Undecidability in Logic - Part I

K. Subramani

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

Number Theory and Computation
1. Axiomatizing Number Theory
 - Non-logical Axioms
 - Sample Proof
 - Complete fragments of number theory

2. Complexity as a number-theoretic concept
 - Representing Turing Machines as numbers
 - Encoding sample
1. Axiomatizing Number Theory
 - Non-logical Axioms
 - Sample Proof
 - Complete fragments of number theory

2. Complexity as a number-theoretic concept
 - Representing Turing Machines as numbers
 - Encoding sample
Outline

1. Axiomatizing Number Theory
 - Non-logical Axioms
 - Sample Proof
 - Complete fragments of number theory

2. Complexity as a number-theoretic concept
 - Representing Turing Machines as numbers
 - Encoding sample
A set of Axioms

Non-logical Axioms

\(\text{NT1} \quad (\forall x)(\sigma(x) \neq 0).\)
\(\text{NT2} \quad (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].\)
\(\text{NT3} \quad (\forall x)((x = 0) \vee (\exists y)(x = \sigma(y))).\)
\(\text{NT4} \quad (\forall x)(x + 0 = x).\)
\(\text{NT5} \quad (\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).\)
\(\text{NT6} \quad (\forall x)(x \times 0 = 0).\)
\(\text{NT7} \quad (\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)).\)
\(\text{NT8} \quad (\forall x)(x \uparrow 0) = \sigma(0).\)
\(\text{NT9} \quad (\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x).\)
\(\text{NT10} \quad (\forall x)(x < \sigma(x)).\)
\(\text{NT11} \quad (\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y)).\) (\(a \leq b\) is an abbreviation for \((a < b) \vee (a = b)\).)
\(\text{NT12} \quad (\forall x)(\forall y)((\neg(x < y)) \iff (y \leq x)).\)
\(\text{NT13} \quad (\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)].\)
\(\text{NT14} \quad (\forall x)(\forall y)(\forall z)(\forall z')[\text{mod}\ (x, y, z) \land \text{mod}\ (x, y, z') \rightarrow (z = z')].\)
A set of Axioms

Non-logical Axioms

NT1 \((\forall x)(\sigma(x) \neq 0)\).

NT2 \((\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)]\).

NT3 \((\forall x)((x = 0) \vee (\exists y)(x = \sigma(y)))\).

NT4 \((\forall x)(x + 0 = x)\).

NT5 \((\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y))\).

NT6 \((\forall x)(x \times 0 = 0)\).

NT7 \((\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x))\).

NT8 \((\forall x)(x \uparrow 0) = \sigma(0)\).

NT9 \((\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x)\).

NT10 \((\forall x)(x < \sigma(x))\).

NT11 \((\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y)).\) \((a \leq b)\) is an abbreviation for \((a < b) \vee (a = b)\).

NT12 \((\forall x)(\forall y)((\neg(x < y)) \leftrightarrow (y \leq x))\).

NT13 \((\forall x)(\forall y)(\forall z)[((x < y) \wedge (y < z)) \rightarrow (x < z)]\).

NT14 \((\forall x)(\forall y)(\forall z)(\forall z')[((\text{mod}(x, y, z) \wedge \text{mod}(x, y, z')) \rightarrow (z = z']))\).
Non-logical Axioms

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT1</td>
<td>$(\forall x)(\sigma(x) \neq 0)$.</td>
</tr>
<tr>
<td>NT2</td>
<td>$(\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)]$.</td>
</tr>
<tr>
<td>NT3</td>
<td>$(\forall x)((x = 0) \lor (\exists y)(x = \sigma(y)))$.</td>
</tr>
<tr>
<td>NT4</td>
<td>$(\forall x)(x + 0 = x)$.</td>
</tr>
<tr>
<td>NT5</td>
<td>$(\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y))$.</td>
</tr>
<tr>
<td>NT6</td>
<td>$(\forall x)(x \times 0 = 0)$.</td>
</tr>
<tr>
<td>NT7</td>
<td>$(\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x))$.</td>
</tr>
<tr>
<td>NT8</td>
<td>$(\forall x)(x \uparrow 0) = \sigma(0)$.</td>
</tr>
<tr>
<td>NT9</td>
<td>$(\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x)$.</td>
</tr>
<tr>
<td>NT10</td>
<td>$(\forall x)(x < \sigma(x))$.</td>
</tr>
<tr>
<td>NT11</td>
<td>$(\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y))$. $(a \leq b$ is an abbreviation for $(a < b) \lor (a = b)$).</td>
</tr>
<tr>
<td>NT12</td>
<td>$(\forall x)(\forall y)((\neg (x < y)) \leftrightarrow (y \leq x))$.</td>
</tr>
<tr>
<td>NT13</td>
<td>$(\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)]$.</td>
</tr>
<tr>
<td>NT14</td>
<td>$(\forall x)(\forall y)(\forall z)(\forall z')[(\text{mod} (x, y, z) \land \text{mod} (x, y, z')) \rightarrow (z = z')]$.</td>
</tr>
</tbody>
</table>
A set of Axioms

Non-logical Axioms

NT1 \((\forall x)(\sigma(x) \neq 0).\)

NT2 \((\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].\)

NT3 \((\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).\)

NT4 \((\forall x)(x + 0 = x).\)

NT5 \((\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).\)

NT6 \((\forall x)(x \times 0 = 0).\)

NT7 \((\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)).\)

NT8 \((\forall x)(x \uparrow 0) = \sigma(0).\)

NT9 \((\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x).\)

NT10 \((\forall x)(x < \sigma(x)).\)

NT11 \((\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y)).\) \((a \leq b)\) is an abbreviation for \((a < b) \lor (a = b).\)

NT12 \((\forall x)(\forall y)((\neg(x < y)) \leftrightarrow (y \leq x)).\)

NT13 \((\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)].\)

NT14 \((\forall x)(\forall y)(\forall z)(\forall z')[(\text{mod} \ (x, y, z) \land \text{mod} \ (x, y, z')) \rightarrow (z = z')).\)
A set of Axioms

Non-logical Axioms

\(\text{NT1} \) \((\forall x)(\sigma(x) \neq 0). \)
\(\text{NT2} \) \((\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)]. \)
\(\text{NT3} \) \((\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))). \)
\(\text{NT4} \) \((\forall x)(x + 0 = x). \)
\(\text{NT5} \) \((\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)). \)
\(\text{NT6} \) \((\forall x)(x \times 0 = 0). \)
\(\text{NT7} \) \((\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)). \)
\(\text{NT8} \) \((\forall x)(x \uparrow 0 = \sigma(0)). \)
\(\text{NT9} \) \((\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x). \)
\(\text{NT10} \) \((\forall x)(x < \sigma(x)). \)
\(\text{NT11} \) \((\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y)). (a \leq b \text{ is an abbreviation for } (a < b) \lor (a = b)). \)
\(\text{NT12} \) \((\forall x)(\forall y)((\neg(x < y)) \leftrightarrow (y \leq x)). \)
\(\text{NT13} \) \((\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)]. \)
\(\text{NT14} \) \((\forall x)(\forall y)(\forall z)(\forall z')[\mod (x, y, z) \land \mod (x, y, z') \rightarrow (z = z')]. \)
A set of Axioms

Non-logical Axioms

\textbf{NT1} \quad (\forall x)(\sigma(x) \neq 0).

\textbf{NT2} \quad (\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].

\textbf{NT3} \quad (\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).

\textbf{NT4} \quad (\forall x)(x + 0 = x).

\textbf{NT5} \quad (\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).

\textbf{NT6} \quad (\forall x)(x \times 0 = 0).

\textbf{NT7} \quad (\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)).

\textbf{NT8} \quad (\forall x)(x \uparrow 0) = \sigma(0).

\textbf{NT9} \quad (\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x).

\textbf{NT10} \quad (\forall x)(x < \sigma(x)).

\textbf{NT11} \quad (\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y)). (a \leq b \text{ is an abbreviation for } (a < b) \lor (a = b)).

\textbf{NT12} \quad (\forall x)(\forall y)((\neg(x < y)) \leftrightarrow (y \leq x)).

\textbf{NT13} \quad (\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)].

\textbf{NT14} \quad (\forall x)(\forall y)(\forall z)(\forall z')[\mod(x, y, z) \land \mod(x, y, z') \rightarrow (z = z')].
A set of Axioms

Non-logical Axioms

\[\text{NT1} \quad \forall x (\sigma(x) \neq 0). \]
\[\text{NT2} \quad \forall x \forall y ((\sigma(x) = \sigma(y)) \rightarrow (x = y)). \]
\[\text{NT3} \quad \forall x ((x = 0) \lor (\exists y)(x = \sigma(y))). \]
\[\text{NT4} \quad \forall x (x + 0 = x). \]
\[\text{NT5} \quad \forall x \forall y ((x + \sigma(y)) = \sigma(x + y)). \]
\[\text{NT6} \quad \forall x (x \times 0 = 0). \]
\[\text{NT7} \quad \forall x \forall y ((x \times \sigma(y)) = (x \times y + x)). \]
\[\text{NT8} \quad \forall x (x \uparrow 0) = \sigma(0). \]
\[\text{NT9} \quad \forall x ((x \uparrow \sigma(y)) = (x \uparrow y) \times x). \]
\[\text{NT10} \quad \forall x (x < \sigma(x)). \]
\[\text{NT11} \quad \forall x \forall y ((x < y) \rightarrow (\sigma(x) \leq y)). \ (a \leq b \text{ is an abbreviation for } (a < b) \lor (a = b)). \]
\[\text{NT12} \quad \forall x \forall y ((\neg(x < y)) \leftrightarrow (y \leq x)). \]
\[\text{NT13} \quad \forall x \forall y \forall z ((x < y) \land (y < z) \rightarrow (x < z)). \]
\[\text{NT14} \quad \forall x \forall y \forall z \forall z' ((\text{mod } (x, y, z) \land \text{mod } (x, y, z')) \rightarrow (z = z')). \]
Non-logical Axioms

NT1 \((\forall x)(\sigma(x) \neq 0)\).

NT2 \((\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)]\).

NT3 \((\forall x)((x = 0) \lor (\exists y)(x = \sigma(y)))\).

NT4 \((\forall x)(x + 0 = x)\).

NT5 \((\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y))\).

NT6 \((\forall x)(x \times 0 = 0)\).

NT7 \((\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x))\).

NT8 \((\forall x)(x \uparrow 0) = \sigma(0)\).

NT9 \((\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x)\).

NT10 \((\forall x)(x < \sigma(x))\).

NT11 \((\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y))\). \((a \leq b)\) is an abbreviation for \((a < b) \lor (a = b)\).

NT12 \((\forall x)(\forall y)((\neg(x < y)) \leftrightarrow (y \leq x))\).

NT13 \((\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)]\).

NT14 \((\forall x)(\forall y)(\forall z)(\forall z')[\text{mod} (x, y, z) \land \text{mod} (x, y, z') \rightarrow (z = z')]\).
Non-logical Axioms

NT1 \((\forall x)(\sigma(x) \neq 0)\).

NT2 \((\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)]\).

NT3 \((\forall x)((x = 0) \lor (\exists y)(x = \sigma(y)))\).

NT4 \((\forall x)(x + 0 = x)\).

NT5 \((\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y))\).

NT6 \((\forall x)(x \times 0 = 0)\).

NT7 \((\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x))\).

NT8 \((\forall x)(x \uparrow 0) = \sigma(0)\).

NT9 \((\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x)\).

NT10 \((\forall x)(x < \sigma(x))\).

NT11 \((\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y)). (a \leq b) \text{ is an abbreviation for } (a < b) \lor (a = b)\).

NT12 \((\forall x)(\forall y)((\neg(x < y)) \leftrightarrow (y \leq x))\).

NT13 \((\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)]\).

NT14 \((\forall x)(\forall y)(\forall z)(\forall z')[((\text{mod } (x, y, z) \land \text{mod } (x, y, z')) \rightarrow (z = z')]\).
Non-logical Axioms

NT1 \((\forall x)(\sigma(x) \neq 0)\).

NT2 \((\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)]\).

NT3 \((\forall x)((x = 0) \lor (\exists y)(x = \sigma(y)))\).

NT4 \((\forall x)(x + 0 = x)\).

NT5 \((\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y))\).

NT6 \((\forall x)(x \times 0 = 0)\).

NT7 \((\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x))\).

NT8 \((\forall x)(x \uparrow 0) = \sigma(0)\).

NT9 \((\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x)\).

NT10 \((\forall x)(x < \sigma(x))\).

NT11 \((\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y)). (a \leq b \text{ is an abbreviation for } (a < b) \lor (a = b)).

NT12 \((\forall x)(\forall y)((\neg(x < y)) \leftrightarrow (y \leq x))\).

NT13 \((\forall x)(\forall y)(\forall z)[(x < y) \land (y < z)) \rightarrow (x < z)\).

NT14 \((\forall x)(\forall y)(\forall z)(\forall z')[((\mod(x, y, z) \land \mod(x, y, z')) \rightarrow (z = z')]\).
Non-logical Axioms

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT1</td>
<td>$(\forall x)(\sigma(x) \neq 0)$.</td>
</tr>
<tr>
<td>NT2</td>
<td>$(\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)]$.</td>
</tr>
<tr>
<td>NT3</td>
<td>$(\forall x)((x = 0) \lor (\exists y)(x = \sigma(y)))$.</td>
</tr>
<tr>
<td>NT4</td>
<td>$(\forall x)(x + 0 = x)$.</td>
</tr>
<tr>
<td>NT5</td>
<td>$(\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y))$.</td>
</tr>
<tr>
<td>NT6</td>
<td>$(\forall x)(x \times 0 = 0)$.</td>
</tr>
<tr>
<td>NT7</td>
<td>$(\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x))$.</td>
</tr>
<tr>
<td>NT8</td>
<td>$(\forall x)(x \uparrow 0) = \sigma(0)$.</td>
</tr>
<tr>
<td>NT9</td>
<td>$(\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x)$.</td>
</tr>
<tr>
<td>NT10</td>
<td>$(\forall x)(x < \sigma(x))$.</td>
</tr>
<tr>
<td>NT11</td>
<td>$(\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y))$. $(a \leq b$ is an abbreviation for $(a < b) \lor (a = b)$).</td>
</tr>
<tr>
<td>NT12</td>
<td>$(\forall x)(\forall y)((\neg(x < y)) \leftrightarrow (y \leq x))$.</td>
</tr>
<tr>
<td>NT13</td>
<td>$(\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)]$.</td>
</tr>
<tr>
<td>NT14</td>
<td>$(\forall x)(\forall y)(\forall z)(\forall z^\prime)[\mod (x, y, z) \land \mod (x, y, z^\prime) \rightarrow (z = z^\prime)]$.</td>
</tr>
</tbody>
</table>
A set of Axioms

Non-logical Axioms

NT1 \((\forall x)(\sigma(x) \neq 0). \)

NT2 \((\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)]. \)

NT3 \((\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))). \)

NT4 \((\forall x)(x + 0 = x). \)

NT5 \((\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)). \)

NT6 \((\forall x)(x \times 0 = 0). \)

NT7 \((\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)). \)

NT8 \((\forall x)(x \uparrow 0) = \sigma(0). \)

NT9 \((\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x). \)

NT10 \((\forall x)(x < \sigma(x)). \)

NT11 \((\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y)). \) \((a \leq b \text{ is an abbreviation for } (a < b) \lor (a = b). \)

NT12 \((\forall x)(\forall y)((\neg(x < y)) \leftrightarrow (y \leq x)). \)

NT13 \((\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)]. \)

NT14 \((\forall x)(\forall y)(\forall z)(\forall z')[\text{ mod } (x, y, z) \land \text{ mod } (x, y, z')] \rightarrow (z = z'). \)
A set of Axioms

Non-logical Axioms

NT1 \((\forall x)(\sigma(x) \neq 0).\)
NT2 \((\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)].\)
NT3 \((\forall x)((x = 0) \lor (\exists y)(x = \sigma(y))).\)
NT4 \((\forall x)(x + 0 = x).\)
NT5 \((\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)).\)
NT6 \((\forall x)(x \times 0 = 0).\)
NT7 \((\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x)).\)
NT8 \((\forall x)(x \uparrow 0) = \sigma(0).\)
NT9 \((\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x).\)
NT10 \((\forall x)(x < \sigma(x)).\)
NT11 \((\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y)).\) (\(a \leq b\) is an abbreviation for \((a < b) \lor (a = b)\).
NT12 \((\forall x)(\forall y)((\neg (x < y)) \leftrightarrow (y \leq x)).\)
NT13 \((\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)].\)
NT14 \((\forall x)(\forall y)(\forall z)(\forall z')[\text{ mod } (x, y, z) \land \text{ mod } (x, y, z') \rightarrow (z = z')].\)
A set of Axioms

Non-logical Axioms

1. **NT1** \((\forall x)(\sigma(x) \neq 0)\).
2. **NT2** \((\forall x)(\forall y)[(\sigma(x) = \sigma(y)) \rightarrow (x = y)]\).
3. **NT3** \((\forall x)((x = 0) \lor (\exists y)(x = \sigma(y)))\).
4. **NT4** \((\forall x)(x + 0 = x)\).
5. **NT5** \((\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y))\).
6. **NT6** \((\forall x)(x \times 0 = 0)\).
7. **NT7** \((\forall x)(\forall y)((x \times \sigma(y)) = (x \times y + x))\).
8. **NT8** \((\forall x)(x \uparrow 0) = \sigma(0)\).
9. **NT9** \((\forall x)((x \uparrow \sigma(y)) = (x \uparrow y) \times x)\).
10. **NT10** \((\forall x)(x < \sigma(x))\).
11. **NT11** \((\forall x)(\forall y)((x < y) \rightarrow (\sigma(x) \leq y))\). \((a \leq b)\) is an abbreviation for \((a < b) \lor (a = b)\).
12. **NT12** \((\forall x)(\forall y)((\neg(x < y)) \leftrightarrow (y \leq x))\).
13. **NT13** \((\forall x)(\forall y)(\forall z)[((x < y) \land (y < z)) \rightarrow (x < z)]\).
14. **NT14** \((\forall x)(\forall y)(\forall z)(\forall z')[(\text{mod} (x, y, z) \land \text{mod} (x, y, z')) \rightarrow (z = z')]\).
A set of Axioms (contd.)

Notational convenience

(i) \(\mod(x, y, z) \) is an abbreviation for \((\exists w)((x = y \times w + z) \land (z < y)) \).
(ii) \(\div(x, y, w) \) is an abbreviation for \((\exists z)((x = y \times w + z) \land (z < y)) \).
(iii) \(\text{NT} = \text{NT}_1 \land \text{NT}_2 \land \ldots \land \text{NT}_{14} \)
(iv) We use 1 for \(\sigma(0) \), 2 for \(\sigma(\sigma(0)) \), 3 for \(\sigma(\sigma(\sigma(0))) \) and so on.

Properties of Axiom set

(i) Is it sound? Yes! If \(\text{NT} \vdash \phi \), then \(\text{N} \models \phi \). Use induction on the number of steps in the proof sequence of \(\text{NT} \vdash \phi \).
(ii) Is it complete? i.e., if \(\text{N} \models \phi \), does \(\text{NT} \vdash \phi \)? Apparently not! For instance, there is no proof from \(\text{NT} \) of the valid sentence \((\forall x)(\forall y)[(x + y) = (y + x)] \). In fact, no system of axioms exists for \(\text{N} \), that is both sound and complete.
Notational convenience

(i) \(\text{mod}(x, y, z) \) is an abbreviation for \(\exists w \left((x = y \times w + z) \land (z < y) \right) \).

(ii) \(\text{div}(x, y, w) \) is an abbreviation for \(\exists z \left((x = y \times w + z) \land (z < y) \right) \).

(iii) \(\text{NT} = \text{NT}_1 \land \text{NT}_2 \land \ldots \land \text{NT}_{14} \)

(iv) We use 1 for \(\sigma(0) \), 2 for \(\sigma(\sigma(0)) \), 3 for \(\sigma(\sigma(\sigma(0))) \) and so on.

Properties of Axiom set

(i) Is it sound? Yes! If \(\text{NT} \vdash \phi \), then \(\text{N} \models \phi \). Use induction on the number of steps in the proof sequence of \(\text{NT} \vdash \phi \).

(ii) Is it complete? i.e., if \(\text{N} \models \phi \), does \(\text{NT} \vdash \phi \)? Apparently not! For instance, there is no proof from \(\text{NT} \) of the valid sentence \((\forall x)(\forall y)[(x + y) = (y + x)] \). In fact, no system of axioms exists for \(\text{N} \), that is both sound and complete.
A set of Axioms (contd.)

Notational convenience

(i) \(\text{mod}(x, y, z) \) is an abbreviation for \((\exists w)((x = y \times w + z) \land (z < y)) \).
(ii) \(\text{div}(x, y, w) \) is an abbreviation for \((\exists z)((x = y \times w + z) \land (z < y)) \).
(iii) \(NT = NT_1 \land NT_2 \land \ldots \land NT_{14} \)
(iv) We use 1 for \(\sigma(0) \), 2 for \(\sigma(\sigma(0)) \), 3 for \(\sigma(\sigma(\sigma(0))) \) and so on.

Properties of Axiom set

(i) Is it sound? Yes! If \(NT \vdash \phi \), then \(\mathbb{N} \models \phi \). Use induction on the number of steps in the proof sequence of \(NT \vdash \phi \).
(ii) Is it complete? i.e., if \(\mathbb{N} \models \phi \), does \(NT \vdash \phi \)? Apparently not! For instance, there is no proof from \(NT \) of the valid sentence \((\forall x)(\forall y)[(x + y) = (y + x)] \). In fact, no system of axioms exists for \(\mathbb{N} \), that is both sound and complete.
A set of Axioms (contd.)

Notational convenience

(i) $\text{mod}(x, y, z)$ is an abbreviation for $(\exists w)((x = y \times w + z) \land (z < y))$.
(ii) $\text{div}(x, y, w)$ is an abbreviation for $(\exists z)((x = y \times w + z) \land (z < y))$.
(iii) $\text{NT} = \text{NT}_1 \land \text{NT}_2 \land \ldots \land \text{NT}_{14}$
(iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(\sigma(0)))$ and so on.

Properties of Axiom set

(i) Is it sound? Yes! If $\text{NT} \vdash \phi$, then $N \models \phi$. Use induction on the number of steps in the proof sequence of $\text{NT} \vdash \phi$.

(ii) Is it complete? i.e., if $N \models \phi$, does $\text{NT} \vdash \phi$? Apparently not! For instance, there is no proof from NT of the valid sentence $(\forall x)(\forall y)[(x + y) = (y + x)]$. In fact, no system of axioms exists for N, that is both sound and complete.
A set of Axioms (contd.)

Notational convenience

(i) \(\text{mod}(x, y, z) \) is an abbreviation for \((\exists w)((x = y \times w + z) \land (z < y))\).
(ii) \(\text{div}(x, y, w) \) is an abbreviation for \((\exists z)((x = y \times w + z) \land (z < y))\).
(iii) \(\text{NT} = \text{NT}_1 \land \text{NT}_2 \land \ldots \land \text{NT}_{14} \)
(iv) We use 1 for \(\sigma(0)\), 2 for \(\sigma(\sigma(0))\), 3 for \(\sigma(\sigma(\sigma(0)))\) and so on.

Properties of Axiom set

(i) Is it sound? Yes! If \(\text{NT} \vdash \phi\), then \(N \models \phi\). Use induction on the number of steps in the proof sequence of \(\text{NT} \vdash \phi\).
(ii) Is it complete? i.e., if \(N \models \phi\), does \(\text{NT} \vdash \phi\)? Apparently not! For instance, there is no proof from \(\text{NT}\) of the valid sentence \((\forall x)(\forall y)[(x + y) = (y + x)]\). In fact, no system of axioms exists for \(N\), that is both sound and complete.
A set of Axioms (contd.)

Notational convenience

(i) \(\text{mod}(x, y, z) \) is an abbreviation for \((\exists w)((x = y \times w + z) \land (z < y))\).
(ii) \(\text{div}(x, y, w) \) is an abbreviation for \((\exists z)((x = y \times w + z) \land (z < y))\).
(iii) \(\text{NT} = \text{NT}_1 \land \text{NT}_2 \land \ldots \land \text{NT}_{14} \)
(iv) We use \(1\) for \(\sigma(0)\), \(2\) for \(\sigma(\sigma(0))\), \(3\) for \(\sigma(\sigma(\sigma(0)))\) and so on.

Properties of Axiom set

(i) Is it sound? Yes! If \(\text{NT} \vdash \phi \), then \(\mathbb{N} \models \phi \). Use induction on the number of steps in the proof sequence of \(\text{NT} \vdash \phi \).
(ii) Is it complete? i.e., if \(\mathbb{N} \models \phi \), does \(\text{NT} \vdash \phi \)? Apparently not! For instance, there is no proof from \(\text{NT} \) of the valid sentence \((\forall x)(\forall y)[(x + y) = (y + x)]\). In fact, no system of axioms exists for \(\mathbb{N} \), that is both sound and complete.
A set of Axioms (contd.)

Notational convenience

(i) \(\text{mod}(x, y, z) \) is an abbreviation for \(\exists w((x = y \times w + z) \land (z < y)) \).
(ii) \(\text{div}(x, y, w) \) is an abbreviation for \(\exists z((x = y \times w + z) \land (z < y)) \).
(iii) \(N_T = N_{T_1} \land N_{T_2} \land \ldots \land N_{T_{14}} \)
(iv) We use 1 for \(\sigma(0) \), 2 for \(\sigma(\sigma(0)) \), 3 for \(\sigma(\sigma(\sigma(0))) \) and so on.

Properties of Axiom set

(i) Is it sound? Yes! If \(N_T \vdash \phi \), then \(N \models \phi \). Use induction on the number of steps in the proof sequence of \(N_T \vdash \phi \).
(ii) Is it complete? i.e., if \(N \models \phi \), does \(N_T \vdash \phi \)? Apparently not! For instance, there is no proof from \(N_T \) of the valid sentence \((\forall x)(\forall y)[(x + y) = (y + x)] \). In fact, no system of axioms exists for \(N \), that is both sound and complete.
A set of Axioms (contd.)

Notational convenience

(i) \(\text{mod}(x, y, z) \) is an abbreviation for \((\exists w)((x = y \times w + z) \land (z < y))\).
(ii) \(\text{div}(x, y, w) \) is an abbreviation for \((\exists z)((x = y \times w + z) \land (z < y))\).
(iii) \(\text{NT} = \text{NT}_1 \land \text{NT}_2 \land \ldots \land \text{NT}_{14} \)
(iv) We use 1 for \(\sigma(0) \), 2 for \(\sigma(\sigma(0)) \), 3 for \(\sigma(\sigma(\sigma(0))) \) and so on.

Properties of Axiom set

(i) Is it sound? Yes! If \(\text{NT} \vdash \phi \), then \(\mathbb{N} \models \phi \). Use induction on the number of steps in the proof sequence of \(\text{NT} \vdash \phi \).

(ii) Is it complete? i.e., if \(\mathbb{N} \models \phi \), does \(\text{NT} \vdash \phi \)? Apparently not! For instance, there is no proof from \(\text{NT} \) of the valid sentence \((\forall x)(\forall y)[(x + y) = (y + x)]\). In fact, no system of axioms exists for \(\mathbb{N} \), that is both sound and complete.
A set of Axioms (contd.)

Notational convenience

(i) \(\text{mod}(x, y, z) \) is an abbreviation for \((\exists w)((x = y \times w + z) \land (z < y))\).
(ii) \(\text{div}(x, y, w) \) is an abbreviation for \((\exists z)((x = y \times w + z) \land (z < y))\).
(iii) \(\text{NT} = \text{NT}_1 \land \text{NT}_2 \land \ldots \land \text{NT}_{14} \)
(iv) We use 1 for \(\sigma(0) \), 2 for \(\sigma(\sigma(0)) \), 3 for \(\sigma(\sigma(\sigma(0))) \) and so on.

Properties of Axiom set

(i) Is it sound? Yes! If \(\text{NT} \vdash \phi \), then \(\mathbb{N} \models \phi \). Use induction on the number of steps in the proof sequence of \(\text{NT} \vdash \phi \).

(ii) Is it complete? i.e., if \(\mathbb{N} \models \phi \), does \(\text{NT} \vdash \phi \)? Apparently not! For instance, there is no proof from \(\text{NT} \) of the valid sentence \((\forall x)(\forall y)[(x + y) = (y + x)]\). In fact, no system of axioms exists for \(\mathbb{N} \), that is both sound and complete.
A set of Axioms (contd.)

Notational convenience

(i) $\text{mod}(x, y, z)$ is an abbreviation for $(\exists w)(((x = y \times w + z) \land (z < y))$).
(ii) $\text{div}(x, y, w)$ is an abbreviation for $(\exists z)(((x = y \times w + z) \land (z < y))$).
(iii) $\text{NT} = \text{NT}_1 \land \text{NT}_2 \land \ldots \land \text{NT}_{14}$
(iv) We use 1 for $\sigma(0)$, 2 for $\sigma(\sigma(0))$, 3 for $\sigma(\sigma(\sigma(0)))$ and so on.

Properties of Axiom set

(i) Is it sound? Yes! If $\text{NT} \vdash \phi$, then $\text{N} \models \phi$. Use induction on the number of steps in the proof sequence of $\text{NT} \vdash \phi$.

(ii) Is it complete? i.e., if $\text{N} \models \phi$, does $\text{NT} \vdash \phi$? Apparently not! For instance, there is no proof from NT of the valid sentence $(\forall x)(\forall y)[(x + y) = (y + x)]$. In fact, no system of axioms exists for N, that is both sound and complete.
Outline

1. Axiomatizing Number Theory
 - Non-logical Axioms
 - Sample Proof
 - Complete fragments of number theory

2. Complexity as a number-theoretic concept
 - Representing Turing Machines as numbers
 - Encoding sample
Sample Proof

Example

Show that \(\text{NT} \vdash 1 < 1 + 1 \).

Proof.

Consider the following proof sequence:

(i) \((\forall x)(\forall y)((x + \sigma(y)) = \sigma(x + y)), \text{ NT5}.\)
(ii) \((\forall x)((x + \sigma(0)) = \sigma(x + 0)), \text{ (i), u.i. (setting } y = 0).\)
(iii) \((\forall x)((x + 1) = \sigma(x)), \text{ NT4}.\)
(iv) \((\forall x)(\sigma(x) = x + 1), \text{ properties of equality}.\)
(v) \((\forall x)(x < \sigma(x)), \text{ NT10}.\)
(vi) \(1 < \sigma(1), \text{ (v), u.i. (setting } x = 1).\)
(vii) \(\sigma(1) = 1 + 1, \text{ (iv), u.i. (setting } x = 1).\)
(viii) \(1 < 1 + 1, \text{ (vi), (vii)}.\)
1. Axiomatizing Number Theory
 - Non-logical Axioms
 - Sample Proof
 - Complete fragments of number theory

2. Complexity as a number-theoretic concept
 - Representing Turing Machines as numbers
 - Encoding sample
Variable-Free Sentences

Theorem

If \(\phi \) is a variable-free sentence, then \(\mathbb{N} \models \phi \iff \text{NT} \vdash \phi \).

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: \(t = t' \) and \(t < t' \).

(i) \(t \) and \(t' \) are numbers - \(t = t' \) is trivial to prove. \(t < t' \) can be proved by using \(\text{NT10} \) to prove \(t < \sigma(t), \sigma(t) < \sigma(\sigma(t)) \) and so on. Eventually, we can use \(\text{NT13} \) to establish the inequality.

(ii) \(t \) and \(t' \) are general variable-free terms (e.g., \(t = 2 \uparrow 3 + (4 \times 7) + 6 \)) - Both \(t \) and \(t' \) have values, say \(t_0 \) and \(t'_0 \). We need to show that \(\text{NT} \vdash t = t_0 \) and \(\text{NT} \vdash t' = t'_0 \). Use induction on structure of \(t \), by repeatedly applying the axioms \(\text{NT9, NT7 and NT5} \). Ultimately, the expression will be reduced to its value.
Variable-Free Sentences

Theorem

If φ is a variable-free sentence, then N \models φ ⇔ NT ⊢ φ.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: \(t = t' \) and \(t < t' \).

(i) \(t \) and \(t' \) are numbers - \(t = t' \) is trivial to prove. \(t < t' \) can be proved by using NT10 to prove \(t < σ(t), σ(t) < σ(σ(t)) \) and so on. Eventually, we can use NT13 to establish the inequality.

(ii) \(t \) and \(t' \) are general variable-free terms (e.g., \(t = 2 ↑ 3 + (4 × 7) + 6 \)) - Both \(t \) and \(t' \) have values, say \(t_0 \) and \(t'_0 \). We need to show that NT \(⊢ t = t_0 \) and NT \(⊢ t' = t'_0 \). Use induction on structure of \(t \), by repeatedly applying the axioms NT9, NT7 and NT5. Ultimately, the expression will be reduced to its value.
Variable-Free Sentences

Theorem

If φ is a variable-free sentence, then $\mathbb{N} \models \phi \iff \text{NT} \vdash \phi$.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: $t = t'$ and $t < t'$.

(i) t and t' are numbers - $t = t'$ is trivial to prove. $t < t'$ can be proved by using NT10 to prove $t < \sigma(t), \sigma(t) < \sigma(\sigma(t))$ and so on. Eventually, we can use NT13 to establish the inequality.

(ii) t and t' are general variable-free terms (e.g., $t = 2 \uparrow 3 + (4 \times 7) + 6$) - Both t and t' have values, say t_0 and t'_0. We need to show that $\text{NT} \vdash t = t_0$ and $\text{NT} \vdash t' = t'_0$. Use induction on structure of t, by repeatedly applying the axioms NT9, NT7 and NT5. Ultimately, the expression will be reduced to its value.
Variable-Free Sentences

Theorem

If ϕ is a variable-free sentence, then $N \models \phi \iff NT \vdash \phi$.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: $t = t'$ and $t < t'$.

(i) t and t' are numbers - $t = t'$ is trivial to prove. $t < t'$ can be proved by using NT_{10} to prove $t < \sigma(t), \sigma(t) < \sigma(\sigma(t))$ and so on. Eventually, we can use NT_{13} to establish the inequality.

(ii) t and t' are general variable-free terms (e.g., $t = 2 \uparrow 3 + (4 \times 7) + 6$) - Both t and t' have values, say t_0 and t'_0. We need to show that $NT \vdash t = t_0$ and $NT \vdash t' = t'_0$. Use induction on structure of t, by repeatedly applying the axioms NT_{9}, NT_{7} and NT_{5}. Ultimately, the expression will be reduced to its value.
Variable-Free Sentences

Theorem

If ϕ is a variable-free sentence, then $\mathbb{N} \models \phi \iff \text{NT} \vdash \phi$.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: $t = t'$ and $t < t'$.

(i) t and t' are numbers - $t = t'$ is trivial to prove. $t < t'$ can be proved by using NT10 to prove $t < \sigma(t)$, $\sigma(t) < \sigma(\sigma(t))$ and so on. Eventually, we can use NT13 to establish the inequality.

(ii) t and t' are general variable-free terms (e.g., $t = 2 \uparrow 3 + (4 \times 7) + 6$) - Both t and t' have values, say t_0 and t'_0. We need to show that $\text{NT} \vdash t = t_0$ and $\text{NT} \vdash t' = t'_0$. Use induction on structure of t, by repeatedly applying the axioms NT9, NT7 and NT5. Ultimately, the expression will be reduced to its value.
Variable-Free Sentences

Theorem

If ϕ is a variable-free sentence, then $\mathbb{N} \models \phi \iff \text{NT} \vdash \phi$.

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: $t = t'$ and $t < t'$.

(i) t and t' are numbers - $t = t'$ is trivial to prove. $t < t'$ can be proved by using NT10 to prove $t < \sigma(t)$, $\sigma(t) < \sigma(\sigma(t))$ and so on. Eventually, we can use NT13 to establish the inequality.

(ii) t and t' are general variable-free terms (e.g., $t = 2 \uparrow 3 + (4 \times 7) + 6$) - Both t and t' have values, say t_0 and t'_0. We need to show that $\text{NT} \vdash t = t_0$ and $\text{NT} \vdash t' = t'_0$. Use induction on structure of t, by repeatedly applying the axioms NT9, NT7 and NT5. Ultimately, the expression will be reduced to its value.
Variable-Free Sentences

Theorem

If \(\phi \) is a variable-free sentence, then \(\mathbb{N} \models \varphi \iff \text{NT} \vdash \varphi \).

Proof.

Any variable-free sentence is an arbitrary boolean combination of expressions of the form: \(t = t' \) and \(t < t' \).

(i) \(t \) and \(t' \) are numbers - \(t = t' \) is trivial to prove. \(t < t' \) can be proved by using \text{NT10} to prove \(t < \sigma(t), \sigma(t) < \sigma(\sigma(t)) \) and so on. Eventually, we can use \text{NT13} to establish the inequality.

(ii) \(t \) and \(t' \) are general variable-free terms (e.g., \(t = 2 \uparrow 3 + (4 \times 7) + 6 \)) - Both \(t \) and \(t' \) have values, say \(t_0 \) and \(t'_0 \). We need to show that \(\text{NT} \vdash t = t_0 \) and \(\text{NT} \vdash t' = t'_0 \). Use induction on structure of \(t \), by repeatedly applying the axioms \text{NT9}, \text{NT7} and \text{NT5}. Ultimately, the expression will be reduced to its value.
Bounded Quantifiers

Notation

(i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
(ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \iff \mathbf{NT} \vdash \phi$.

Proof.

Since \mathbf{NT} is sound, $\mathbf{NT} \vdash \phi \rightarrow \mathbf{N} \models \phi$. We use induction on the number of quantifiers to prove the converse.

(i) ϕ has no quantifiers - Variable-Free sentence!

(ii) $\phi = (\exists x)\psi$ - Since $\mathbf{N} \models \phi$, there is a specific integer n, such that $\mathbf{N} \models \psi[x \leftarrow n]$. By induction, $\mathbf{NT} \vdash \psi[x \leftarrow n]$ and hence $\mathbf{NT} \vdash \phi$.

(iii) $\phi = (\forall x < t)\psi$ - Observe that t must be a variable-free term and hence a number. Repeatedly apply $\mathbf{NT}10$ and $\mathbf{NT}11$ to conclude that $\mathbf{NT} \vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1)))$. By induction $\mathbf{NT} \vdash \psi[x \leftarrow j], 0 \leq j < n$. Hence $\mathbf{NT} \vdash (\forall x)(((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi)$. It follows that $\mathbf{NT} \vdash \phi = (\forall x < n)\psi$.
Bounded Quantifiers

Notation

(i) \((\forall x < t)\phi\) stands for \((\forall x)((x < t) \rightarrow \phi)\). Bounded prenex form.

(ii) Bounded sentence.

Theorem

Suppose that \(\phi\) is a bounded sentence. Then \(N \models \phi \iff NT \vdash \phi\).

Proof.

Since \(NT\) is sound, \(NT \vdash \phi \rightarrow N \models \phi\). We use induction on the number of quantifiers to prove the converse.

(i) \(\phi\) has no quantifiers - Variable-Free sentence!

(ii) \(\phi = (\exists x)\psi\) - Since \(N \models \phi\), there is a specific integer \(n\), such that \(N \models \psi[x \leftarrow n]\). By induction, \(NT \vdash \psi[x \leftarrow n]\) and hence \(NT \vdash \phi\).

(iii) \(\phi = (\forall x < t)\psi\) - Observe that \(t\) must be a variable-free term and hence a number.

Repeatedly apply \(NT_{10}\) and \(NT_{11}\) to conclude that
\(NT \vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1))).\) By induction \(NT \vdash \psi[x \leftarrow j], 0 \leq j < n\). Hence \(NT \vdash (\forall x)((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi\). It follows that \(NT \vdash \phi = (\forall x < n)\psi\).
Bounded Quantifiers

Notation

(i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
(ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbb{N} \models \phi \iff \mathbf{NT} \vdash \phi$.

Proof.

Since \mathbf{NT} is sound, $\mathbf{NT} \vdash \phi \rightarrow \mathbb{N} \models \phi$. We use induction on the number of quantifiers to prove the converse.

(i) ϕ has no quantifiers - Variable-Free sentence!

(ii) $\phi = (\exists x)\psi$ - Since $\mathbb{N} \models \phi$, there is a specific integer n, such that $\mathbb{N} \models \psi[x \leftarrow n]$. By induction, $\mathbf{NT} \vdash \psi[x \leftarrow n]$ and hence $\mathbf{NT} \vdash \phi$.

(iii) $\phi = (\forall x < t)\psi$ - Observe that t must be a variable-free term and hence a number. Repeatedly apply $\mathbf{NT10}$ and $\mathbf{NT11}$ to conclude that $\mathbf{NT} \vdash (\forall x)((x < n) \rightarrow ((x = 0) \vee (x = 1) \vee (x = 2) \vee \ldots (x = n - 1)))$. By induction $\mathbf{NT} \vdash \psi[x \leftarrow j], 0 \leq j < n$. Hence $\mathbf{NT} \vdash (\forall x)(((x = 0) \vee (x = 1) \ldots (x = n - 1)) \rightarrow \psi)$. It follows that $\mathbf{NT} \vdash \phi = (\forall x < n)\psi$.
Bounded Quantifiers

Notation

(i) \((\forall x < t)\phi\) stands for \((\forall x)((x < t) \rightarrow \phi)\). Bounded prenex form.

(ii) Bounded sentence.

Theorem

Suppose that \(\phi\) is a bounded sentence. Then \(N \models \phi \iff NT \vdash \phi\).

Proof.

Since \(NT\) is sound, \(NT \vdash \phi \rightarrow N \models \phi\). We use induction on the number of quantifiers to prove the converse.

(i) \(\phi\) has no quantifiers - Variable-Free sentence!

(ii) \(\phi = (\exists x)\psi\) - Since \(N \models \phi\), there is a specific integer \(n\), such that \(N \models \psi[x \leftarrow n]\). By induction, \(NT \vdash \psi[x \leftarrow n]\) and hence \(NT \vdash \phi\).

(iii) \(\phi = (\forall x < t)\psi\) - Observe that \(t\) must be a variable-free term and hence a number. Repeatedly apply \(NT10\) and \(NT11\) to conclude that \(NT \vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1)))\). By induction \(NT \vdash \psi[x \leftarrow j], 0 \leq j < n\). Hence \(NT \vdash (\forall x)(((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi)\). It follows that \(NT \vdash \phi = (\forall x < n)\psi\).
Bounded Quantifiers

Notation

(i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
(ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $N \models \phi \iff NT \vdash \phi$.

Proof.

Since NT is sound, $NT \vdash \phi \rightarrow N \models \phi$. We use induction on the number of quantifiers to prove the converse.

(i) ϕ has no quantifiers - Variable-Free sentence!
(ii) $\phi = (\exists x)\psi$ - Since $N \models \phi$, there is a specific integer n, such that $N \models \psi[x \leftarrow n]$. By induction, $NT \vdash \psi[x \leftarrow n]$ and hence $NT \vdash \phi$.
(iii) $\phi = (\forall x < t)\psi$ - Observe that t must be a variable-free term and hence a number. Repeatedly apply NT_{10} and NT_{11} to conclude that $NT \vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1)))$. By induction $NT \vdash \psi[x \leftarrow j]$, $0 \leq j < n$. Hence $NT \vdash (\forall x)((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi$. It follows that $NT \vdash \phi = (\forall x < n)\psi$.
Bounded Quantifiers

Notation

1. $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
2. Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \iff \mathbf{NT} \vdash \phi$.

Proof.

Since \mathbf{NT} is sound, $\mathbf{NT} \vdash \phi \rightarrow \mathbf{N} \models \phi$. We use induction on the number of quantifiers to prove the converse.

1. ϕ has no quantifiers - Variable-Free sentence!
2. $\phi = (\exists x)\psi$ - Since $\mathbf{N} \models \phi$, there is a specific integer n, such that $\mathbf{N} \models \psi[x \leftarrow n]$. By induction, $\mathbf{NT} \vdash \psi[x \leftarrow n]$ and hence $\mathbf{NT} \vdash \phi$.
3. $\phi = (\forall x < t)\psi$ - Observe that t must be a variable-free term and hence a number. Repeatedly apply $\mathbf{NT}10$ and $\mathbf{NT}11$ to conclude that

 $\mathbf{NT} \vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1))).$

 By induction $\mathbf{NT} \vdash \psi[x \leftarrow j], 0 \leq j < n$. Hence $\mathbf{NT} \vdash (\forall x)((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi).$

 It follows that $\mathbf{NT} \vdash \phi = (\forall x < n)\psi$.

Subramani

Undecidability in Logic
Bounded Quantifiers

Notation

(i) \((\forall x < t) \phi\) stands for \((\forall x)((x < t) \rightarrow \phi)\). Bounded prenex form.

(ii) Bounded sentence.

Theorem

Suppose that \(\phi\) is a bounded sentence. Then \(N \models \phi \iff NT \vdash \phi\).

Proof.

Since \(NT\) is sound, \(NT \vdash \phi \implies N \models \phi\). We use induction on the number of quantifiers to prove the converse.

(i) \(\phi\) has no quantifiers - Variable-Free sentence!

(ii) \(\phi = (\exists x)\psi\) - Since \(N \models \phi\), there is a specific integer \(n\), such that \(N \models \psi[x \leftarrow n]\). By induction, \(NT \vdash \psi[x \leftarrow n]\) and hence \(NT \vdash \phi\).

(iii) \(\phi = (\forall x < t)\psi\) - Observe that \(t\) must be a variable-free term and hence a number. Repeatedly apply \(NT_{10}\) and \(NT_{11}\) to conclude that \(NT \vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1)))\). By induction \(NT \vdash \psi[x \leftarrow j]\), \(0 \leq j < n\). Hence \(NT \vdash (\forall x)((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi\). It follows that \(NT \vdash \phi = (\forall x < n)\psi\).

Subramani

Undecidability in Logic
Bounded Quantifiers

Notation

(i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
(ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbf{N} \models \phi \iff \mathbf{NT} \vdash \phi$.

Proof.

Since \mathbf{NT} is sound, $\mathbf{NT} \vdash \phi \rightarrow \mathbf{N} \models \phi$. We use induction on the number of quantifiers to prove the converse.

(i) ϕ has no quantifiers - Variable-Free sentence!
(ii) $\phi = (\exists x)\psi$ - Since $\mathbf{N} \models \phi$, there is a specific integer n, such that $\mathbf{N} \models \psi[x \leftarrow n]$. By induction, $\mathbf{NT} \vdash \psi[x \leftarrow n]$ and hence $\mathbf{NT} \vdash \phi$.
(iii) $\phi = (\forall x < t)\psi$ - Observe that t must be a variable-free term and hence a number.

Repeatedly apply $\mathbf{NT10}$ and $\mathbf{NT11}$ to conclude that $\mathbf{NT} \vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1)))$. By induction $\mathbf{NT} \vdash \psi[x \leftarrow j], 0 \leq j < n$. Hence $\mathbf{NT} \vdash (\forall x)(((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi)$. It follows that $\mathbf{NT} \vdash \phi = (\forall x < n)\psi$.
Bounded Quantifiers

Notation

(i) $(\forall x < t)\phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
(ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $N \models \phi \iff NT \vdash \phi$.

Proof.

Since NT is sound, $NT \vdash \phi \rightarrow N \models \phi$. We use induction on the number of quantifiers to prove the converse.

(i) ϕ has no quantifiers - Variable-Free sentence!
(ii) $\phi = (\exists x)\psi$ - Since $N \models \phi$, there is a specific integer n, such that $N \models \psi[x \leftarrow n]$. By induction, $NT \vdash \psi[x \leftarrow n]$ and hence $NT \vdash \phi$.
(iii) $\phi = (\forall x < t)\psi$ - Observe that t must be a variable-free term and hence a number.

Repeatedly apply $NT10$ and $NT11$ to conclude that $NT \vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1))$. By induction $NT \vdash \psi[x \leftarrow j], 0 \leq j < n$. Hence $NT \vdash (\forall x)(((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi)$. It follows that $NT \vdash \phi = (\forall x < n)\psi$.
Bounded Quantifiers

Notation

(i) \((\forall x < t)\phi\) stands for \((\forall x)((x < t) \rightarrow \phi)\). Bounded prenex form.
(ii) Bounded sentence.

Theorem

Suppose that \(\phi\) is a bounded sentence. Then \(N \models \phi \iff NT \vdash \phi\).

Proof.

Since \(NT\) is sound, \(NT \vdash \phi \rightarrow N \models \phi\). We use induction on the number of quantifiers to prove the converse.

(i) \(\phi\) has no quantifiers - Variable-Free sentence!

(ii) \(\phi = (\exists x)\psi\) - Since \(N \models \phi\), there is a specific integer \(n\), such that \(N \models \psi[x \leftarrow n]\). By induction, \(NT \vdash \psi[x \leftarrow n]\) and hence \(NT \vdash \phi\).

(iii) \(\phi = (\forall x < t)\psi\) - Observe that \(t\) must be a variable-free term and hence a number. Repeatedly apply \(NT10\) and \(NT11\) to conclude that \(NT \vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1))).\) By induction \(NT \vdash \psi[x \leftarrow j], 0 \leq j < n\). Hence \(NT \vdash (\forall x)((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi\). It follows that \(NT \vdash \phi = (\forall x < n)\psi\).
Bounded Quantifiers

Notation

(i) \((\forall x < t)\phi\) stands for \((\forall x)((x < t) \rightarrow \phi)\). Bounded prenex form.
(ii) Bounded sentence.

Theorem

Suppose that \(\phi\) is a bounded sentence. Then \(\mathbb{N} \models \phi \iff \text{NT} \vdash \phi\).

Proof.

Since \(\text{NT}\) is sound, \(\text{NT} \vdash \phi \rightarrow \mathbb{N} \models \phi\). We use induction on the number of quantifiers to prove the converse.

(i) \(\phi\) has no quantifiers - Variable-Free sentence!

(ii) \(\phi = (\exists x)\psi\) - Since \(\mathbb{N} \models \phi\), there is a specific integer \(n\), such that \(\mathbb{N} \models \psi[x \leftarrow n]\). By induction, \(\text{NT} \vdash \psi[x \leftarrow n]\) and hence \(\text{NT} \vdash \phi\).

(iii) \(\phi = (\forall x < t)\psi\) - Observe that \(t\) must be a variable-free term and hence a number. Repeatedly apply \(\text{NT}10\) and \(\text{NT}11\) to conclude that \(\text{NT} \vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1))).\) By induction \(\text{NT} \vdash \psi[x \leftarrow j], 0 \leq j < n\). Hence \(\text{NT} \vdash (\forall x)(((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi).\) It follows that \(\text{NT} \vdash \phi = (\forall x < n)\psi\).
Bounded Quantifiers

Notation

(i) \((\forall x < t)\phi\) stands for \((\forall x)((x < t) \rightarrow \phi)\). Bounded prenex form.

(ii) Bounded sentence.

Theorem

Suppose that \(\phi\) is a bounded sentence. Then \(\mathbb{N} \models \phi \iff \text{NT} \vdash \phi\).

Proof.

Since \(\text{NT}\) is sound, \(\text{NT} \vdash \phi \rightarrow \mathbb{N} \models \phi\). We use induction on the number of quantifiers to prove the converse.

(i) \(\phi\) has no quantifiers - Variable-Free sentence!

(ii) \(\phi = (\exists x)\psi\) - Since \(\mathbb{N} \models \phi\), there is a specific integer \(n\), such that \(\mathbb{N} \models \psi[x \leftarrow n]\). By induction, \(\text{NT} \vdash \psi[x \leftarrow n]\) and hence \(\text{NT} \vdash \phi\).

(iii) \(\phi = (\forall x < t)\psi\) - Observe that \(t\) must be a variable-free term and hence a number. Repeatedly apply \(\text{NT10}\) and \(\text{NT11}\) to conclude that \(\text{NT} \vdash (\forall x)((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1)))\). By induction \(\text{NT} \vdash \psi[x \leftarrow j], 0 \leq j < n\). Hence \(\text{NT} \vdash (\forall x)(((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi)\). It follows that \(\text{NT} \vdash \phi = (\forall x < n)\psi\).
Bounded Quantifiers

Notation

(i) $(\forall x < t) \phi$ stands for $(\forall x)((x < t) \rightarrow \phi)$. Bounded prenex form.
(ii) Bounded sentence.

Theorem

Suppose that ϕ is a bounded sentence. Then $\mathbb{N} \models \phi \iff \text{NT} \vdash \phi$.

Proof.

Since NT is sound, $\text{NT} \vdash \phi \rightarrow \mathbb{N} \models \phi$. We use induction on the number of quantifiers to prove the converse.

(i) ϕ has no quantifiers - Variable-Free sentence!
(ii) $\phi = (\exists x) \psi$ - Since $\mathbb{N} \models \phi$, there is a specific integer n, such that $\mathbb{N} \models \psi[x \leftarrow n]$. By induction, $\text{NT} \vdash \psi[x \leftarrow n]$ and hence $\text{NT} \vdash \phi$.
(iii) $\phi = (\forall x < t) \psi$ - Observe that t must be a variable-free term and hence a number. Repeatedly apply NT10 and NT11 to conclude that $\text{NT} \vdash (\forall x)(((x < n) \rightarrow ((x = 0) \lor (x = 1) \lor (x = 2) \lor \ldots (x = n - 1))))$. By induction $\text{NT} \vdash \psi[x \leftarrow j], 0 \leq j < n$. Hence $\text{NT} \vdash (\forall x)(((x = 0) \lor (x = 1) \ldots (x = n - 1)) \rightarrow \psi)$. It follows that $\text{NT} \vdash \phi = (\forall x < n) \psi$.
Outline

1. Axiomatizing Number Theory
 - Non-logical Axioms
 - Sample Proof
 - Complete fragments of number theory

2. Complexity as a number-theoretic concept
 - Representing Turing Machines as numbers
 - Encoding sample
Axiomatizing Number Theory
Complexity as a number-theoretic concept

Encoding Scheme

Procedure

Let $M = (K, \Sigma, \delta, s)$ denote a Turing Machine.

(i) Represent the symbols in Σ using integers in $\{0, 1, \ldots, |\Sigma| - 1\}$ and the symbols in K using integers in $\{\Sigma, \Sigma+1, \ldots, |\Sigma| + |K| - 1\}$.

(ii) s is always encoded as $|\Sigma|$ and 0 is always used to encode \triangleright.

(iii) “yes” and “no” are encoded as $|\Sigma| + 1$ and $|\Sigma| + 2$ respectively.

(iv) \sqcup is encoded by 1.

Thus, all symbols can be encoded using $b = |\Sigma| + |K|$ integers. Consider the configuration $C = (q, w, u)$, where $q \in K$ and $w = w_1, w_2, \ldots, w_m$ and $u = u_1, u_2, \ldots u_n \in \Sigma^*$. C can be thought of as the unique integer whose b-ary representation is

$$\sum_{i=1}^{n} w_i \cdot b^{m+n+1-i} + q \cdot b^n + \sum_{i=1}^{n} u_i \cdot b^{n-i}.$$
Axiomatizing Number Theory

Complexity as a number-theoretic concept

Encoding Scheme

Encoding Scheme

Procedure

Let \(M = (K, \Sigma, \delta, s) \) denote a Turing Machine.

(i) Represent the symbols in \(\Sigma \) using integers in \(\{0, 1, \ldots, |\Sigma| - 1\} \) and the symbols in \(K \) using integers in \(\{\Sigma, \Sigma+1, \ldots, \Sigma + |K| - 1\} \).

(ii) \(s \) is always encoded as \(|\Sigma|\) and 0 is always used to encode \(\triangleright \).

(iii) “yes” and “no” are encoded as \(|\Sigma| + 1\) and \(|\Sigma| + 2\) respectively.

(iv) \(\sqcup \) is encoded by 1.

Thus, all symbols can be encoded using \(b = |\Sigma| + |K| \) integers. Consider the configuration \(C = (q, w, u) \), where \(q \in K \) and \(w = w_1, w_2, \ldots, w_m \) and \(u = u_1, u_2, \ldots, u_n \in \Sigma^* \). \(C \) can be thought of as the unique integer whose \(b \)-ary representation is

\[
\sum_{i=1}^{m} w_i \cdot b^{m+n+1-i} + q \cdot b^n + \sum_{i=1}^{n} u_i \cdot b^{n-i}.
\]
Encoding Scheme

Procedure

Let $M = (K, \Sigma, \delta, s)$ denote a Turing Machine.

(i) Represent the symbols in Σ using integers in $\{0, 1, \ldots, |\Sigma| - 1\}$ and the symbols in K using integers in $\{\Sigma, \Sigma+1, \ldots, |\Sigma| + |K| - 1\}$.

(ii) s is always encoded as $|\Sigma|$ and 0 is always used to encode \triangleright.

(iii) “yes” and “no” are encoded as $|\Sigma| + 1$ and $|\Sigma| + 2$ respectively.

(iv) \sqcup is encoded by 1.

Thus, all symbols can be encoded using $b = |\Sigma| + |K|$ integers. Consider the configuration $C = (q, w, u)$, where $q \in K$ and $w = w_1, w_2, \ldots, w_m$ and $u = u_1, u_2, \ldots, u_n \in \Sigma^*$. C can be thought of as the unique integer whose b-ary representation is

$$
\sum_{i=1}^{n} w_i \cdot b^{m+n+1-i} + q \cdot b^n + \sum_{i=1}^{n} u_i \cdot b^{n-i}.
$$

Subramani
Undecidability in Logic
Encoding Scheme

Procedure

Let $M = (K, \Sigma, \delta, s)$ denote a Turing Machine.

(i) Represent the symbols in Σ using integers in $\{0, 1, \ldots, |\Sigma| - 1\}$ and the symbols in K using integers in $\{\Sigma, \Sigma+1, \ldots, |\Sigma| + |K| - 1\}$.

(ii) s is always encoded as $|\Sigma|$ and 0 is always used to encode \triangleright.

(iii) “yes” and “no” are encoded as $|\Sigma| + 1$ and $|\Sigma| + 2$ respectively.

(iv) \sqcup is encoded by 1.

Thus, all symbols can be encoded using $b = |\Sigma| + |K|$ integers. Consider the configuration $C = (q, w, u)$, where $q \in K$ and $w = w_1, w_2, \ldots, w_m$ and $u = u_1, u_2, \ldots u_n \in \Sigma^*$. C can be thought of as the unique integer whose b-ary representation is $\sum_{i=1}^{n} w_i \cdot b^{m+n+1-i} + q \cdot b^n + \sum_{i=1}^{n} u_i \cdot b^{n-i}$.
Encoding Scheme

Procedure

Let $M = (K, \Sigma, \delta, s)$ denote a Turing Machine.

(i) Represent the symbols in Σ using integers in $\{0, 1, \ldots, |\Sigma| - 1\}$ and the symbols in K using integers in $\{\Sigma, \Sigma+1, \ldots, |\Sigma| + |K| - 1\}$.

(ii) s is always encoded as $|\Sigma|$ and 0 is always used to encode \rightarrow.

(iii) "yes" and "no" are encoded as $|\Sigma| + 1$ and $|\Sigma| + 2$ respectively.

(iv) \square is encoded by 1.

Thus, all symbols can be encoded using $b = |\Sigma| + |K|$ integers. Consider the configuration $C = (q, w, u)$, where $q \in K$ and $w = w_1, w_2, \ldots, w_m$ and $u = u_1, u_2, \ldots u_n \in \Sigma^*$. C can be thought of as the unique integer whose b-ary representation is

$$\sum_{i=1}^{n} w_i \cdot b^{m+n+1-i} + q \cdot b^{n} + \sum_{i=1}^{n} u_i \cdot b^{n-i}.$$
Procedure

Let $M = (K, \Sigma, \delta, s)$ denote a Turing Machine.

(i) Represent the symbols in Σ using integers in $\{0, 1, \ldots, |\Sigma| - 1\}$ and the symbols in K using integers in $\{\Sigma, \Sigma+1, \ldots, |\Sigma| + |K| - 1\}$.

(ii) s is always encoded as $|\Sigma|$ and 0 is always used to encode \rhd.

(iii) “yes” and “no” are encoded as $|\Sigma| + 1$ and $|\Sigma| + 2$ respectively.

(iv) \square is encoded by 1.

Thus, all symbols can be encoded using $b = |\Sigma| + |K|$ integers. Consider the configuration $C = (q, w, u)$, where $q \in K$ and $w = w_1, w_2, \ldots, w_m$ and $u = u_1, u_2, \ldots u_n \in \Sigma^*$. C can be thought of as the unique integer whose b-ary representation is

$\sum_{i=1}^{n} w_i \cdot b^{m+n+1-i} + q \cdot b^n + \sum_{i=1}^{n} u_i \cdot b^{n-i}$.
Axiomatizing Number Theory

Non-logical Axioms
Sample Proof
Complete fragments of number theory

Complexity as a number-theoretic concept

Representing Turing Machines as numbers
Encoding sample

Outline

1. Axiomatizing Number Theory
 - Non-logical Axioms
 - Sample Proof
 - Complete fragments of number theory

2. Complexity as a number-theoretic concept
 - Representing Turing Machines as numbers
 - Encoding sample
Example

<table>
<thead>
<tr>
<th>$p \in K$, $\sigma \in \Sigma$</th>
<th>$\delta(p, \sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>(s, a, \to)</td>
</tr>
<tr>
<td>s</td>
<td>(s, b, \to)</td>
</tr>
<tr>
<td>s</td>
<td>(q, \sqcup, \leftarrow)</td>
</tr>
<tr>
<td>s</td>
<td>(q, \triangleright, \to)</td>
</tr>
<tr>
<td>q</td>
<td>(q, \sqcup, \leftarrow)</td>
</tr>
<tr>
<td>q</td>
<td>("no", b, \leftarrow)</td>
</tr>
<tr>
<td>q</td>
<td>("yes", \triangleright, \to)</td>
</tr>
</tbody>
</table>

Table: A Turing Machine that accepts a^*

Characteristics

$|K| = |\Sigma| = 4$ and hence $b = 8$.

The configuration $(q, \triangleright aa, \sqcup \sqcup)$ is represented by the sequence $(0, 2, 2, 7, 1, 1)$ or by the integer 022711_8 or 9673_{10}.

Observation

The relation “yields in one step” over the configurations of M defines a relation $Y_M \subseteq N^2$.

Goal

To formulate a first-order expression $\text{yields}_M(x, y)$ in number theory, over the free variables x and y, such that

$N_{x=m, y=n} \models \text{yields}_M(x, y) \iff Y_M(m, n)$.

Subramani

Undecidability in Logic
Example

<table>
<thead>
<tr>
<th>$p \in K$, $\sigma \in \Sigma$</th>
<th>$\delta(p, \sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s a</td>
<td>(s, a, \rightarrow)</td>
</tr>
<tr>
<td>s b</td>
<td>(s, b, \rightarrow)</td>
</tr>
<tr>
<td>s \square</td>
<td>(q, \square, \leftarrow)</td>
</tr>
<tr>
<td>s \triangleright</td>
<td>$(q, \triangleright, \rightarrow)$</td>
</tr>
<tr>
<td>q a</td>
<td>(q, \square, \leftarrow)</td>
</tr>
<tr>
<td>q b ("no", b, $-$)</td>
<td>$("yes", \triangleright, \rightarrow)$</td>
</tr>
</tbody>
</table>

Table: A Turing Machine that accepts a^*

Characteristics

$|K| = |\Sigma| = 4$ and hence $b = 8$.

The configuration $(q, \triangleright aa, \square \square)$ is represented by the sequence $(0, 2, 2, 7, 1, 1)$ or by the integer 022711_8 or 9673_{10}.

Observation

The relation “yields in one step” over the configurations of M defines a relation $Y_M \subseteq \mathbb{N}^2$.

Goal

To formulate a first-order expression $\text{yields}_M(x, y)$ in number theory, over the free variables x and y, such that

$\mathbb{N}_{x=m, y=n} \models \text{yields}_M(x, y)$ iff $Y_M(m, n)$.
Example

\[
\begin{array}{|c|c|c|}
\hline
p \in K, & \sigma \in \Sigma & \delta(p, \sigma) \\
\hline
s & a & (s, a, \rightarrow) \\
s & b & (s, b, \rightarrow) \\
s & \sqcup & (q, \sqcup, \leftarrow) \\
s & \triangleright & (q, \triangleright, \rightarrow) \\
q & a & (q, \sqcup, \leftarrow) \\
q & b & ("no", b, \leftarrow) \\
q & \triangleright & ("yes", \triangleright, \rightarrow) \\
\hline
\end{array}
\]

Table: A Turing Machine that accepts \(a^*\)

Observation

The relation "yields in one step" over the configurations of \(M\) defines a relation \(Y_M \subseteq \mathbb{N}^2\).

Goal

To formulate a first-order expression \(\text{yields}_M(x, y)\) in number theory, over the free variables \(x\) and \(y\), such that

\[\mathbb{N}_{x=m, y=n} \models \text{yields}_M(x, y) \text{ iff } Y_M(m, n).\]
Example

Table: A Turing Machine that accepts a^*

<table>
<thead>
<tr>
<th>$p \in K$, $\sigma \in \Sigma$</th>
<th>$\delta(p, \sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s a</td>
<td>(s, a, \rightarrow)</td>
</tr>
<tr>
<td>s b</td>
<td>(s, b, \rightarrow)</td>
</tr>
<tr>
<td>s \sqcup</td>
<td>(q, \sqcup, \leftarrow)</td>
</tr>
<tr>
<td>s \triangleright</td>
<td>$(q, \triangleright, \rightarrow)$</td>
</tr>
<tr>
<td>q a</td>
<td>(q, \sqcup, \leftarrow)</td>
</tr>
<tr>
<td>q b</td>
<td>("no", b, $-$)</td>
</tr>
<tr>
<td>q \triangleright</td>
<td>("yes", \triangleright, \rightarrow)</td>
</tr>
</tbody>
</table>

Characteristics

$|K| = |\Sigma| = 4$ and hence $b = 8$.

The configuration $(q, \triangleright aa, \sqcup \sqcup)$ is represented by the sequence $(0, 2, 2, 7, 1, 1)$ or by the integer 022711_8 or 9673_{10}.

Observation

The relation "yields in one step" over the configurations of M defines a relation $Y_M \subseteq N^2$.

Goal

To formulate a first-order expression $\text{yields}_M(x, y)$ in number theory, over the free variables x and y, such that

$N_{x=m, y=n} \models \text{yields}_M(x, y)$ iff $Y_M(m, n)$.
Example

<table>
<thead>
<tr>
<th>(p \in K), (\sigma \in \Sigma)</th>
<th>(\delta(p, \sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td>(a)</td>
</tr>
<tr>
<td>(s)</td>
<td>(b)</td>
</tr>
<tr>
<td>(s)</td>
<td>(\sqcup)</td>
</tr>
<tr>
<td>(s)</td>
<td>(\triangleright)</td>
</tr>
<tr>
<td>(q)</td>
<td>(a)</td>
</tr>
<tr>
<td>(q)</td>
<td>(b)</td>
</tr>
<tr>
<td>(q)</td>
<td>(\triangleright)</td>
</tr>
</tbody>
</table>

Table: A Turing Machine that accepts \(a^* \)

Characteristics

\(|K| = |\Sigma| = 4\) and hence \(b = 8 \).

The configuration \((q, \triangleright aa, \sqcup \sqcup)\) is represented
by the sequence \((0, 2, 2, 7, 1, 1)\) or by the
integer \(022711_{10} = 9673_{10}\).

Observation

The relation "yields in one step" over the configurations
of \(M \) defines a relation \(Y_M \subseteq \mathbb{N}^2 \).

Goal

To formulate a first-order expression \(\text{yields}_M(x, y) \) in
number theory, over the free variables \(x \) and \(y \), such that

\[\mathbb{N}_{x=m, y=n} \models \text{yields}_M(x, y) \iff Y_M(m, n). \]
Example

Table: A Turing Machine that accepts a^*

<table>
<thead>
<tr>
<th>$p \in K$, $\sigma \in \Sigma$</th>
<th>$\delta(p, \sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s a</td>
<td>(s, a, \rightarrow)</td>
</tr>
<tr>
<td>s b</td>
<td>(s, b, \rightarrow)</td>
</tr>
<tr>
<td>s \square</td>
<td>(q, \square, \leftarrow)</td>
</tr>
<tr>
<td>s \triangleright</td>
<td>$(q, \triangleright, \rightarrow)$</td>
</tr>
<tr>
<td>q a</td>
<td>(q, \square, \leftarrow)</td>
</tr>
<tr>
<td>q b</td>
<td>("no", b, $-$)</td>
</tr>
<tr>
<td>q \triangleright</td>
<td>("yes", \triangleright, \rightarrow)</td>
</tr>
</tbody>
</table>

Observation

The relation "yields in one step" over the configurations of M defines a relation $Y_M \subseteq \mathbb{N}^2$.

Goal

To formulate a first-order expression $\text{yields}_M(x, y)$ in number theory, over the free variables x and y, such that

$\mathbb{N}_{x=m, y=n} \models \text{yields}_M(x, y)$ iff $Y_M(m, n)$.

Characteristics

$|K| = |\Sigma| = 4$ and hence $b = 8$.

The configuration $(q, \triangleright aa, \square \square)$ is represented by the sequence $(0, 2, 2, 7, 1, 1)$ or by the integer 022711_8 or 9673_{10}.

Subramani

Undecidability in Logic