1 Problems

1. For $\Sigma = \{a, b\}$, construct a DFA that accepts the set consisting of all strings with no more than 3 a’s.

 Solution: □

 ![DFA Diagram](image)

 Figure 1: DFA

2. For $\Sigma = \{a, b, c\}$, construct an ϵ-NFA that accepts the language $L = \{ab + abc\}^*$.

 Solution: □

 ![\epsilon-NFA Diagram](image)

 Figure 2: ϵ-NFA

3. Give a regular expression for the following languages.

 (a) $L = \{a^n b^m \mid n \geq 4, m \leq 3\}$

 Solution: Observe that we can break the solution into the cases $m = 0, 1, 2, 3$. Now, we can write the solution by first generating 4 or more a’s followed by the requisite number of b’s. Thus, the regular expression for L is $aaaaa^*(\epsilon + b + bb + bbb)$.

 (b) L'

 Solution: Observe that a string is not in L if it is of the form $a^n b^m$, with either $n < 4$ or $m > 3$;
we must also include strings in which a b is followed by an a. Thus, the regular expression for \(L' \) is
\[
(\epsilon + a + aa + aaa)b^* + a^*bbb^* + (a + b)^*ba(a + b)^*.
\]
\(\square \)

4. Prove that the following language \(L = \{ a^n b^k a^k | k \geq n + 1 \} \) is not regular.

Proof:

(a) Player 1 picks the language \(L \) to be proved nonregular, where \(L = \{ a^n b^k a^k | k \geq n + 1 \} \).
(b) Player 2 picks \(n \).
(c) Player 1 picks \(w = a^n b^n a^{2n} \).
(d) Player 2 breaks \(w \) into \(xyz \), in which \(y \neq \epsilon \) and \(|xy| \leq n \).
(e) Player 1 wins. Since \(|xy| \leq n \) and \(xy \) comes at the front of \(w \), we know that \(x \) and \(y \) consist of only a’s. Thus, \(y = a^k \) for \(0 < k \leq n \), since \(y \neq \epsilon \). The Pumping Lemma tells us that \(xy^2z \) is in \(L \) if \(L \) is regular. If we choose \(k = 2 \), the resulting string is \(w' = a^{n+2}b^n a^{2n} \). Clearly \(w' \) is not in \(L \). Therefore, we have contradicted our assumption that \(L \) is regular.

\(\square \)

5. Design a context-free grammar for the language \(L = \{ a^n b^m | 2n \leq 3 \cdot n \leq m, n \geq 0, m \geq 0 \} \).

Solution: The following rules define the context-free grammar.

(a) \(S \to \epsilon \)
(b) \(S \to aSbb \)
(c) \(S \to aSbbb \)

\(\square \)