Computational Geometry - Homework III

K. Subramani
LCSEE, West Virginia University, Morgantown, WV
{ksmani@csee.wvu.edu}

1 Instructions

1. The homework is due on April 27, in class. Each question is worth 5 points.
2. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 Problems

1. **Duality:** Let \(R \) be a set of \(n \) red points in the plane and \(B \) denote a set of \(n \) blue points. A line \(l \) is said to be a separator for \(R \) and \(B \), if \(l \) has all the red points on one side and all the blue points on the other. Describe a randomized, linear-time algorithm that decides whether the given sets \(R \) and \(B \) have a separator.

2. **Line Arrangements:** Let \(L \) denote a set of \(n \) lines in the plane and let \(A(L) \) denote their arrangement. Describe an \(O(n \cdot \log n) \) algorithm to compute an axis-parallel rectangle that contains all the vertices of \(A(L) \).

3. **Delaunay Triangulation:** Given a set \(P \) of \(n \) points in the plane, the Euclidean Minimum Spanning Tree (EMST) is the tree of total edge length connecting all the points in \(P \). Describe an \(O(n \cdot \log n) \) algorithm to compute the EMST for \(P \).

4. **Delaunay Triangulation:** Given a set \(P \) of \(n \) points, the Gabriel graph \(G(P) \) of \(P \) is defined as follows: Two points \(p \) and \(q \) are connected by an edge in \(G(P) \) if and only if the circle with diameter \(\overline{pq} \) does not contain any other point of \(P \) in its interior.
 (a) Prove that \(\mathcal{DG}(P) \) contains \(G(P) \), where \(\mathcal{DG}(P) \) denotes the Delaunay graph of \(P \).
 (b) Describe an \(O(n \cdot \log n) \) algorithm to compute \(G(P) \).

5. **Geometric Data Structures:** Let \(I \) denote a set of \(n \) intervals in the plane. Given an interval \(r = [x : x'] \), we are interested in all the intervals \(p \in I \), such that \(p \) is completely contained in \(r \). Describe a data structure that uses \(O(n \cdot \log n) \) storage and answers these queries in \(O(\log n + k) \) time, where \(k \) is the number of answers.