An Introduction to First-Order Logic

K. Subramani

\(^1\)Lane Department of Computer Science and Electrical Engineering
West Virginia University

Completeness, Compactness and Inexpressibility
1. Completeness of proof system for First-Order Logic
 - The notion of Completeness
 - The Completeness Proof

2. Consequences of the Completeness theorem
 - Complexity of Validity
 - Compactness
 - Model Cardinality
 - Löwenheim-Skolem Theorem
 - Inexpressibility of Reachability
1 Completeness of proof system for First-Order Logic
 - The notion of Completeness
 - The Completeness Proof

2 Consequences of the Completeness theorem
 - Complexity of Validity
 - Compactness
 - Model Cardinality
 - Löwenheim-Skolem Theorem
 - Inexpressibility of Reachability
Outline

1. Completeness of proof system for First-Order Logic
 - The notion of Completeness
 - The Completeness Proof

2. Consequences of the Completeness theorem
 - Complexity of Validity
 - Compactness
 - Model Cardinality
 - Löwenheim-Skolem Theorem
 - Inexpressibility of Reachability
Soundness and Completeness

Theorem

*Soundness: If $\Delta \vdash \phi$, then $\Delta \models \phi$.***

Theorem

*Completeness (Gödel’s traditional form): If $\Delta \models \phi$, then $\Delta \vdash \phi$.***

Theorem

Completeness (Gödel’s alternate form): If Δ is consistent, then it has a model.
The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model M that satisfies all the expressions in Δ, also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \vdash \phi$.
Theorem

The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model M that satisfies all the expressions in Δ, also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \nvdash \phi$.
Theorem

The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model M that satisfies all the expressions in Δ, also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \vdash \phi$.
Theorem

The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model M that satisfies all the expressions in Δ, also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \nvdash \phi$.
Theorem

The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model M that satisfies all the expressions in Δ, also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \not\models \phi$.
Theorem

The traditional completeness theorem follows from the alternate form of the completeness theorem.

Proof.

Assume that $\Delta \models \phi$. It follows that any model M that satisfies all the expressions in Δ, also satisfies ϕ and hence falsifies $\neg \phi$. Thus, there does not exist a model that satisfies all the expressions in $\Delta \cup \{\neg \phi\}$. It follows that $\Delta \cup \{\neg \phi\}$ is inconsistent. But using the Contradiction theorem, it follows that $\Delta \vdash \phi$.
Outline

1. Completeness of proof system for First-Order Logic
 - The notion of Completeness
 - The Completeness Proof

2. Consequences of the Completeness theorem
 - Complexity of Validity
 - Compactness
 - Model Cardinality
 - Löwenheim-Skolem Theorem
 - Inexpressibility of Reachability
Proof Sketch of Completeness Theorem

Proof.

http://www.maths.bris.ac.uk/~rp3959/firstordcomp.pdf
Outline

1. Completeness of proof system for First-Order Logic
 - The notion of Completeness
 - The Completeness Proof

2. Consequences of the Completeness theorem
 - Complexity of Validity
 - Compactness
 - Model Cardinality
 - Löwenheim-Skolem Theorem
 - Inexpressibility of Reachability
Validity

Theorem

Validity is recursively enumerable.

Proof.

Follows instantaneously from the completeness theorem.
Outline

1. Completeness of proof system for First-Order Logic
 - The notion of Completeness
 - The Completeness Proof

2. Consequences of the Completeness theorem
 - Complexity of Validity
 - Compactness
 - Model Cardinality
 - Löwenheim-Skolem Theorem
 - Inexpressibility of Reachability
Compactness

Theorem

If all finite subsets of a set of sentences Δ are satisfiable, then so is Δ.

Proof.

Assume that Δ is unsatisfiable, but all finite subsets of Δ are satisfiable. As per the completeness theorem, there is a proof of a contradiction from Δ, say $\Delta \vdash \phi \land \lnot \phi$. However, this proof has finite length! Therefore, it can involve only a finite subset of Δ!
Compactness

Theorem

If all finite subsets of a set of sentences Δ are satisfiable, then so is Δ.

Proof.

Assume that Δ is unsatisfiable, but all finite subsets of Δ are satisfiable. As per the completeness theorem, there is a proof of a contradiction from Δ, say $\Delta \vdash \phi \land \neg \phi$. However, this proof has finite length! Therefore, it can involve only a finite subset of Δ!
Compactness

Theorem

*If all finite subsets of a set of sentences Δ are satisfiable, then so is Δ."

Proof.

Assume that Δ is unsatisfiable, but all finite subsets of Δ are satisfiable. As per the completeness theorem, there is a proof of a contradiction from Δ, say $\Delta \vdash \phi \land \neg \phi$. However, this proof has finite length! Therefore, it can involve only a finite subset of Δ!
Outline

1. Completeness of proof system for First-Order Logic
 - The notion of Completeness
 - The Completeness Proof

2. Consequences of the Completeness theorem
 - Complexity of Validity
 - Compactness
 - Model Cardinality
 - Löwenheim-Skolem Theorem
 - Inexpressibility of Reachability
Theorem

If a sentence has a model, it has a countable model.

Proof.

The model M constructed in the proof of the completeness theorem is countable, since the corresponding vocabulary is countable.
Outline

1. Completeness of proof system for First-Order Logic
 - The notion of Completeness
 - The Completeness Proof

2. Consequences of the Completeness theorem
 - Complexity of Validity
 - Compactness
 - Model Cardinality
 - Löwenheim-Skolem Theorem
 - Inexpressibility of Reachability
Query

Do all sentences have infinite models?

Theorem

If a sentence \(\phi \) has finite models of arbitrary large cardinality, then it has an infinite model.

Proof.

Consider the sentence \(\psi_k = \exists x_1 \exists x_2 \ldots \exists x_k \land \land_{1 \leq i < j \leq k} \neg (x_i = x_j) \). \(\psi_k \) cannot be satisfied with a model having less than \(k \) elements.

Assume that \(\phi \) has arbitrarily large models, but no infinite models. Let \(\Delta = \phi \cup \{ \psi_k \mid k = 2, 3, \ldots \} \). If \(\Delta \) has a model \(M \), \(M \) can neither be finite nor infinite. Thus, \(\Delta \) does not have a model. By the compactness theorem, a finite subset \(D \subseteq \Delta \) does not have a model. \(\phi \) must be in \(D \). Let \(k \) denote the largest integer, such that \(\psi_k \in D \). But there is a large enough model that satisfies both \(\phi \) (hypothesis) and \(\psi_k \).
Query

Do all sentences have infinite models?

Theorem

If a sentence \(\phi \) has finite models of arbitrary large cardinality, then it has an infinite model.

Proof.

Consider the sentence \(\psi_k = \exists x_1 \exists x_2 \ldots \exists x_k \land 1 \leq i < j \leq k \neg(x_i = x_j) \). \(\psi_k \) cannot be satisfied with a model having less than \(k \) elements.

Assume that \(\phi \) has arbitrarily large models, but no infinite models. Let
\[\Delta = \phi \cup \{\psi_k : k = 2, 3, \ldots\} \]. If \(\Delta \) has a model \(M \), \(M \) can neither be finite nor infinite. Thus, \(\Delta \) does not have a model. By the compactness theorem, a finite subset \(D \subset \Delta \) does not have a model. \(\phi \) must be in \(D \). Let \(k \) denote the largest integer, such that \(\psi_k \in D \). But there is a large enough model that satisfies both \(\phi \) (hypothesis) and \(\psi_k \)!
Query

Do all sentences have infinite models?

Theorem

If a sentence ϕ has finite models of arbitrary large cardinality, then it has an infinite model.

Proof.

Consider the sentence $\psi_k = \exists x_1 \exists x_2 \ldots \exists x_k \land_{1 \leq i < j \leq k} \neg (x_i = x_j)$. ψ_k cannot be satisfied with a model having less than k elements.

Assume that ϕ has arbitrarily large models, but no infinite models. Let $\Delta = \phi \cup \{\psi_k : k = 2, 3, \ldots\}$. If Δ has a model M, M can neither be finite nor infinite. Thus, Δ does not have a model. By the compactness theorem, a finite subset $D \subseteq \Delta$ does not have a model. ϕ must be in D. Let k denote the largest integer, such that $\psi_k \in D$. But there is a large enough model that satisfies both ϕ (hypothesis) and ψ_k!
Query

Do all sentences have infinite models?

Theorem

If a sentence ϕ has finite models of arbitrary large cardinality, then it has an infinite model.

Proof.

Consider the sentence $\psi_k = \exists x_1 \exists x_2 \ldots \exists x_k \land 1 \leq i < j \leq k \neg(x_i = x_j)$. ψ_k cannot be satisfied with a model having less than k elements.

Assume that ϕ has arbitrarily large models, but no infinite models. Let $\Delta = \phi \cup \{\psi_k : k = 2, 3, \ldots\}$. If Δ has a model M, M can neither be finite nor infinite. Thus, Δ does not have a model. By the compactness theorem, a finite subset $D \subset \Delta$ does not have a model. ϕ must be in D. Let k denote the largest integer, such that $\psi_k \in D$. But there is a large enough model that satisfies both ϕ (hypothesis) and ψ_k!
Query

Do all sentences have infinite models?

Theorem

If a sentence ϕ has finite models of arbitrary large cardinality, then it has an infinite model.

Proof.

Consider the sentence $\psi_k = \exists x_1 \exists x_2 \ldots \exists x_k \land_{1 \leq i < j \leq k} \neg (x_i = x_j)$. ψ_k cannot be satisfied with a model having less than k elements.

Assume that ϕ has arbitrarily large models, but no infinite models. Let $\Delta = \phi \cup \{\psi_k : k = 2, 3, \ldots\}$. If Δ has a model M, M can neither be finite nor infinite. Thus, Δ does not have a model. By the compactness theorem, a finite subset $D \subset \Delta$ does not have a model. ϕ must be in D. Let k denote the largest integer, such that $\psi_k \in D$. But there is a large enough model that satisfies both ϕ (hypothesis) and ψ_k!
1. Completeness of proof system for First-Order Logic
 - The notion of Completeness
 - The Completeness Proof

2. Consequences of the Completeness theorem
 - Complexity of Validity
 - Compactness
 - Model Cardinality
 - Löwenheim-Skolem Theorem
 - Inexpressibility of Reachability
REACHABILITY

Given a directed graph G and two nodes x and y in G, is there a directed path from x to y in G?

Theorem

There is no first-order expression ϕ with two free variables x and y, such that ϕ-Graphs expresses REACHABILITY.

Proof.

Assume that there exists such a ϕ. Consider the sentence, $\psi' = \psi_0 \land \psi_1 \land \psi_2$, where,

\[
\begin{align*}
\psi_0 &= (\forall x)(\forall y)\phi \\
\psi_1 &= (\forall x)(\exists y)G(x, y) \land (\forall x)(\forall y)(\forall z)((G(x, y) \land G(x, z)) \rightarrow (y = z)) \\
\psi_2 &= (\forall x)(\exists y)G(y, x) \land (\forall x)(\forall y)(\forall z)((G(y, x) \land G(z, x)) \rightarrow (y = z))
\end{align*}
\]

 Arbitrarily large models are possible for ψ', but no infinite models!
REACHABILITY

Given a directed graph G and two nodes x and y in G, is there a directed path from x to y in G?

Theorem

There is no first-order expression ϕ with two free variables x and y, such that ϕ-Graphs expresses REACHABILITY.

Proof.

Assume that there exists such a ϕ. Consider the sentence, $\psi' = \psi_0 \land \psi_1 \land \psi_2$, where,

$$
\psi_0 = (\forall x)(\forall y)\phi
$$

$$
\psi_1 = (\forall x)(\exists y)G(x, y) \land (\forall x)(\forall y)(\forall z)((G(x, y) \land G(x, z)) \rightarrow (y = z))
$$

$$
\psi_2 = (\forall x)(\exists y)G(y, x) \land (\forall x)(\forall y)(\forall z)((G(y, x) \land G(z, x)) \rightarrow (y = z))
$$

Arbitrarily large models are possible for ψ', but no infinite models!
Reachability

Given a directed graph G and two nodes x and y in G, is there a directed path from x to y in G?

Theorem

There is no first-order expression ϕ with two free variables x and y, such that ϕ-Graphs expresses Reachability.

Proof.

Assume that there exists such a ϕ. Consider the sentence, $\psi' = \psi_0 \land \psi_1 \land \psi_2$, where,

\[
\begin{align*}
\psi_0 & = (\forall x)(\forall y) \phi \\
\psi_1 & = (\forall x)(\exists y) G(x, y) \land (\forall x)(\forall y)(\forall z)((G(x, y) \land G(x, z)) \rightarrow (y = z)) \\
\psi_2 & = (\forall x)(\exists y) G(y, x) \land (\forall x)(\forall y)(\forall z)((G(y, x) \land G(z, x)) \rightarrow (y = z))
\end{align*}
\]

Arbitrarily large models are possible for ψ', but no infinite models!
Reachability

Given a directed graph \(G \) and two nodes \(x \) and \(y \) in \(G \), is there a directed path from \(x \) to \(y \) in \(G \)?

Theorem

There is no first-order expression \(\phi \) with two free variables \(x \) and \(y \), such that \(\phi \)-Graphs expresses Reachability.

Proof.

Assume that there exists such a \(\phi \). Consider the sentence, \(\psi' = \psi_0 \land \psi_1 \land \psi_2 \), where,

\[
\begin{align*}
\psi_0 &= (\forall x)(\forall y)\phi \\
\psi_1 &= (\forall x)(\exists y)G(x, y) \land (\forall x)(\forall y)(\forall z)((G(x, y) \land G(x, z)) \rightarrow (y = z)) \\
\psi_2 &= (\forall x)(\exists y)G(y, x) \land (\forall x)(\forall y)(\forall z)((G(y, x) \land G(z, x)) \rightarrow (y = z))
\end{align*}
\]

Arbitrarily large models are possible for \(\psi' \), but no infinite models!