, F >$. How would you check whether L is infinite? (5 points).

Hint: Pumping Lemma.

Proof: Let n be the Pumping Lemma constant. Test all strings of length between n and $2 \cdot n - 1$ for membership in L. If we find even one string, then L is infinite. The reason is that the Pumping Lemma applies to such a string, and it can be “pumped” to show an infinite sequence of strings are in L.

Suppose, however, that there are no strings in L whose length is in the range n to $2 \cdot n - 1$. We claim that there are no strings in L of length $2 \cdot n$ or more, and thus there are only a finite number of strings in L.

Suppose w is a string in L of length at least $2 \cdot n$, and w is as short as any string in L that has length at least $2 \cdot n$. Then the Pumping Lemma applies to w, and we can write $w = xyz$, where xz is also in L. How long could xz be? It can’t be as long as $2 \cdot n$, because it is shorter than w, and w is as short as any string in L of length $2 \cdot n$ or more. Secondly, $|z| \geq n$ and hence $|xz| \geq n$. Thus, xz is of length between n and $2 \cdot n - 1$, which is a contradiction, since we assumed that there were no strings in L with a length in that range. \[\square\]

6. Let $\Sigma = \{0, 1\}$. We showed in class that the language $L = \{0^n1^n|n \geq 0\}$ is not regular. Argue using closure properties of regularity, that $L' = \{0^i1^j|i \neq j\}$ is not regular. (4 points)
Proof: Start out by complementing the language \(L' \); the resulting language is the language consisting of all strings of 0’s and 1’s that are not in \(0^*1^* \), plus the strings in \(L \). Now, if we intersect the complement of \(L' \) with \(0^*1^* \), the result is precisely the language \(L \). Since complementation and intersection with a regular set preserve regularity, if the given language were regular, then so would be \(L \). We already know that \(L \) is not regular, therefore, we can conclude that the given language \(L' \) is not regular. \(\square \)