Reductions and Completeness

K. Subramani

Lane Department of Computer Science and Electrical Engineering
West Virginia University

February 24, 2009
Outline

1. Reductions

2. Completeness
 - P-completeness
 - NP-completeness
1. Reductions

2. Completeness
 - P-completeness
 - NP-completeness
Reductions

Main concept

Comparing problem difficulty through $A \leq B$. When is problem B at least as hard as problem A? When there is a transformation R, which for every input of A produces an equivalent input $R(x)$ of B such that $x \in A \iff R(x) \in B$.

Note

To be useful, R should have limitations. (Hamilton Path to Reachability).

Definition

A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings computable by a DTM in space $O(\log n)$, such that for all inputs $x \in \Sigma^*$, $|x| = n$, $x \in L_1 \iff R(x) \in L_2$.
Main concept

Comparing problem difficulty through \(A \leq B \). When is problem \(B \) at least as hard as problem \(A \)?

When there is a transformation \(R \), which for every input of \(A \) produces an equivalent input \(R(x) \) of \(B \) such that \(x \in A \iff R(x) \in B \).

Note

To be useful, \(R \) should have limitations. (Hamilton Path to Reachability).

Definition

A language \(L_1 \) is reducible to a language \(L_2 \) if there is a function \(R \) from strings of \(L_1 \) to strings computable by a DTM in space \(O(\log n) \), such that for all inputs \(x \in \Sigma^* \), \(|x| = n \), \(x \in L_1 \iff R(x) \in L_2 \).
Main concept

Comparing problem difficulty through $A \leq B$. When is problem B at least as hard as problem A?
When there is a transformation R, which for every input of A produces an equivalent input $R(x)$ of B such that $x \in A \iff R(x) \in B$.

Note

To be useful, R should have limitations. (Hamilton Path to Reachability).

Definition

A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings computable by a DTM in space $O(\log n)$, such that for all inputs $x \in \Sigma^*$, $|x| = n$,
$x \in L_1 \iff R(x) \in L_2$.

Subramani

Complexity Classes
Main concept
Comparing problem difficulty through $A \leq B$. When is problem B at least as hard as problem A? When there is a transformation R, which for every input of A produces an equivalent input $R(x)$ of B such that $x \in A \iff R(x) \in B$.

Note
To be useful, R should have limitations. (Hamilton Path to Reachability).

Definition
A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings computable by a DTM in space $O(\log n)$, such that for all inputs $x \in \Sigma^*$, $|x| = n$, $x \in L_1 \iff R(x) \in L_2$.

Subramani
Complexity Classes
Main concept

Comparing problem difficulty through $A \leq B$. When is problem B at least as hard as problem A?

When there is a transformation R, which for every input of A produces an equivalent input $R(x)$ of B such that $x \in A \iff R(x) \in B$.

Note

To be useful, R should have limitations. (Hamilton Path to Reachability).

Definition

A language L_1 is reducible to a language L_2 if there is a function R from strings of L_1 to strings computable by a DTM in space $O(\log n)$, such that for all inputs $x \in \Sigma^*$, $|x| = n$,

$x \in L_1 \iff R(x) \in L_2$.
Reductions (contd.)

Note

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by a DTM M, then for all x, M halts after a polynomial number of steps.
Note

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by a DTM M, then for all x, M halts after a polynomial number of steps.
Note

Good old days, we used poly-time reductions.

Proposition

If R is a reduction computed by a DTM M, then for all x, M halts after a polynomial number of steps.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ϕ, such that G has a Hamilton path if and only if ϕ is satisfiable.
Step 1: Suppose G has n nodes; ϕ has n^2 variables of the form x_{ij}, where x_{ij} represents the fact that node j is the i^{th} node in the Hamilton Path (may or may not be true).
Step 2: $(x_{1j} \lor x_{2j} \ldots x_{nj}), j = 1, 2, \ldots, n$. [$C_1$].
Step 3: $(\neg x_{ij} \lor \neg x_{kj}), j = 1, 2 \ldots n, i = 1, 2, \ldots, n, k = 1, 2, \ldots n, k \neq i$. [$C_2$].
Step 4: $(x_{i1} \lor x_{i2} \ldots \lor x_{in}), i = 1, 2 \ldots n$. [$C_3$].
Step 5: $(\neg x_{ij} \lor \neg x_{jk}), i = 1, 2, \ldots n, j, k = 1, 2, \ldots, n, j \neq k$. [$C_4$].
Step 6: $(\neg x_{ki} \lor \neg x_{(k+1)j}), k = 1, 2, \ldots, n - 1, (i, j) \notin G$. [$C_5$].
Step 7: $\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5$.

Argument: Let \tilde{x} denote a satisfying assignment to ϕ. We show that there must exist a Hamilton Path in G.
Let $\pi = (\pi(1), \pi(2) \ldots \pi(n))$ denote a Hamilton path, where π is a permutation. We show that ϕ is satisfiable.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ϕ, such that G has a Hamilton path if and only if ϕ is satisfiable.
Step 1: Suppose G has n nodes; ϕ has n^2 variables of the form x_{ij}, where x_{ij} represents the fact that node j is the i^{th} node in the Hamilton Path (may or may not be true).
Step 2: $(x_{1j} \lor x_{2j} \lor \ldots \lor x_{nj}), j = 1, 2, \ldots, n$. [$C_1$].
Step 3: $(\neg x_{ij} \lor \neg x_{kj}), j = 1, 2, \ldots n, i = 1, 2, \ldots n, k = 1, 2, \ldots n, k \neq i$. [$C_2$].
Step 4: $(x_{i1} \lor x_{i2} \lor \ldots \lor x_{in}), i = 1, 2, \ldots n$. [$C_3$].
Step 5: $(\neg x_{ij} \lor \neg x_{jk}), i = 1, 2, \ldots n, j, k = 1, 2, \ldots n, j \neq k$. [$C_4$].
Step 6: $(\neg x_{ki} \lor \neg x_{(k+1)i}), k = 1, 2, \ldots, n-1, (i, j) \notin G$. [$C_5$].
Step 7: $\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5$.

Argument: Let \bar{x} denote a satisfying assignment to ϕ. We show that there must exist a Hamilton Path in G.
Let $\pi = (\pi(1), \pi(2) \ldots \pi(n))$ denote a Hamilton path, where π is a permutation. We show that ϕ is satisfiable.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ϕ, such that G has a Hamilton path if and only if ϕ is satisfiable.

Step 1: Suppose G has n nodes; ϕ has n^2 variables of the form x_{ij}, where x_{ij} represents the fact that node j is the i^{th} node in the Hamilton Path (may or may not be true).

Step 2: $(x_{1j} \lor x_{2j} \ldots x_{nj}), j = 1, 2, \ldots, n$. [$C_1$].

Step 3: $(\neg x_{ij} \lor \neg x_{kj}), j = 1, 2 \ldots n, i = 1, 2, \ldots, n, k = 1, 2, \ldots n, k \neq i$. [$C_2$].

Step 4: $(x_{1i} \lor x_{i2} \ldots \lor x_{in}), i = 1, 2 \ldots n$. [$C_3$].

Step 5: $(\neg x_{ij} \lor \neg x_{jk}), i = 1, 2, \ldots n, j, k = 1, 2, \ldots, n, j \neq k$. [$C_4$].

Step 6: $(\neg x_{ki} \lor \neg x_{(k+1)i}), k = 1, 2, \ldots, n - 1, (i, j) \notin G$. [$C_5$].

Step 7: $\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5$.

Argument: Let \tilde{x} denote a satisfying assignment to ϕ. We show that there must exist a Hamilton Path in G.

Let $\pi = (\pi(1), \pi(2) \ldots \pi(n))$ denote a Hamilton path, where π is a permutation. We show that ϕ is satisfiable.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph \(G \).
Output instance: A CNF formula \(\phi \), such that \(G \) has a Hamilton path if and only if \(\phi \) is satisfiable.

Step 1: Suppose \(G \) has \(n \) nodes; \(\phi \) has \(n^2 \) variables of the form \(x_{ij} \), where \(x_{ij} \) represents the fact that node \(j \) is the \(i^{th} \) node in the Hamilton Path (may or may not be true).

Step 2: \((x_{1j} \lor x_{2j} \ldots x_{nj}), j = 1, 2, \ldots, n. [C_1]\).

Step 3: \((-x_{ij} \lor -x_{kj}), j = 1, 2 \ldots n, i = 1, 2, \ldots, n, k = 1, 2, \ldots n, k \neq i. [C_2] \).

Step 4: \((x_{i1} \lor x_{i2} \ldots \lor x_{in}), i = 1, 2 \ldots n. [C_3] \).

Step 5: \((-x_{ij} \lor -x_{jk}), i = 1, 2, \ldots, n, j, k = 1, 2, \ldots, n, j \neq k. [C_4] \).

Step 6: \((-x_{ki} \lor -x_{(k+1)j}, k = 1, 2, \ldots, n - 1, (i, j) \notin G. [C_5] \).

Step 7: \(\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5 \).

Argument: Let \(\tilde{x} \) denote a satisfying assignment to \(\phi \). We show that there must exist a Hamilton Path in \(G \).

Let \(\pi = (\pi(1), \pi(2) \ldots \pi(n)) \) denote a Hamilton path, where \(\pi \) is a permutation. We show that \(\phi \) is satisfiable.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ϕ, such that G has a Hamilton path if and only if ϕ is satisfiable.

Step 1: Suppose G has n nodes; ϕ has n^2 variables of the form x_{ij}, where x_{ij} represents the fact that node j is the i^{th} node in the Hamilton Path (may or may not be true).

Step 2: $(x_{1j} \lor x_{2j} \ldots x_{nj}), j = 1, 2, \ldots, n$. [$C_1$].

Step 3: $(\neg x_{ij} \lor \neg x_{kj}), j = 1, 2 \ldots n, i = 1, 2, \ldots, n, k = 1, 2, \ldots n, k \neq i$. [$C_2$].

Step 4: $(x_{i1} \lor x_{i2} \ldots \lor x_{in}), i = 1, 2 \ldots n$. [$C_3$].

Step 5: $(\neg x_{ij} \lor \neg x_{jk}), i = 1, 2, \ldots, n, j, k = 1, 2, \ldots, n, j \neq k$. [$C_4$].

Step 6: $(\neg x_{ki} \lor \neg x_{(k+1)j}, k = 1, 2, \ldots, n-1, (i,j) \notin G$. [$C_5$].

Step 7: $\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5$.

Argument: Let \tilde{x} denote a satisfying assignment to ϕ. We show that there must exist a Hamilton Path in G.

Let $\pi = (\pi(1), \pi(2) \ldots \pi(n))$ denote a Hamilton path, where π is a permutation. We show that ϕ is satisfiable.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ϕ, such that G has a Hamilton path if and only if ϕ is satisfiable.

Step 1: Suppose G has n nodes; ϕ has n^2 variables of the form x_{ij}, where x_{ij} represents the fact that node j is the i^{th} node in the Hamilton Path (may or may not be true).
Step 2: $(x_{1j} \lor x_{2j} \ldots x_{nj}), j = 1, 2, \ldots, n$. [$C_1$].
Step 3: $(-x_{ij} \lor -x_{kj}), j = 1, 2 \ldots n, i = 1, 2, \ldots, n, k = 1, 2, \ldots n, k \neq i$. [$C_2$].
Step 4: $(x_{i1} \lor x_{i2} \ldots \lor x_{in}), i = 1, 2 \ldots n$. [$C_3$].
Step 5: $(-x_{ij} \lor -x_{ik}), i = 1, 2, \ldots, n, j, k = 1, 2, \ldots, n, j \neq k$. [$C_4$].
Step 6: $(-x_{ki} \lor -x_{(k+1)i}), k = 1, 2, \ldots, n - 1, (i, j) \notin G$. [$C_5$].
Step 7: $\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5$.

Argument: Let \tilde{x} denote a satisfying assignment to ϕ. We show that there must exist a Hamilton Path in G.

Let $\pi = (\pi(1), \pi(2) \ldots \pi(n))$ denote a Hamilton path, where π is a permutation. We show that ϕ is satisfiable.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula φ, such that G has a Hamilton path if and only if φ is satisfiable.
Step 1: Suppose G has n nodes; φ has n^2 variables of the form x_{ij}, where x_{ij} represents the fact that node j is the i^{th} node in the Hamilton Path (may or may not be true).
Step 2: $(x_{1j} \lor x_{2j} \ldots x_{nj}), j = 1, 2, \ldots, n$. [C1].
Step 3: $(\neg x_{ij} \lor \neg x_{kj}), j = 1, 2 \ldots n, i = 1, 2, \ldots, n, k = 1, 2, \ldots n, k \neq i$. [C2].
Step 4: $(x_{i1} \lor x_{i2} \ldots \lor x_{in}), i = 1, 2 \ldots n$. [C3].
Step 5: $(\neg x_{ij} \lor \neg x_{jk}), i = 1, 2, \ldots, n, j, k = 1, 2, \ldots, n, j \neq k$. [C4].
Step 6: $(\neg x_{ki} \lor \neg x_{(k+1)i}, k = 1, 2, \ldots, n - 1, (i, j) \not\in G$. [C5].
Step 7: $\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5$.

Argument: Let \bar{x} denote a satisfying assignment to ϕ. We show that there must exist a Hamilton Path in G.
Let $\pi = (\pi(1), \pi(2) \ldots \pi(n))$ denote a Hamilton path, where π is a permutation. We show that ϕ is satisfiable.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ϕ, such that G has a Hamilton path if and only if ϕ is satisfiable.

Step 1: Suppose G has n nodes; ϕ has n^2 variables of the form x_{ij}, where x_{ij} represents the fact that node j is the i^{th} node in the Hamilton Path (may or may not be true).

Step 2: $(x_{1j} \lor x_{2j} \ldots x_{nj}), j = 1, 2, \ldots, n$. [$C_1$].

Step 3: $(\neg x_{ij} \lor \neg x_{kj}), j = 1, 2 \ldots n, i = 1, 2, \ldots, n, k = 1, 2, \ldots n, k \neq i$. [$C_2$].

Step 4: $(x_{i1} \lor x_{i2} \ldots \lor x_{in}), i = 1, 2 \ldots n$. [$C_3$].

Step 5: $(\neg x_{ij} \lor \neg x_{ik}), i = 1, 2, \ldots, n, j, k = 1, 2, \ldots, n, j \neq k$. [$C_4$].

Step 6: $(\neg x_{ki} \lor \neg x_{(k+1)i}, k = 1, 2, \ldots, n - 1, (i, j) \notin G$. [$C_5$].

Step 7: $\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5$.

Argument: Let \tilde{x} denote a satisfying assignment to ϕ. We show that there must exist a Hamilton Path in G.

Let $\pi = (\pi(1), \pi(2) \ldots \pi(n))$ denote a Hamilton path, where π is a permutation. We show that ϕ is satisfiable.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ϕ, such that G has a Hamilton path if and only if ϕ is satisfiable.
Step 1: Suppose G has n nodes; ϕ has n^2 variables of the form x_{ij}, where x_{ij} represents the fact that node j is the i^{th} node in the Hamilton Path (may or may not be true).
Step 2: $(x_{1j} \lor x_{2j} \ldots x_{nj})$, $j = 1, 2, \ldots, n$. [C_1].
Step 3: $(\neg x_{ij} \lor \neg x_{kj})$, $j = 1, 2 \ldots n$, $i = 1, 2, \ldots, n$, $k = 1, 2, \ldots n$, $k \neq i$. [C_2].
Step 4: $(x_{i1} \lor x_{i2} \ldots \lor x_{in})$, $i = 1, 2 \ldots n$. [C_3].
Step 5: $(\neg x_{ij} \lor \neg x_{jk})$, $i = 1, 2, \ldots, n$, $j, k = 1, 2, \ldots, n$, $j \neq k$. [C_4].
Step 6: $(\neg x_{ki} \lor \neg x_{(k+1)i})$, $k = 1, 2, \ldots, n - 1$, $(i, j) \notin G$. [C_5].
Step 7: $\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5$.

Argument: Let \tilde{x} denote a satisfying assignment to ϕ. We show that there must exist a Hamilton Path in G.

Let $\pi = (\pi(1), \pi(2) \ldots \pi(n))$ denote a Hamilton path, where π is a permutation. We show that ϕ is satisfiable.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.

Output instance: A CNF formula ϕ, such that G has a Hamilton path if and only if ϕ is satisfiable.

Step 1: Suppose G has n nodes; ϕ has n^2 variables of the form x_{ij}, where x_{ij} represents the fact that node j is the i^{th} node in the Hamilton Path (may or may not be true).

Step 2: $(x_{i1} \lor x_{i2} \ldots x_{ijn})$, $j = 1, 2, \ldots, n$. $[C_1]$.

Step 3: $(\neg x_{ij} \lor \neg x_{kj})$, $j = 1, 2 \ldots n$, $i = 1, 2, \ldots, n$, $k = 1, 2, \ldots n$, $k \neq i$. $[C_2]$.

Step 4: $(x_{i1} \lor x_{i2} \ldots \lor x_{in})$, $i = 1, 2 \ldots n$. $[C_3]$.

Step 5: $(\neg x_{ij} \lor \neg x_{jk})$, $i = 1, 2, \ldots, n$, $j, k = 1, 2, \ldots, n$, $j \neq k$. $[C_4]$.

Step 6: $(\neg x_{ki} \lor \neg x_{(k+1)i})$, $k = 1, 2, \ldots, n - 1$, $(i, j) \not\in G$. $[C_5]$.

Step 7: $\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5$.

Argument: Let \bar{x} denote a satisfying assignment to ϕ. We show that there must exist a Hamilton Path in G.

Let $\pi = (\pi(1), \pi(2) \ldots \pi(n))$ denote a Hamilton path, where π is a permutation. We show that ϕ is satisfiable.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ϕ, such that G has a Hamilton path if and only if ϕ is satisfiable.

Step 1: Suppose G has n nodes; ϕ has n^2 variables of the form x_{ij}, where x_{ij} represents the fact that node j is the i^{th} node in the Hamilton Path (may or may not be true).
Step 2: $(x_{1j} \lor x_{2j} \ldots x_{nj}), j = 1, 2, \ldots , n$. [C$_1$].
Step 3: $(-x_{ij} \lor -x_{kj}), j = 1, 2 \ldots n, i = 1, 2, \ldots , n, k = 1, 2, \ldots n, k \neq i$. [C$_2$].
Step 4: $(x_{i1} \lor x_{i2} \ldots \lor x_{in}), i = 1, 2 \ldots n$. [C$_3$].
Step 5: $(-x_{ij} \lor -x_{jk}), i = 1, 2, \ldots , n, j, k = 1, 2, \ldots , n, j \neq k$. [C$_4$].
Step 6: $(-x_{ki} \lor -x_{(k+1)i}, k = 1, 2, \ldots , n - 1, (i, j) \not\in G$. [C$_5$].
Step 7: $\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5$.

Argument: Let \bar{x} denote a satisfying assignment to ϕ. We show that there must exist a Hamilton Path in G.

Let $\pi = (\pi(1), \pi(2) \ldots \pi(n))$ denote a Hamilton path, where π is a permutation. We show that ϕ is satisfiable.
Sample Reductions

Hamilton Path to SAT

Input instance: An unweighted, directed graph G.
Output instance: A CNF formula ϕ, such that G has a Hamilton path if and only if ϕ is satisfiable.
Step 1: Suppose G has n nodes; ϕ has n^2 variables of the form x_{ij}, where x_{ij} represents the fact that node j is the i^{th} node in the Hamilton Path (may or may not be true).
Step 2: $(x_{1j} \lor x_{2j} \ldots x_{nj}), j = 1, 2, \ldots, n$. [$C_1$].
Step 3: $(\neg x_{ij} \lor \neg x_{kj}), j = 1, 2 \ldots n$, $i = 1, 2, \ldots, n$, $k = 1, 2, \ldots n$, $k \neq i$. [C_2].
Step 4: $(x_{i1} \lor x_{i2} \ldots \lor x_{in}), i = 1, 2 \ldots n$. [$C_3$].
Step 5: $(\neg x_{ij} \lor \neg x_{jk}), i = 1, 2, \ldots, n$, $j, k = 1, 2, \ldots, n$, $j \neq k$. [C_4].
Step 6: $(\neg x_{ki} \lor \neg x_{(k+1)i}, k = 1, 2, \ldots, n-1, (i, j) \not\in G$. [$C_5$].
Step 7: $\phi = C_1 \land C_2 \land C_3 \land C_4 \land C_5$.

Argument: Let \bar{x} denote a satisfying assignment to ϕ. We show that there must exist a Hamilton Path in G.
Let $\pi = (\pi(1), \pi(2) \ldots \pi(n))$ denote a Hamilton path, where π is a permutation. We show that ϕ is satisfiable.
Sample Reductions (contd.)

Circuit SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.

Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg x)$ and $(\neg g \lor x)$ to ϕ.

Step 3: If g is a true gate, add (g) to ϕ; likewise, if it is a false gate, add $(\neg g)$.

Step 4: If g is a NOT gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.

Step 5: If g is an OR gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.

Step 6: If g is an AND gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.

Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ϕ is satisfiable.

If ϕ is satisfiable, then C is satisfiable.
CIRCUIT SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.

Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg x)$ and $(\neg g \lor x)$ to ϕ.

Step 3: If g is a true gate, add (g) to ϕ; likewise, if it is a false gate, add $(\neg g)$.

Step 4: If g is a NOT gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.

Step 5: If g is an OR gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.

Step 6: If g is an AND gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.

Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ϕ is satisfiable.

If ϕ is satisfiable, then C is satisfiable.
Sample Reductions (contd.)

CIRCUIT SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.

Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg x)$ and $(\neg g \lor x)$ to ϕ.

Step 3: If g is a true gate, add (g) to ϕ; likewise, if it is a false gate, add $(\neg g)$.

Step 4: If g is a NOT gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.

Step 5: If g is an OR gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.

Step 6: If g is an AND gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.

Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ϕ is satisfiable.

If ϕ is satisfiable, then C is satisfiable.
Circuit SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.

Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg x)$ and $(\neg g \lor x)$ to ϕ.

Step 3: If g is a true gate, add (g) to ϕ; likewise, if it is a false gate, add $(\neg g)$.

Step 4: If g is a NOT gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.

Step 5: If g is an OR gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.

Step 6: If g is an AND gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.

Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ϕ is satisfiable.
If ϕ is satisfiable, then C is satisfiable.
Sample Reductions (contd.)

CIRCUIT SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.

Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg)$ and $(\neg g \lor x)$ to ϕ.

Step 3: If g is a true gate, add (g) to ϕ; likewise, if it is a false gate, add $(\neg g)$.

Step 4: If g is a NOT gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.

Step 5: If g is an OR gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.

Step 6: If g is an AND gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.

Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ϕ is satisfiable.
If ϕ is satisfiable, then C is satisfiable.
Circuit SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.

Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.
Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg x)$ and $(\neg g \lor x)$ to ϕ.
Step 3: If g is a true gate, add (g) to ϕ; likewise, if it is a false gate, add $(\neg g)$.
Step 4: If g is a NOT gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.
Step 5: If g is an OR gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.
Step 6: If g is an AND gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.
Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ϕ is satisfiable.
If ϕ is satisfiable, then C is satisfiable.
Circuit SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.

Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg x)$ and $(\neg g \lor x)$ to ϕ.

Step 3: If g is a true gate, add (g) to ϕ; likewise, if it is a false gate, add $(\neg g)$.

Step 4: If g is a NOT gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.

Step 5: If g is an OR gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.

Step 6: If g is an AND gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.

Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ϕ is satisfiable.

If ϕ is satisfiable, then C is satisfiable.
CIRCUIT SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.
Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.
Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg x)$ and $(\neg g \lor x)$ to ϕ.
Step 3: If g is a true gate, add (g) to ϕ; likewise, if it is a false gate, add $(\neg g)$.
Step 4: If g is a NOT gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.
Step 5: If g is an OR gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.
Step 6: If g is an AND gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.
Step 7: If g is an output gate, add the clause (g).
Argument: If C is satisfiable, then ϕ is satisfiable.
If ϕ is satisfiable, then C is satisfiable.
CIRCUIT SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.
Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.
Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg x)$ and $(\neg g \lor x)$ to ϕ.
Step 3: If g is a true gate, add (g) to ϕ; likewise, if it is a false gate, add $(\neg g)$.
Step 4: If g is a NOT gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.
Step 5: If g is an OR gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.
Step 6: If g is an AND gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.
Step 7: If g is an output gate, add the clause (g).
Argument: If C is satisfiable, then ϕ is satisfiable.
If ϕ is satisfiable, then C is satisfiable.
CIRCUIT SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.

Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg)$ and $(\neg g \lor x)$ to ϕ.

Step 3: If g is a **true** gate, add (g) to ϕ; likewise, if it is a **false** gate, add $(\neg g)$.

Step 4: If g is a **NOT** gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.

Step 5: If g is an **OR** gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.

Step 6: If g is an **AND** gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.

Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ϕ is satisfiable. If ϕ is satisfiable, then C is satisfiable.
CIRCUIT SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.

Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg x)$ and $(\neg g \lor x)$ to ϕ.

Step 3: If g is a true gate, add (g) to ϕ; likewise, if it is a false gate, add $(\neg g)$.

Step 4: If g is a NOT gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.

Step 5: If g is an OR gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.

Step 6: If g is an AND gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.

Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ϕ is satisfiable.

If ϕ is satisfiable, then C is satisfiable.
Circuit SAT to SAT

Input instance: A circuit C.
Output instance: A CNF formula ϕ such that ϕ is satisfiable if and only if C is.

Step 1: The variables of ϕ will contain all the variables of C. Additionally, for each gate g in C, we create a new variable in ϕ, also denoted by g.

Step 2: If g is a variable gate, corresponding to variable x, add the clauses $(g \lor \neg)$ and $(\neg g \lor x)$ to ϕ.

Step 3: If g is a **true** gate, add (g) to ϕ; likewise, if it is a **false** gate, add $(\neg g)$.

Step 4: If g is a NOT gate with predecessor h, add the clauses $(g \lor h)$ and $(\neg g \lor \neg h)$ to ϕ.

Step 5: If g is an OR gate with predecessors h and h', add the clauses $(\neg h \lor g)$, $(\neg h' \lor g)$ and $(h \lor h' \lor \neg g)$ to ϕ.

Step 6: If g is an AND gate with predecessors h and h', add the clauses $(\neg g \lor h)$, $(\neg g \lor h')$ and $(\neg h \lor \neg h' \lor g)$ to ϕ.

Step 7: If g is an output gate, add the clause (g).

Argument: If C is satisfiable, then ϕ is satisfiable.

If ϕ is satisfiable, then C is satisfiable.
CIRCUIT SAT to SAT

Input instance: A circuit \(C \).
Output instance: A CNF formula \(\phi \) such that \(\phi \) is satisfiable if and only if \(C \) is.
Step 1: The variables of \(\phi \) will contain all the variables of \(C \). Additionally, for each gate \(g \) in \(C \), we create a new variable in \(\phi \), also denoted by \(g \).
Step 2: If \(g \) is a variable gate, corresponding to variable \(x \), add the clauses \((g \lor \neg \)\) and \((\neg g \lor x)\) to \(\phi \).
Step 3: If \(g \) is a true gate, add \((g)\) to \(\phi \); likewise, if it is a false gate, add \((\neg g)\).
Step 4: If \(g \) is a NOT gate with predecessor \(h \), add the clauses \((g \lor h)\) and \((\neg g \lor \neg h)\) to \(\phi \).
Step 5: If \(g \) is an OR gate with predecessors \(h \) and \(h' \), add the clauses \((\neg h \lor g)\), \((\neg h' \lor g)\) and \((h \lor h' \lor \neg g)\) to \(\phi \).
Step 6: If \(g \) is an AND gate with predecessors \(h \) and \(h' \), add the clauses \((\neg g \lor h)\), \((\neg g \lor h')\) and \((\neg h \lor \neg h' \lor g)\) to \(\phi \).
Step 7: If \(g \) is an output gate, add the clause \((g)\).
Argument: If \(C \) is satisfiable, then \(\phi \) is satisfiable.
If \(\phi \) is satisfiable, then \(C \) is satisfiable.
Reduction by generalization

CIRCUIT VALUE to CIRCUIT SAT. R is the identity function!
Sample Reductions (contd.)

Reduction by generalization

CIRCUIT VALUE to CIRCUIT SAT. \(R \) is the identity function!
Composition of Reductions

Theorem

If R is a reduction from L_1 to L_2 and R' is a reduction from L_2 to L_3, then $R' \circ R$ is a reduction from L_1 to L_3.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of $R(x)$ could be larger than $\log |x|$.

Main idea: Dovetail simulations.
Composition of Reductions

Theorem

If R is a reduction from L_1 to L_2 and R' is a reduction from L_2 to L_3, then $R' \circ R$ is a reduction from L_1 to L_3.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of $R(x)$ could be larger than $\log |x|$.

Main idea: Dovetail simulations.
Composition of Reductions

Theorem

If R is a reduction from L_1 to L_2 and R' is a reduction from L_2 to L_3, then $R' \circ R$ is a reduction from L_1 to L_3.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of $R(x)$ could be larger than $\log |x|$.

Main idea: Dovetail simulations.
Theorem

If \(R \) is a reduction from \(L_1 \) to \(L_2 \) and \(R' \) is a reduction from \(L_2 \) to \(L_3 \), then \(R' \circ R \) is a reduction from \(L_1 \) to \(L_3 \).

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of \(R(x) \) could be larger than \(\log |x| \).

Main idea: Dovetail simulations.
Composition of Reductions

Theorem

If R is a reduction from L_1 to L_2 and R' is a reduction from L_2 to L_3, then $R' \circ R$ is a reduction from L_1 to L_3.

Proof.

Trivial for poly-time reductions. Not so obvious for log-space reductions, since output of $R(x)$ could be larger than $\log |x|$.

Main idea: Dovetail simulations.
Completeness

Definition
A language L in a complexity class C is said to be C-complete, if any language $L' \in C$ can be reduced to L.

Definition
A complexity class C is closed under reductions, if

$$((L \in C) \land (L' \leq L)) \rightarrow (L' \in C).$$

Proposition
P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary
If two classes C and C' are both closed under reductions and there exists a language L that is complete for both C and C', then $C = C'$.
Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language $L' \in C$ can be reduced to L.

Definition

A complexity class C is closed under reductions, if

$$((L \in C) \land (L' \leq L)) \rightarrow (L' \in C).$$

Proposition

P, NP, coNP, L, NL, PSPACE and EXP are all closed under reductions.

Corollary

If two classes C and C' are both closed under reductions and there exists a language L that is complete for both C and C', then $C = C'$.
Completeness

Definition

A language \(L \) in a complexity class \(C \) is said to be \(C \)-complete, if any language \(L' \in C \) can be reduced to \(L \).

Definition

A complexity class \(C \) is closed under reductions, if

\[
((L \in C) \land (L' \leq L)) \rightarrow (L' \in C).
\]

Proposition

\(P, NP, \text{coNP}, L, NL, \text{PSPACE} \) and \(EXP \) are all closed under reductions.

Corollary

If two classes \(C \) and \(C' \) are both closed under reductions and there exists a language \(L \) that is complete for both \(C \) and \(C' \), then \(C = C' \).
Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language $L' \in C$ can be reduced to L.

Definition

A complexity class C is closed under reductions, if

$$(L \in C) \land (L' \leq L) \rightarrow (L' \in C).$$

Proposition

P, NP, $coNP$, L, NL, $PSPACE$ and EXP are all closed under reductions.

Corollary

If two classes C and C' are both closed under reductions and there exists a language L that is complete for both C and C', then $C = C'$.

Subramani Complexity Classes
Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language $L' \in C$ can be reduced to L.

Definition

A complexity class C is closed under reductions, if

$$((L \in C) \land (L' \leq L)) \rightarrow (L' \in C).$$

Proposition

P, NP, $coNP$, L, NL, $PSPACE$ and EXP are all closed under reductions.

Corollary

If two classes C and C' are both closed under reductions and there exists a language L that is complete for both C and C' then $C = C'$.
Completeness

Definition
A language L in a complexity class C is said to be C-complete, if any language $L' \in C$ can be reduced to L.

Definition
A complexity class C is closed under reductions, if

$((L \in C) \land (L' \leq L)) \rightarrow (L' \in C)$.

Proposition
$P, NP, coNP, L, NL, PSPACE$ and EXP are all closed under reductions.

Corollary
If two classes C and C' are both closed under reductions and there exists a language L that is complete for both C and C', then $C = C'$.
Completeness

Definition

A language L in a complexity class C is said to be C-complete, if any language $L' \in C$ can be reduced to L.

Definition

A complexity class C is closed under reductions, if

$$((L \in C) \land (L' \leq L)) \rightarrow (L' \in C).$$

Proposition

P, NP, $coNP$, L, NL, $PSPACE$ and EXP are all closed under reductions.

Corollary

*If two classes C and C' are both closed under reductions and there exists a language L that is complete for both C and C' then $C = C'$.***
Outline

1. Reductions

2. Completeness
 - P-completeness
 - NP-completeness
P-completeness of Circuit Value

Theorem

Circuit Value is **P-complete**.

Proof.

Let L be some language in P.

\Rightarrow There exists a Turing machine $M = (K, \Sigma, \delta, s)$, which halts on any string in $x \in \Sigma^*$ in time at most $|x|^k$, for a fixed constant k.

\Rightarrow There exists a computation table T for $M(x)$ of dimensions $|x|^k \times |x|^k$, where T_{ij} represents the contents of position j at time i (after i steps have been completed).

We assume that the machine is standardized as follows:

(i) It has only one string.

(ii) It halts within $|x|^k - 2$ steps.

(iii) The computation pads the string with a sufficient number of \sqcups, so that the length of the string is exactly $|x|^k$.

(iv) The tape alphabet (Γ) is standardized to include symbols for (state, symbol) pairs. For instance 0_s represents the fact that we are currently in state s scanning symbol 0.

(v) States “yes” and “no” are recorded as is.

(vi) Computation is accepting if $T_{|x|^k-1,j} = \text{“yes”}$ for $j = 2$.
P-completeness of \textsc{Circuit Value}

Theorem

\textsc{Circuit Value} is \textbf{P-complete}.

Proof.

Let L be some language in \textbf{P}.

\Rightarrow \text{There exists a Turing machine } M = (K, \Sigma, \delta, s), \text{ which halts on any string in } x \in \Sigma^* \text{ in time at most } |x|^k, \text{ for a fixed constant } k.

\Rightarrow \text{There exists a computation table } T \text{ for } M(x) \text{ of dimensions } |x|^k \times |x|^k, \text{ where } T_{ij} \text{ represents the contents of position } j \text{ at time } i \text{ (after } i \text{ steps have been completed).}

We assume that the machine is standardized as follows:

(i) It has only one string.

(ii) It halts within $|x|^k - 2$ steps.

(iii) The computation pads the string with a sufficient number of \sqcups, so that the length of the string is exactly $|x|^k$.

(iv) The tape alphabet (Γ) is standardized to include symbols for (state, symbol) pairs. For instance 0_s represents the fact that we are currently in state s scanning symbol 0.

(v) States “yes” and “no” are recorded as is.

(vi) Computation is accepting if $T_{|x|^k - 1, j} = \text{“yes”}$ for $j = 2$.

\[\square \]
Theorem

Circuit Value is *P*-complete.

Proof.

Let L be some language in P.

⇒ There exists a Turing machine $M = (K, \Sigma, \delta, s)$, which halts on any string in $x \in \Sigma^*$ in time at most $|x|^k$, for a fixed constant k.

⇒ There exists a computation table T for $M(x)$ of dimensions $|x|^k \times |x|^k$, where T_{ij} represents the contents of position j at time i (after i steps have been completed).

We assume that the machine is standardized as follows:

(i) It has only one string.

(ii) It halts within $|x|^k - 2$ steps.

(iii) The computation pads the string with a sufficient number of \sqcups, so that the length of the string is exactly $|x|^k$.

(iv) The tape alphabet (Γ) is standardized to include symbols for (state, symbol) pairs. For instance 0_s represents the fact that we are currently in state s scanning symbol 0.

(v) States “yes” and “no” are recorded as is.

(vi) Computation is accepting if $T_{|x|^k-1, j} = \text{“yes”}$ for $j = 2$.

\[\square\]
Theorem

CIRCUIT VALUE is P-complete.

Proof.

Let L be some language in P.

\Rightarrow There exists a Turing machine $M = (K, \Sigma, \delta, s)$, which halts on any string in $x \in \Sigma^*$ in time at most $|x|^k$, for a fixed constant k.

\Rightarrow There exists a computation table T for $M(x)$ of dimensions $|x|^k \times |x|^k$, where T_{ij} represents the contents of position j at time i (after i steps have been completed).

We assume that the machine is standardized as follows:

(i) It has only one string.

(ii) It halts within $|x|^k - 2$ steps.

(iii) The computation pads the string with a sufficient number of \sqcup’s, so that the length of the string is exactly $|x|^k$.

(iv) The tape alphabet (Γ) is standardized to include symbols for (state, symbol) pairs. For instance 0_s represents the fact that we are currently in state s scanning symbol 0.

(v) States “yes” and “no” are recorded as is.

(vi) Computation is accepting if $T_{|x|^k-1,j} = \text{“yes”}$ for $j = 2$.

Subramani Complexity Classes
Theorem

CIRCUIT VALUE is P-complete.

Proof.

Let L be some language in P.

1. There exists a Turing machine $M = (K, \Sigma, \delta, s)$, which halts on any string in $x \in \Sigma^*$ in time at most $|x|^k$, for a fixed constant k.

2. There exists a computation table T for $M(x)$ of dimensions $|x|^k \times |x|^k$, where T_{ij} represents the contents of position j at time i (after i steps have been completed).

We assume that the machine is standardized as follows:

(i) It has only one string.

(ii) It halts within $|x|^k - 2$ steps.

(iii) The computation pads the string with a sufficient number of \sqcups, so that the length of the string is exactly $|x|^k$.

(iv) The tape alphabet (Γ) is standardized to include symbols for (state, symbol) pairs. For instance 0_s represents the fact that we are currently in state s scanning symbol 0.

(v) States “yes” and “no” are recorded as is.

(vi) Computation is accepting if $T_{|x|^k - 1, j} = “yes”$ for $j = 2$.

\Box
Proof.

When \(i = 0 \) or \(j = 0 \) or \(j = |x|^k \), the contents of \(T_{ij} \) are known apriori.

Crucial observation: \(T_{ij} \) depends only on the entries \(T_{i-1,j-1}, T_{i-1,j} \) and \(T_{i-1,j+1} \). Why?

Encode each tape symbol as a binary vector \(s = (s_1, s_2, \ldots, s_m) \), where \(m = \lceil \log |\Gamma| \rceil \). The encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

The computation table is now a table of binary entries \(S_{ijl}, 0 \leq i \leq |x|^k - 1, 0 \leq j \leq |x|^k - 1 \text{ and } 1 \leq l \leq m \).

Each binary entry \(S_{ij} \) depends only on the \(3m \) entries \(S_{i-1,j-1,l'}, S_{i-1,j+1,l'}, S_{i-1,j,l'} \), where \(l' \) ranges over \(1, 2, \ldots m \).

But these are boolean functions and hence can be captured through gates.

Create \((|x|^k - 1) \times (|x|^k - 2)\) gates, one for each entry \(T_{ij} \).

The reduction can be accomplished in \(\log |x| \) space.
Proof.

When \(i = 0 \) or \(j = 0 \) or \(j = |x|^k \), the contents of \(T_{ij} \) are known apriori.

Crucial observation: \(T_{ij} \) depends only on the entries \(T_{i-1,j-1}, T_{i-1,j} \) and \(T_{i-1,j+1} \). Why?

Encode each tape symbol as a binary vector \(s = (s_1, s_2, \ldots, s_m) \), where \(m = \lceil \log |\Gamma| \rceil \). The encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

The computation table is now a table of binary entries \(S_{ij} \), \(0 \leq i \leq |x|^k - 1 \), \(0 \leq j \leq |x|^k - 1 \) and \(1 \leq l \leq m \).

Each binary entry \(S_{ij} \) depends only on the \(3m \) entries \(S_{i-1,j-1,l'}, S_{i-1,j,l'}, S_{i-1,j+1,l'} \), where \(l' \) ranges over \(1, 2, \ldots, m \).

But these are boolean functions and hence can be captured through gates.

Create \((|x|^k - 1) \times (|x|^k - 2) \) gates, one for each entry \(T_{ij} \).

The reduction can be accomplished in \(\log |x| \) space.
Proof.

When \(i = 0 \) or \(j = 0 \) or \(j = |x|^k \), the contents of \(T_{ij} \) are known apriori.

Crucial observation: \(T_{ij} \) depends only on the entries \(T_{i-1,j-1}, T_{i-1,j} \) and \(T_{i-1,j+1} \). Why?

Encode each tape symbol as a binary vector \(s = (s_1, s_2, \ldots, s_m) \), where \(m = \lceil \log |\Gamma| \rceil \). The encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

The computation table is now a table of binary entries \(S_{ijl}, 0 \leq i \leq |x|^k - 1, 0 \leq j \leq |x|^k - 1 \) and \(1 \leq l \leq m \).

Each binary entry \(S_{ij} \) depends only on the \(3m \) entries \(S_{i-1,j-1,l'}, S_{i-1,j,l'}, S_{i-1,j+1,l'} \), where \(l' \) ranges over \(1, 2, \ldots m \).

But these are boolean functions and hence can be captured through gates.

Create \((|x|^k - 1) \times (|x|^k - 2) \) gates, one for each entry \(T_{ij} \).

The reduction can be accomplished in \(\log |x| \) space.
Proof.

When $i = 0$ or $j = 0$ or $j = |x|^k$, the contents of T_{ij} are known apriori.

Crucial observation: T_{ij} depends only on the entries $T_{i-1,j-1}$, $T_{i-1,j}$ and $T_{i-1,j+1}$. Why?

Encode each tape symbol as a binary vector $s = (s_1, s_2, \ldots, s_m)$, where $m = \lceil \log |\Gamma| \rceil$. The encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

The computation table is now a table of binary entries S_{ijl}, $0 \leq i \leq |x|^k - 1$, $0 \leq j \leq |x|^k - 1$ and $1 \leq l \leq m$.

Each binary entry S_{ij} depends only on the $3m$ entries $S_{i-1,j-1,l'}$, $S_{i-1,j,l'}$, $S_{i-1,j+1,l'}$, where l' ranges over $1, 2, \ldots m$.

But these are boolean functions and hence can be captured through gates.

Create $(|x|^k - 1) \times (|x|^k - 2)$ gates, one for each entry T_{ij}.

The reduction can be accomplished in $\log |x|$ space.
Proof.

When \(i = 0 \) or \(j = 0 \) or \(j = |x|^k \), the contents of \(T_{ij} \) are known apriori.

Crucial observation: \(T_{ij} \) depends only on the entries \(T_{i-1,j-1} \), \(T_{i-1,j} \) and \(T_{i-1,j+1} \). Why?

Encode each tape symbol as a binary vector \(s = (s_1, s_2, \ldots, s_m) \), where \(m = \lceil \log |\Gamma| \rceil \). The encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

The computation table is now a table of binary entries \(S_{ij} \), \(0 \leq i \leq |x|^k - 1 \), \(0 \leq j \leq |x|^k - 1 \) and \(1 \leq l \leq m \).

Each binary entry \(S_{ij} \) depends only on the \(3m \) entries \(S_{i-1,j-1,l'} \), \(S_{i-1,j,l'} \), \(S_{i-1,j+1,l'} \), where \(l' \) ranges over \(1, 2, \ldots m \).

But these are boolean functions and hence can be captured through gates.

Create \((|x|^k - 1) \times (|x|^k - 2)\) gates, one for each entry \(T_{ij} \).

The reduction can be accomplished in \(\log |x| \) space.
Proof.

When \(i = 0 \) or \(j = 0 \) or \(j = |x|^k \), the contents of \(T_{ij} \) are known apriori.

Crucial observation: \(T_{ij} \) depends only on the entries \(T_{i-1,j-1} \), \(T_{i-1,j} \) and \(T_{i-1,j+1} \). Why?

Encode each tape symbol as a binary vector \(s = (s_1, s_2, \ldots, s_m) \), where \(m = \lceil \log |\Gamma| \rceil \). The encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

The computation table is now a table of binary entries \(S_{ijl}, 0 \leq i \leq |x|^k - 1, 0 \leq j \leq |x|^k - 1 \) and \(1 \leq l \leq m \).

Each binary entry \(S_{ij} \) depends only on the \(3m \) entries \(S_{i-1,j-1,l'}, S_{i-1,j,l'}, S_{i-1,j+1,l'} \), where \(l' \) ranges over \(1, 2, \ldots, m \).

But these are boolean functions and hence can be captured through gates.

Create \((|x|^k - 1) \times (|x|^k - 2) \) gates, one for each entry \(T_{ij} \).

The reduction can be accomplished in \(\log |x| \) space.
Proof.

When $i = 0$ or $j = 0$ or $j = |x|^k$, the contents of T_{ij} are known apriori.

Crucial observation: T_{ij} depends only on the entries $T_{i-1,j-1}$, $T_{i-1,j}$ and $T_{i-1,j+1}$. Why?

Encode each tape symbol as a binary vector $s = (s_1, s_2, \ldots, s_m)$, where $m = \lceil \log |\Gamma| \rceil$. The encoding of “yes” begins with 1 and the encoding of “no” begins with 0.

The computation table is now a table of binary entries S_{ijl}, $0 \leq i \leq |x|^k - 1$, $0 \leq j \leq |x|^k - 1$ and $1 \leq l \leq m$.

Each binary entry S_{ij} depends only on the $3m$ entries $S_{i-1,j-1,l'}$, $S_{i-1,j,l'}$, $S_{i-1,j+1,l'}$, where l' ranges over $1, 2, \ldots, m$.

But these are boolean functions and hence can be captured through gates.

Create $(|x|^k - 1) \times (|x|^k - 2)$ gates, one for each entry T_{ij}.

The reduction can be accomplished in $\log |x|$ space.
Outline

1. Reductions
2. Completeness
 - P-completeness
 - NP-completeness
Theorem (Cook)

SAT is NP-complete.

Proof.

We will show that CIRCUIT SAT is NP-complete. Cook’s theorem follows. Let $L \in \text{NP}$; this means that L is decided by a NDTM $M = (K, \Sigma, \delta, s)$, which halts with a “yes” or “no” on all strings $x \in \Sigma^*$ in at most $|x|^k$ time. Standardize the Turing Machine so that degree of non-determinism is exactly 2. It follows that a sequence of non-deterministic choices is a bit-string $(c_0, c_1, \ldots, c_{|x|^k-1})$.

Use same reduction as CIRCUIT VALUE; the only difference is that c_i is now a variable at row i of the table!
Theorem (Cook)

SAT is NP-complete.

Proof.

We will show that CIRCUIT SAT is NP-complete. Cook's theorem follows.

Let \(L \in \text{NP} \); this means that \(L \) is decided by a NDTM \(M = (K, \Sigma, \delta, s) \), which halts with a “yes” or “no” on all strings \(x \in \Sigma^* \) in at most \(|x|^k\) time.

Standardize the Turing Machine so that degree of non-determinism is exactly 2. It follows that a sequence of non-deterministic choices is a bit-string \((c_0, c_1, \ldots, c_{|x|^k - 1})\).

Use same reduction as CIRCUIT VALUE; the only difference is that \(c_i \) is now a variable at row \(i \) of the table!
Theorem (Cook)

SAT is NP-complete.

Proof.

We will show that CIRCUIT SAT is NP-complete. Cook's theorem follows.
Let $L \in \textbf{NP}$; this means that L is decided by a NDTM $M = (K, \Sigma, \delta, s)$, which halts with a “yes” or “no” on all strings $x \in \Sigma^*$ in at most $|x|^k$ time.
Standardize the Turing Machine so that degree of non-determinism is exactly 2. It follows that a sequence of non-deterministic choices is a bit-string $(c_0, c_1, \ldots, c_{|x|^k-1})$.
Use same reduction as CIRCUIT VALUE; the only difference is that c_i is now a variable at row i of the table!
Theorem (Cook)

SAT is **NP-complete**.

Proof.

We will show that **CIRCUIT SAT** is **NP-complete**. Cook's theorem follows.

Let $L \in \text{NP}$; this means that L is decided by a NDTM $M = (K, \Sigma, \delta, s)$, which halts with a “yes” or “no” on all strings $x \in \Sigma^*$ in at most $|x|^k$ time.

Standardize the Turing Machine so that degree of non-determinism is exactly 2. It follows that a sequence of non-deterministic choices is a bit-string $(c_0, c_1, \ldots, c_{|x|^k-1})$.

Use same reduction as **CIRCUIT VALUE**; the only difference is that c_i is now a variable at row i of the table!
Theorem (Cook)

SAT is NP-complete.

Proof.

We will show that CIRCUIT SAT is NP-complete. Cook’s theorem follows. Let $L \in \textbf{NP}$; this means that L is decided by a NDTM $M = (K, \Sigma, \delta, s)$, which halts with a “yes” or “no” on all strings $x \in \Sigma^*$ in at most $|x|^k$ time. Standardize the Turing Machine so that degree of non-determinism is exactly 2. It follows that a sequence of non-deterministic choices is a bit-string $(c_0, c_1, \ldots, c_{|x|^k-1})$.

Use same reduction as CIRCUIT VALUE; the only difference is that c_i is now a variable at row i of the table!