Automata Theory - Quiz II (Solutions)

L. Kovalchick
LCEE,
West Virginia University,
Morgantown, WV
{lynn@csee.wvu.edu}

1 Problems

1. Let L_1 and L_2 be 2 regular languages, over the same alphabet Σ and let them be respectively represented by DFAs A_1 and A_2. Discuss a strategy by which you could check whether there is a string in Σ^*, that is neither in L_1 nor in L_2. (3 points)

Solution: Observe that we want to test whether M is empty, where $M = L_1' \cap L_2'$. This is equivalent to testing whether $M = (L_1 \cup L_2)'$ is empty. Thus we can combine DFA’s A_1 and A_2 to form an ϵ-NFA (say B), which contains a start state that on transition ϵ goes to both A_1’s and A_2’s old start states. Similarly, we have a new final state to which all the original final states of A_1 and A_2 are connected. We now must convert B to a DFA (say C). We will then switch the accepting and non-accepting states of C and use the graph reachability algorithm to check whether any accepting state is reachable from the start state, if so, then there is at least one string in M. Otherwise, M is empty. \(\square\)

2. Consider the grammar $G = (\{S\}, \{a, b\}, P, S)$, where P is defined as the following set of rules:

$S \rightarrow aSbS \mid bSaS \mid \epsilon$

Argue using mathematical induction, that $L(G)$ is the set of all strings with an equal number of a’s and b’s. (4 points)

Proof: Using mathematical induction on the length of the string (say w), we have the following.

Base Case:
Let $|w| = 0$, then the production $S \rightarrow \epsilon$ derives this string, which has 0 a’s and 0 b’s.

Let us assume that $w \in L(G)$ for all $|w| \leq 2^{n-1}$.

Inductive Step:
Let $|w| = 2^n$, then w must be of the form $w = aw' b$ or $w = bw' a$. Using the inductive hypothesis, we have $w' \in L(G)$. Now, in order to produce w, we must use either production $S \rightarrow aSbS$ or $S \rightarrow bSaS$. However, both productions give us an equal number of a’s and b’s. Thus $|w| = 2^n \in L(G)$.

Therefore, $L(G)$ is the set of all strings with an equal number of a’s and b’s. \(\square\)

3. Write a CFG for the following language: $L = \{a^ib^j \mid i, j \geq 1, \ j = i + 1\}$. (3 points)

Solution: A Context-Free Grammar for the language L is:

$S \rightarrow abb$
$S \rightarrow aSb$

\(\square\)