Martingales

Naga Venkata Nitesh Tadepalli1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

17 April, 2012
1 Martingales
 • Definition
 • Doob Martingale
1. Martingales
 - Definition
 - Doob Martingale

2. Stopping Times
 - Introduction
 - Martingale Stopping Theorem
Outline

1. Martingales
 - Definition
 - Doob Martingale

2. Stopping Times
 - Introduction
 - Martingale Stopping Theorem

3. Wald's Equation
Outline

1. Martingales
 - Definition
 - Doob Martingale

2. Stopping Times
 - Introduction
 - Martingale Stopping Theorem

3. Wald's Equation
A sequence of random variables Z_0, Z_1, \ldots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \geq 0$, the following conditions hold:

(i) Z_n is a function of X_0, X_1, \ldots, X_n;

(ii) $E[|Z_n|] < \infty$;

(iii) $E[Z_{n+1}|X_0, \ldots, X_n] = Z_n$.

A sequence of random variables Z_0, Z_1, \ldots is called a martingale when it is a martingale with respect to itself. That is, $E[|Z_n|] < \infty$, and $E[Z_{n+1}|Z_0, \ldots, Z_n] = Z_n$.

Note 1: A Martingale can have a finite or a countably infinite number of elements.

Note 2: The indexing of the martingale sequence does not need to start at 0.
A sequence of random variables Z_0, Z_1, \ldots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \geq 0$, the following conditions hold:
A sequence of random variables Z_0, Z_1, \ldots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \geq 0$, the following conditions hold:

(i) Z_n is a function of X_0, X_1, \ldots, X_n;
A sequence of random variables Z_0, Z_1, \ldots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \geq 0$, the following conditions hold:

(i) Z_n is a function of X_0, X_1, \ldots, X_n;
(ii) $\mathbb{E}[|Z_n|] < \infty$.
A sequence of random variables Z_0, Z_1, \ldots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \geq 0$, the following conditions hold:

(i) Z_n is a function of X_0, X_1, \ldots, X_n;

(ii) $\mathbb{E}[|Z_n|] < \infty$

(iii) $\mathbb{E}[Z_{n+1} \mid X_0, \ldots, X_n] = Z_n$
A sequence of random variables Z_0, Z_1, \ldots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \geq 0$, the following conditions hold:

(i) Z_n is a function of X_0, X_1, \ldots, X_n;

(ii) $\mathbb{E}[|Z_n|] < \infty$

(iii) $\mathbb{E}[Z_{n+1} \mid X_0, \ldots, X_n] = Z_n$

A sequence of random variables Z_0, Z_1, \ldots is called martingale, when it is a martingale with respect to itself. That is, $\mathbb{E}[|Z_n|] < \infty$, and $\mathbb{E}[Z_{n+1} \mid Z_0, \ldots, Z_n] = Z_n$.
Martingales

Definition

A sequence of random variables Z_0, Z_1, \ldots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \geq 0$, the following conditions hold:

(i) Z_n is a function of X_0, X_1, \ldots, X_n;
(ii) $E[|Z_n|] < \infty$
(iii) $E[Z_{n+1} | X_0, \ldots, X_n] = Z_n$

A sequence of random variables Z_0, Z_1, \ldots is called martingale, when it is a martingale with respect to itself. That is, $E[|Z_n|] < \infty$, and $E[Z_{n+1} | Z_0, \ldots, Z_n] = Z_n$.

Note

A Martingale can have a finite or a countably infinite number of elements.
The indexing of the martingale sequence does not need to start at 0.
Definition

A sequence of random variables Z_0, Z_1, \ldots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \geq 0$, the following conditions hold:

(i) Z_n is a function of X_0, X_1, \ldots, X_n;
(ii) $E[|Z_n|] < \infty$
(iii) $E[Z_{n+1} \mid X_0, \ldots, X_n] = Z_n$

A sequence of random variables Z_0, Z_1, \ldots is called martingale, when it is a martingale with respect to itself. That is, $E[|Z_n|] < \infty$, and $E[Z_{n+1} \mid Z_0, \ldots, Z_n] = Z_n$.

Note

1. A Martingale can have a finite or a countably infinite number of elements.
Definition

A sequence of random variables Z_0, Z_1, \cdots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \geq 0$, the following conditions hold:

(i) Z_n is a function of X_0, X_1, \ldots, X_n;
(ii) $E[|Z_n|] < \infty$
(iii) $E[Z_{n+1} | X_0, \ldots, X_n] = Z_n$

A sequence of random variables Z_0, Z_1, \cdots is called martingale, when it is a martingale with respect to itself. That is, $E[|Z_n|] < \infty$, and $E[Z_{n+1} | Z_0, \ldots, Z_n] = Z_n$.

Note

1. A Martingale can have a finite or a countably infinite number of elements.
2. The indexing of the martingale sequence does not need to start at 0.
Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the ith game (X_i is negative if the gambler loses), and let Z_i be the gambler's total winnings at the end of the ith game. Because each game is fair, $E[X_i] = 0$. $E[Z_i + 1 | X_1, X_2, \ldots, X_i] = Z_i + E[X_{i+1}] = Z_i$.

Thus, Z_1, Z_2, \ldots, Z_n is a martingale with respect to the sequence X_1, X_2, \ldots, X_n.

Note: The sequence is a martingale regardless of the amount bet on each game, even if these amounts are dependent upon previous results.
Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the ith game (X_i is negative if the gambler loses), and let Z_i be the gambler's total winnings at the end of the ith game. Because each game is fair, $\mathbb{E}[X_i] = 0$. Then, $\mathbb{E}[Z_i + 1 | X_1, X_2, \ldots, X_i] = Z_i + \mathbb{E}[X_{i+1}] = Z_i$, so Z_1, Z_2, \ldots, Z_n is a martingale with respect to the sequence X_1, X_2, \ldots, X_n. Note that the sequence is a martingale regardless of the amount bet on each game, even if these amounts are dependent upon previous results.
Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the ith game (X_i is negative if the gambler loses), and let Z_i be the gambler's total winnings at the end of the ith game.

Because each game is fair, $E[X_i] = 0$. Thus, Z_1, Z_2, \ldots, Z_n is a martingale with respect to the sequence X_1, X_2, \ldots, X_n.

Note: The sequence is a martingale regardless of the amount bet on each game, even if these amounts are dependent upon previous results.
Example

Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the i^{th} game (X_i is negative if the gambler loses), and let Z_i be the gambler’s total winnings at the end of the i^{th} game.
Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the i^{th} game (X_i is negative if the gambler loses), and let Z_i be the gambler’s total winnings at the end of the i^{th} game. Because each game is fair,
Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the i^{th} game (X_i is negative if the gambler loses), and let Z_i be the gambler’s total winnings at the end of the i^{th} game. Because each game is fair,

\[\mathbb{E}[X_i] = 0 \]
Example

Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the i^{th} game (X_i is negative if the gambler loses), and let Z_i be the gambler’s total winnings at the end of the i^{th} game. Because each game is fair,

1. $E[X_i] = 0$
2. $E[Z_{i+1} \mid X_1, X_2, \ldots, X_i] =$
Example

Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the i^{th} game (X_i is negative if the gambler loses), and let Z_i be the gambler’s total winnings at the end of the i^{th} game. Because each game is fair,

1. $E[X_i] = 0$
2. $E[Z_{i+1} \mid X_1, X_2, \ldots, X_i] = Z_i + E[X_{i+1}] = \ldots$
Example

Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the i^{th} game (X_i is negative if the gambler loses), and let Z_i be the gambler’s total winnings at the end of the i^{th} game. Because each game is fair,

1. $\mathbb{E}[X_i] = 0$
2. $\mathbb{E}[Z_{i+1} \mid X_1, X_2, \ldots, X_i] = Z_i + \mathbb{E}[X_{i+1}] = Z_i$
Example

Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the i^{th} game (X_i is negative if the gambler loses), and let Z_i be the gambler’s total winnings at the end of the i^{th} game. Because each game is fair,

1. $E[X_i] = 0$

2. $E[Z_{i+1} \mid X_1, X_2, \ldots, X_i] = Z_i + E[X_{i+1}] = Z_i$

Thus, Z_1, Z_2, \ldots, Z_n is a martingale with respect to the sequence X_1, X_2, \ldots, X_n.
Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the i^{th} game (X_i is negative if the gambler loses), and let Z_i be the gambler’s total winnings at the end of the i^{th} game.

Because each game is fair,

1. $\mathbb{E}[X_i] = 0$
2. $\mathbb{E}[Z_{i+1} \mid X_1, X_2, \ldots, X_i] = Z_i + \mathbb{E}[X_{i+1}] = Z_i$

Thus, Z_1, Z_2, \ldots, Z_n is a martingale with respect to the sequence X_1, X_2, \ldots, X_n.

Note

The sequence is a martingale regardless of the amount bet on each game, even if these amounts are dependent upon previous results.
Example

Consider a gambler who plays a sequence of fair games. Let X_i be the amount the gambler wins on the i^{th} game (X_i is negative if the gambler loses), and let Z_i be the gambler’s total winnings at the end of the i^{th} game. Because each game is fair,

1. $E[X_i] = 0$
2. $E[Z_{i+1} | X_1, X_2, \ldots, X_i] = Z_i + E[X_{i+1}] = Z_i$

Thus, Z_1, Z_2, \ldots, Z_n is a martingale with respect to the sequence X_1, X_2, \ldots, X_n.

Note

The sequence is a martingale regardless of the amount bet on each game, even if these amounts are dependent upon previous results.
Outline

1. Martingales
 - Definition
 - Doob Martingale

2. Stopping Times
 - Introduction
 - Martingale Stopping Theorem

3. Wald's Equation
Doob Martingale

A Doob martingale refers to a martingale constructed using the following general approach. Let \(X_0, X_1, \ldots, X_n \) be a sequence of random variables, and let \(Y \) be a random variable with \(\mathbb{E}[|Y|] < \infty \). Then \(Z_i = \mathbb{E}[Y | X_0, \ldots, X_i] \), \(i = 0, 1, \ldots, n \), gives a martingale with respect to \(X_0, X_1, \ldots, X_n \), since

\[
\mathbb{E}[Z_{i+1} | X_0, \ldots, X_i] = \mathbb{E}[\mathbb{E}[Y | X_0, \ldots, X_i, X_{i+1}] | X_0, \ldots, X_i] = Z_i
\]
A Doob martingale refers to a martingale constructed using the following general approach. Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = E[Y | X_0, \ldots, X_i]$, $i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n, since $E[Z_i + 1 | X_0, \ldots, X_i] = E[E[Y | X_0, \ldots, X_i + 1] | X_0, \ldots, X_i] = E[Y | X_0, \ldots, X_i] = Z_i$.
A Doob martingale refers to a martingale constructed using the following general approach.
A Doob martingale refers to a martingale constructed using the following general approach. Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then
A Doob martingale refers to a martingale constructed using the following general approach.
Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = E[Y | X_0, \ldots, X_i], \quad i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n, since
A Doob martingale refers to a martingale constructed using the following general approach. Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = E[Y \mid X_0, \ldots, X_i], \quad i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n, since

$$E[Z_{i+1} \mid X_0, \ldots, X_i] =$$
A Doob martingale refers to a martingale constructed using the following general approach. Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = E[Y | X_0, \ldots, X_i]$, $i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n, since

$$E[Z_{i+1} | X_0, \ldots, X_i] = E[E[Y | X_0, \ldots, X_i, X_{i+1}] | X_0, \ldots, X_i]$$
A Doob martingale refers to a martingale constructed using the following general approach. Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = E[Y | X_0, \ldots, X_i]$, $i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n, since

$$
E[Z_{i+1} | X_0, \ldots, X_i] = E[E[Y | X_0, \ldots, X_i, X_{i+1}] | X_0, \ldots, X_i] \\
= E[Y | X_0, \ldots, X_i]
$$
A Doob martingale refers to a martingale constructed using the following general approach. Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = E[Y \mid X_0, \ldots, X_i]$, $i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n, since

\[
E[Z_{i+1} \mid X_0, \ldots, X_i] = E[E[Y \mid X_0, \ldots, X_i, X_{i+1}] \mid X_0, \ldots, X_i] = E[Y \mid X_0, \ldots, X_i] = Z_i
\]
A Doob martingale refers to a martingale constructed using the following general approach. Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $E[|Y|] < \infty$. Then $Z_i = E[Y | X_0, \ldots, X_i]$, $i = 0, 1, \ldots, n$, gives a martingale with respect to X_0, X_1, \ldots, X_n, since

$$E[Z_{i+1} | X_0, \ldots, X_i] = E[E[Y | X_0, \ldots, X_i, X_{i+1}] | X_0, \ldots, X_i]$$
$$= E[Y | X_0, \ldots, X_i]$$
$$= Z_i$$

Note

Observations
In most applications we start Doob martingale with $Z_0 = E[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y.

Consider that we want to estimate the value of Y, whose value is a function of the values of the random variables X_1, \ldots, X_n.

The sequence Z_0, Z_1, \ldots, Z_n represents a sequence of refined estimates of the value of Y, gradually using more information on the values of the random variables X_1, X_2, \ldots, X_n. Then

1. $Z_0 = E[Y]$,
2. $Z_i = E[Y | X_1, \ldots, X_i]$,
3. $Z_n = Y$, if Y is fully determined by X_1, \ldots, X_n.

Nitesh
In most applications we start Doob martingale with
$Z_0 = E[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y.

Consider that we want to estimate the value of Y, whose value is a function of the values of the random variables X_1, \ldots, X_n.

The sequence Z_0, Z_1, \ldots, Z_n represents a sequence of refined estimates of the value of Y, gradually using more information on the values of the random variables X_1, X_2, \ldots, X_n. Then

$Z_0 = E[Y]$,
$Z_i = E[Y | X_1, \ldots, X_i]$,
$Z_n = Y$, if Y is fully determined by X_1, \ldots, X_n.
Observations

In most applications we start Doob martingale with $Z_0 = \mathbb{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y.
Observations

In most applications we start Doob martingale with $Z_0 = E[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y. Consider that we want to estimate the value of Y,
Observations

In most applications we start Doob martingale with $Z_0 = \mathbb{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y. Consider that we want to estimate the value of Y, whose value is a function of the values of the random variables X_1, \ldots, X_n.
Observations

In most applications we start Doob martingale with $Z_0 = E[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y. Consider that we want to estimate the value of Y, whose value is a function of the values of the random variables X_1, \ldots, X_n. The sequence Z_0, Z_1, \ldots, Z_n represents a sequence of refined estimates of the value of Y, gradually using more information on the values of the random variables X_1, X_2, \ldots, X_n. Then
<table>
<thead>
<tr>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>In most applications we start Doob martingale with $Z_0 = \mathbb{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y. Consider that we want to estimate the value of Y, whose value is a function of the values of the random variables X_1, \ldots, X_n. The sequence Z_0, Z_1, \ldots, Z_n represents a sequence of refined estimates of the value of Y, gradually using more information on the values of the random variables X_1, X_2, \ldots, X_n. Then</td>
</tr>
<tr>
<td>$Z_0 = \mathbb{E}[Y]$</td>
</tr>
</tbody>
</table>
Observations

In most applications we start Doob martingale with $Z_0 = \mathbb{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y. Consider that we want to estimate the value of Y, whose value is a function of the values of the random variables X_1, \ldots, X_n. The sequence Z_0, Z_1, \ldots, Z_n represents a sequence of refined estimates of the value of Y, gradually using more information on the values of the random variables X_1, X_2, \ldots, X_n. Then

1. $Z_0 = \mathbb{E}[Y]$
2. $Z_i = \mathbb{E}[Y \mid X_1, \ldots, X_i]$
Doob martingale

Observations

In most applications we start Doob martingale with $Z_0 = \mathbb{E}[Y]$ which corresponds to X_0 being a trivial random variable that is independent of Y. Consider that we want to estimate the value of Y, whose value is a function of the values of the random variables X_1, \ldots, X_n. The sequence Z_0, Z_1, \ldots, Z_n represents a sequence of refined estimates of the value of Y, gradually using more information on the values of the random variables X_1, X_2, \ldots, X_n. Then

1. $Z_0 = \mathbb{E}[Y]$
2. $Z_i = \mathbb{E}[Y \mid X_1, \ldots X_i]$
3. $Z_n = Y$, if Y is fully determined by X_1, \ldots, X_n
Let G be a random graph from $G_{n, p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let $X_j = \{1, \text{if there is an edge in the } j\text{th edge slot}, 0, \text{otherwise}\}$. Let $F(G)$ be the size of the largest independent set in G. The sequence $Z_0 = E[F(G)]$ and $Z_i = E[F(G) | X_1, \ldots, X_i]$ is a Doob martingale that represents the conditional expectations of $F(G)$ as we reveal whether each edge is in the graph, one edge at a time. This process of revealing edges gives a martingale called the edge exposure martingale.
Let G be a random graph from G_n, p. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let $X_j = \begin{cases} 1, & \text{if there is an edge in the } j\text{th edge slot,} \\ 0, & \text{otherwise.} \end{cases}$

Let $F(G)$ be the size of the largest independent set in G.

1. $Z_0 = E[F(G)]$
2. $Z_i = E[F(G) | X_1, \ldots, X_i]$

The sequence Z_0, Z_1, \ldots, Z_m is a Doob martingale that represents the conditional expectations of $F(G)$ as we reveal whether each edge is in the graph, one edge at a time.

This process of revealing edges gives a martingale called the edge exposure martingale.
Edge exposure martingale

Let G be a random graph from $G_{n,p}$.
Let G be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let
Let G be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

$$X_j = \begin{cases}
1, & \text{if there is an edge in the } j^{th} \text{ edge slot,} \\
0, & \text{otherwise.}
\end{cases}$$
Let G be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

$$X_j = \begin{cases}
1, & \text{if there is an edge in the } j\text{th edge slot,} \\
0, & \text{otherwise.}
\end{cases}$$

Let $F(G)$ be the size of the largest independent set in G.

Let $Z_0 = E[F(G)]$ and $Z_i = E[F(G) | X_1, \ldots, X_i]$. The sequence Z_0, Z_1, \ldots, Z_m is a Doob martingale that represents the conditional expectations of $F(G)$ as we reveal whether each edge is in the graph, one edge at a time. This process of revealing edges gives a martingale called the edge exposure martingale.
Doob martingale - Examples

Edge exposure martingale

Let G be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

$$X_j = \begin{cases}
1, & \text{if there is an edge in the } j\text{th edge slot,} \\
0, & \text{otherwise.}
\end{cases}$$

Let $F(G)$ be the size of the largest independent set in G.

1. $Z_0 = \mathbb{E}[F(G)]$ and
Edge exposure martingale

Let G be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

$$X_j = \begin{cases} 1, & \text{if there is an edge in the } j^{th} \text{ edge slot,} \\ 0, & \text{otherwise.} \end{cases}$$

Let $F(G)$ be the size of the largest independent set in G.

1. $Z_0 = \mathbb{E}[F(G)]$ and
2. $Z_i = \mathbb{E}[F(G) \mid X_1, \ldots, X_i]$
Let G be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

$$X_j = \begin{cases} 1, & \text{if there is an edge in the } j^{th} \text{ edge slot,} \\ 0, & \text{otherwise.} \end{cases}$$

Let $F(G)$ be the size of the largest independent set in G.

1. $Z_0 = \mathbb{E}[F(G)]$ and
2. $Z_i = \mathbb{E}[F(G) \mid X_1, \ldots, X_i]$

The sequence Z_0, Z_1, \ldots, Z_m is a Doob martingale that represents the conditional expectations of $F(G)$ as we reveal whether each edge is in the graph, one edge at a time.
Doob martingale - Examples

Edge exposure martingale

Let G be a random graph from $G_{n,p}$. We label all the $m = \binom{n}{2}$ possible edge slots in some arbitrary order, and let

$$X_j = \begin{cases}
1, & \text{if there is an edge in the } j^{th} \text{ edge slot,} \\
0, & \text{otherwise.}
\end{cases}$$

Let $F(G)$ be the size of the largest independent set in G.

1. $Z_0 = \mathbb{E}[F(G)]$ and
2. $Z_i = \mathbb{E}[F(G) \mid X_1, \ldots, X_i]$

The sequence Z_0, Z_1, \ldots, Z_m is a Doob martingale that represents the conditional expectations of $F(G)$ as we reveal whether each edge is in the graph, one edge at a time.

This process of revealing edges gives a martingale called the edge exposure martingale.
Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time. Consider the arbitrary numbering of vertices 1 through n, and let G_i be the subgraph of G induced by the first i vertices. Then, setting $Z_0 = E[F(G)]$ and $Z_i = E[F(G) | G_1, \ldots, G_i]$ for $i = 1, \ldots, n$, gives a Doob martingale that is commonly called the vertex exposure martingale.
Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time.
Vertex exposure martingale

Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time. Consider the arbitrary numbering of vertices 1 through n,
Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time. Consider the arbitrary numbering of vertices 1 through n, and let G_i be the subgraph of G induced by the first i vertices. Then, setting
Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time. Consider the arbitrary numbering of vertices 1 through \(n \), and let \(G_i \) be the subgraph of \(G \) induced by the first \(i \) vertices. Then, setting

\[
Z_0 = \mathbb{E}[F(G)] \quad \text{and}
\]

\[
Z_i = \mathbb{E}[F(G) | G_1, \ldots, G_i]
\]
Vertex exposure martingale

Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time.
Consider the arbitrary numbering of vertices 1 through n, and let G_i be the subgraph of G induced by the first i vertices. Then, setting

1. $Z_0 = \mathbb{E}[F(G)]$ and
2. $Z_i = \mathbb{E}[F(G) \mid G_{1}, \ldots, G_{i}]$ \quad $i = 1, \ldots, n,$
Doob martingale - Examples

Vertex exposure martingale

Instead of revealing edges one at a time, we could reveal the set of edges connected to a vertex, one vertex at a time.

Consider the arbitrary numbering of vertices 1 through n, and let G_i be the subgraph of G induced by the first i vertices. Then, setting

1. $Z_0 = \mathbb{E}[F(G)]$ and
2. $Z_i = \mathbb{E}[F(G) \mid G_1, \ldots, G_i]$ \hspace{1cm} $i = 1, \ldots, n$,

gives a Doob martingale that is commonly called the vertex exposure martingale.
Outline

1. Martingales
 - Definition
 - Doob Martingale

2. Stopping Times
 - Introduction
 - Martingale Stopping Theorem

3. Wald's Equation
Consider again the Gambler who participates in a sequence of fair gambling rounds, and Z_i is the gambler's winnings after the ith game. If the player decides (before starting to play) to quit after exactly k games, what are the gambler's expected winnings?

Lemma

If the sequence Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, then $E[Z_n] = E[Z_0]$.

Nitesh
Consider again the Gambler who participates in a sequence of fair gambling rounds, and \(Z_i \) is the gambler's winnings after the \(i \)th game. If the player decides (before starting to play) to quit after exactly \(k \) games, what are the gambler's expected winnings?

Lemma

If the sequence \(Z_0, Z_1, \ldots, Z_n \) is a martingale with respect to \(X_0, X_1, \ldots, X_n \), then

\[
E[Z_n] = E[Z_0]
\]
Consider again the Gambler who participates in a sequence of fair gambling rounds,
Consider again the Gambler who participates in a sequence of fair gambling rounds, and Z_i is the gambler's winnings after the i^{th} game.
Consider again the Gambler who participates in a sequence of fair gambling rounds, and Z_i is the gamble's winnings after the i^{th} game. If the player decides (before starting to play) to quit after exactly k games, what are the gambler's expected winnings?
Consider again the Gambler who participates in a sequence of fair gambling rounds, and Z_i is the gambler's winnings after the i^{th} game. If the player decides (before starting to play) to quit after exactly k games, what are the gambler's expected winnings?
Consider again the Gambler who participates in a sequence of fair gambling rounds, and Z_i is the gambler's winnings after the i^{th} game. If the player decides (before starting to play) to quit after exactly k games, what are the gambler's expected winnings?

Lemma

If the sequence Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, then $E[Z_n] =$
Consider again the Gambler who participates in a sequence of fair gambling rounds, and Z_i is the gambler's winnings after the i^{th} game. If the player decides (before starting to play) to quit after exactly k games, what are the gambler's expected winnings?

Lemma

If the sequence Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, then $E[Z_n] = E[Z_0]$.

Stopping Times

Introduction

Martingale Stopping Theorem

Wald's Equation
Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, it follows that

$$Z_i = E[Z_i + 1 | X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$E[Z_i] = E[E[Z_i + 1 | X_0, X_1, \ldots, X_i]].$$

Repeating this argument yields

$$E[Z_n] = E[Z_0].$$

Thus, if the number of games played is initially fixed then the expected gain from the sequence of games is zero.

Note The gambler could decide to keep playing until his winnings total at least a hundred dollars. The following notion proves quite powerful.
Proof

Since \(Z_0, Z_1, \ldots, Z_n \) is a martingale with respect to \(X_0, X_1, \ldots, X_n \), it follows that

\[
Z_i = E[Z_i + 1 | X_0, X_1, \ldots, X_i].
\]

Taking the expectation on both sides and using the definition of conditional expectation, we have

\[
E[Z_i] = E[E[Z_i + 1 | X_0, X_1, \ldots, X_i]].
\]

Repeating this argument yields

\[
E[Z_n] = E[Z_0].
\]

Thus, if the number of games played is initially fixed then the expected gain from the sequence of games is zero.

Note: The gambler could decide to keep playing until his winnings total at least a hundred dollars. The following notion proves quite powerful.
Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, it follows that
Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, it follows that

$$Z_i = E[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$
Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, it follows that

$$Z_i = E[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have
Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, it follows that

$$Z_i = E[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$E[Z_i] = E[E[Z_{i+1} \mid X_0, X_1, \ldots, X_i]].$$
Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, it follows that

$$Z_i = E[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$E[Z_i] = E[E[Z_{i+1} \mid X_0, X_1, \ldots, X_i]].$$

$$= E[Z_{i+1}]$$

Thus, if the number of games played is initially fixed then the expected gain from the sequence of games is zero.

Note

The gambler could decide to keep playing until his winnings total at least a hundred dollars. The following notion proves quite powerful.
Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, it follows that

$$Z_i = E[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$E[Z_i] = E[E[Z_{i+1} \mid X_0, X_1, \ldots, X_i]].$$

$$= E[Z_{i+1}]$$

Repeating this argument yields

$$E[Z_n] = E[Z_0]$$
Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, it follows that

$$Z_i = E[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$E[Z_i] = E[E[Z_{i+1} \mid X_0, X_1, \ldots, X_i]].$$

$$= E[Z_{i+1}]$$

Repeating this argument yields

$$E[Z_n] = E[Z_0]$$

Thus, if the number of games played is initially fixed then the expected gain from the sequence of games is zero.
Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, it follows that

$$Z_i = E[Z_{i+1} \mid X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$E[Z_i] = E[E[Z_{i+1} \mid X_0, X_1, \ldots, X_i]].$$

$$= E[Z_{i+1}]$$

Repeating this argument yields

$$E[Z_n] = E[Z_0]$$

Thus, if the number of games played is initially fixed then the expected gain from the sequence of games is zero.

Note

The gambler could decide to keep playing until his winnings total at least a hundred dollars. The following notion proves quite powerful.
Proof

Since Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n, it follows that

$$Z_i = \mathbb{E}[Z_{i+1} | X_0, X_1, \ldots, X_i].$$

Taking the expectation on both sides and using the definition of conditional expectation, we have

$$\mathbb{E}[Z_i] = \mathbb{E}[\mathbb{E}[Z_{i+1} | X_0, X_1, \ldots, X_i]].$$

$$= \mathbb{E}[Z_{i+1}]$$

Repeating this argument yields

$$\mathbb{E}[Z_n] = \mathbb{E}[Z_0]$$

Thus, if the number of games played is initially fixed then the expected gain from the sequence of games is zero.

Note

The gambler could decide to keep playing until his winnings total at least a hundred dollars. The following notion proves quite powerful.
Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \geq 0\}$ if the event $T = n$ depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n.

Which of the following are stopping times?

1. First time the gambler wins five games in a row - Stopping Time
2. First time the gambler has won at least a hundred dollars - Stopping Time
3. Last time the gambler wins five games in a row - Not a stopping time (needs knowledge of Z_{n+1}, Z_{n+2}, \ldots)

Note

The subtle problem with the stopping times like the first T such that $Z_T > B$ where B is a fixed constant greater than 0, is that it may not be finite, so the gambler may never finish playing.
Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \geq 0\}$ if the event $T = n$ depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n.

Which of the following are stopping times?

1. First time the gambler wins five games in a row - Stopping Time
2. First time the gambler has won at least a hundred dollars - Stopping Time
3. Last time the gambler wins five games in a row - Not a stopping time (needs knowledge of Z_{n+1}, Z_{n+2}, \ldots)

Note: The subtle problem with the stopping times like, the first T such that $Z_T > B$ where B is a fixed constant greater than 0, is that it may not be finite, so the gambler may never finish playing.
Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence \{${Z_n, n \geq 0}$\} if the event $T = n$ depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n.

Which of the following are stopping times?
1. First time the gambler wins five games in a row - Stopping Time
2. First time the gambler has won at least a hundred dollars - Stopping Time
3. Last time the gambler wins five games in a row - Not a stopping time (needs knowledge of Z_{n+1}, Z_{n+2}, \ldots)

Note: The subtle problem with the stopping times like, the first T such that $Z_T > B$ where B is a fixed constant greater than 0, is that it may not be finite, so the gambler may never finish playing.
Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence \(\{Z_n, n \geq 0\}\) if the event $T = n$ depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n.

Which of the following are stopping times?

1. First time the gambler wins five games in a row - Stopping Time
2. First time the gambler has won at least a hundred dollars - Stopping Time
3. Last time the gambler wins five games in a row - Not a stopping time (needs knowledge of Z_{n+1}, Z_{n+2}, \ldots)

Note: The subtle problem with the stopping times like, the first T such that $Z_T > B$ where B is a fixed constant greater than 0, is that it may not be finite, so the gambler may never finish playing.
Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence \{Z_n, $n \geq 0$\} if the event $T = n$ depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n.

Which of the following are stopping times?

1. First time the gambler wins five games in a row -
Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence \{\(Z_n, n \geq 0\)\} if the event $T = n$ depends only on the value of the random variables \(Z_0, Z_1, \ldots, Z_n\).

Which of the following are stopping times?

1. First time the gambler wins five games in a row - Stopping Time

Note: The subtle problem with the stopping times like, the first T such that $Z_T > B$ where B is a fixed constant greater than 0, is that it may not be finite, so the gambler may never finish playing.
Stopping Times

Definition
A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \geq 0\}$ if the event $T = n$ depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n.

Which of the following are stopping times?
1. First time the gambler wins five games in a row - Stopping Time
2. First time the gambler has won at least a hundred dollars -
Stopping Times

Definition

A nonnegative, integer-valued random variable \(T \) is a stopping time for the sequence \(\{Z_n, n \geq 0\} \) if the event \(T = n \) depends only on the value of the random variables \(Z_0, Z_1, \ldots, Z_n \).

Which of the following are stopping times?

1. First time the gambler wins five games in a row - Stopping Time
2. First time the gambler has won at least a hundred dollars - Stopping Time
Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \geq 0\}$ if the event $T = n$ depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n.

Which of the following are stopping times?

1. First time the gambler wins five games in a row - Stopping Time
2. First time the gambler has won at least a hundred dollars - Stopping Time
3. Last time the gambler wins five games in a row -
Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \geq 0\}$ if the event $T = n$ depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n.

Which of the following are stopping times?

1. First time the gambler wins five games in a row - Stopping Time
2. First time the gambler has won at least a hundred dollars - Stopping Time
3. Last time the gambler wins five games in a row - Not a stopping time
Stopping Times

Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \geq 0\}$ if the event $T = n$ depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n.

Which of the following are stopping times?

1. First time the gambler wins five games in a row - Stopping Time
2. First time the gambler has won at least a hundred dollars - Stopping Time
3. Last time the gambler wins five games in a row - Not a stopping time (needs knowledge of Z_{n+1}, Z_{n+2}, \ldots)
Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence $\{Z_n, n \geq 0\}$ if the event $T = n$ depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n.

Which of the following are stopping times?

1. First time the gambler wins five games in a row - Stopping Time
2. First time the gambler has won at least a hundred dollars - Stopping Time
3. Last time the gambler wins five games in a row - Not a stopping time (needs knowledge of Z_{n+1}, Z_{n+2}, \ldots)

Note

The subtle problem with the stopping times like, the first T such that $Z_T > B$ where B is a fixed constant greater than 0, is that it may not be finite, so the gambler may never finish playing.
Definition

A nonnegative, integer-valued random variable T is a stopping time for the sequence \(\{Z_n, n \geq 0\} \) if the event $T = n$ depends only on the value of the random variables Z_0, Z_1, \ldots, Z_n.

Which of the following are stopping times?

1. First time the gambler wins five games in a row - Stopping Time
2. First time the gambler has won at least a hundred dollars - Stopping Time
3. Last time the gambler wins five games in a row - Not a stopping time (needs knowledge of Z_{n+1}, Z_{n+2}, \ldots)

Note

The subtle problem with the stopping times like, the first T such that $Z_T > B$ where B is a fixed constant greater than 0, is that it may not be finite, so the gambler may never finish playing.
Outline

1. Martingales
 - Definition
 - Doob Martingale

2. Stopping Times
 - Introduction
 - Martingale Stopping Theorem

3. Wald's Equation
Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots, and if T is a stopping time for X_1, X_2, \ldots, then

$$E[Z_T] = E[Z_0]$$

whenever one of the following holds:

1. The Z_i are bounded, so there is a constant c such that, for all i, $|Z_i| \leq c$;
2. T is bounded;
3. $E[T] < \infty$, and there is a constant c such that $E[|Z_i + 1 - Z_i| |X_1, \ldots, X_i] < c$.
Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots, then $E[Z_T] = E[Z_0]$ whenever one of the following holds:

1. The Z_i are bounded, so there is a constant c such that, for all i, $|Z_i| \leq c$;
2. T is bounded;
3. $E[T] < \infty$, and there is a constant c such that $E[|Z_i + 1 - Z_i| |X_1, \ldots, X_i] < c$.
If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots, then

\[E[Z_T] = E[Z_0] \]
Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots, then

$$\mathbb{E}[Z_T] = \mathbb{E}[Z_0]$$
Martingale Stopping Theorem

Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots, then

$$E[Z_T] = E[Z_0]$$

whenever one of the following holds:
Theorem

If \(Z_0, Z_1, \ldots \) is a martingale with respect to \(X_1, X_2, \ldots \) and if \(T \) is a stopping time for \(X_1, X_2, \ldots \), then

\[
\mathbb{E}[Z_T] = \mathbb{E}[Z_0]
\]

whenever one of the following holds:

1. The \(Z_i \) are bounded, so there is a constant \(c \) such that, for all \(i \), \(|Z_i| \leq c \);
Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots, then

$$E[Z_T] = E[Z_0]$$

whenever one of the following holds:

1. The Z_i are bounded, so there is a constant c such that, for all i, $|Z_i| \leq c$;
2. T is bounded;
Martingale Stopping Theorem

Theorem

If \(Z_0, Z_1, \ldots \) is a martingale with respect to \(X_1, X_2, \ldots \) and if \(T \) is a stopping time for \(X_1, X_2, \ldots \), then

\[
E[Z_T] = E[Z_0]
\]

whenever one of the following holds:

1. The \(Z_i \) are bounded, so there is a constant \(c \) such that, for all \(i \), \(|Z_i| \leq c \);
2. \(T \) is bounded;
3. \(E[T] < \infty \), and there is a constant \(c \) such that \(E[|Z_{i+1} - Z_i| \mid X_1, \ldots, X_i] < c \).
Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the ith game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let T be the first time the player has either won l_2 or lost l_1. Then T is a stopping time for X_1, X_2, \ldots. The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem.

$$E[Z_T] = 0.$$

Let q be the probability that the gambler quits playing after winning l_2 dollars. Then

$$E[Z_T] = l_2 \cdot q - l_1 \cdot (1 - q) = 0$$

gives

$$q = \frac{l_1}{l_1 + l_2}.$$
Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability $\frac{1}{2}$ or loses a dollar with probability $\frac{1}{2}$. Let $Z_0 = 0$, let X_i be the amount won on the ith game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let T be the first time the player has either won l_2 or lost l_1. Then T is a stopping time for X_1, X_2, \ldots. The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem. $E[Z_T] = 0$.

Let q be the probability that the gambler quits playing after winning l_2 dollars. Then $E[Z_T] = l_2 \cdot q - l_1 \cdot (1 - q) = 0$ gives $q = \frac{l_1}{l_1 + l_2}$.
Consider a sequence of independent, fair gambling games.
Example - Gambler's Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2.
Example - Gambler’s Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, ...
Example - Gambler’s Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the i^{th} game, and let Z_i be the total won by the player after i games.
Example - Gambler’s Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability $1/2$ or loses a dollar with probability $1/2$. Let $Z_0 = 0$, let X_i be the amount won on the i^{th} game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars.
Example - Gambler’s Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the i^{th} game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?
Example - Gambler’s Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the i^{th} game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution
Example - Gambler’s Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the i^{th} game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let T be the first time the player has either won l_2 or lost l_1.

Let q be the probability that the gambler quits playing after winning l_2 dollars. Then $E[Z_T] = l_2 \cdot q - l_1 \cdot (1 - q) = 0$ gives $q = \frac{l_1}{l_1 + l_2}$.
Example - Gambler’s Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the ith game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let T be the first time the player has either won l_2 or lost l_1. Then T is a stopping time for X_1, X_2, \ldots.
Example - Gambler’s Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability $1/2$ or loses a dollar with probability $1/2$. Let $Z_0 = 0$, let X_i be the amount won on the i^{th} game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let T be the first time the player has either won l_2 or lost l_1. Then T is a stopping time for X_1, X_2, \ldots. The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem.
Example - Gambler’s Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the ith game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let T be the first time the player has either won l_2 or lost l_1. Then T is a stopping time for X_1, X_2, \ldots. The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem.

$$E[Z_T] = 0.$$
Example - Gambler’s Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the ith game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let T be the first time the player has either won l_2 or lost l_1. Then T is a stopping time for X_1, X_2, \ldots. The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem.

$$E[Z_T] = 0.$$

Let q be the probability that the gambler quits playing after winning l_2 dollars. Then
Example - Gambler’s Ruin

Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2. Let $Z_0 = 0$, let X_i be the amount won on the i^{th} game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let T be the first time the player has either won l_2 or lost l_1. Then T is a stopping time for X_1, X_2, \ldots. The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem.

$$E[Z_T] = 0.$$

Let q be the probability that the gambler quits playing after winning l_2 dollars. Then

$$E[Z_T] = l_2 \cdot q - l_1 \cdot (1 - q) = 0$$
Consider a sequence of independent, fair gambling games. In each round, a player wins a dollar with probability $1/2$ or loses a dollar with probability $1/2$. Let $Z_0 = 0$, let X_i be the amount won on the ith game, and let Z_i be the total won by the player after i games. Assume that the player quits the game when she either loses l_1 dollars or wins l_2 dollars. What is the probability that the player wins l_2 dollars before losing l_1 dollars?

Solution

Let T be the first time the player has either won l_2 or lost l_1. Then T is a stopping time for X_1, X_2, \ldots. The sequence Z_0, Z_1, \ldots is a martingale, and since the values of Z_i are clearly bounded we apply the martingale stopping theorem.

$$E[Z_T] = 0.$$

Let q be the probability that the gambler quits playing after winning l_2 dollars. Then

$$E[Z_T] = l_2 \cdot q - l_1 \cdot (1 - q) = 0$$

gives

$$q = \frac{l_1}{l_1 + l_2}.$$
Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution X. Let T be a stopping time for this sequence. If T and X have bounded expectation, then

$$E\left[\sum_{i=1}^{T} X_i\right] = E[T] \cdot E[X].$$

Proof

For $i \geq 1$, let $Z_i = i \sum_{j=1}^{i} (X_j - E[X])$. The sequence Z_1, Z_2, \ldots is a martingale with respect to X_1, X_2, \ldots, and $E[Z_1] = 0$.

Now, $E[T] < \infty$ and $E[|Z_i + 1 - Z_i| | X_1, \ldots, X_i] = E[|X_{i+1} - E[X]|] \leq 2E[X]$.

Nitesh

Randomized Algorithms
Let \(X_1, X_2, \ldots \) be a nonnegative, independent, identically distributed random variables with distribution \(X \). Let \(T \) be a stopping time for this sequence. If \(T \) and \(X \) have bounded expectation, then
\[
\mathbb{E} \left[\sum_{i=1}^{T} X_i \right] = \mathbb{E} [T] \cdot \mathbb{E}[X].
\]

Proof
For \(i \geq 1 \), let \(Z_i = \sum_{j=1}^{i} (X_j - \mathbb{E}[X]) \).

The sequence \(Z_1, Z_2, \ldots \) is a martingale with respect to \(X_1, X_2, \ldots \), and \(\mathbb{E}[Z_1] = 0 \).

Now, \(\mathbb{E}[T] < \infty \) and
\[
\mathbb{E}[|Z_i + 1 - Z_i|] = \mathbb{E}[|X_{i+1} - \mathbb{E}[X]|] \leq 2 \mathbb{E}[X].
\]
Wald’s Equation

Theorem

Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution X. Let T be a stopping time for this sequence. If T and X have bounded expectation, then

$$
E \left[\sum_{i=1}^{T} X_i \right] = E[T] \cdot E[X].
$$
Wald’s Equation

Theorem
Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution X. Let T be a stopping time for this sequence. If T and X have bounded expectation, then

$$E \left[\sum_{i=1}^{T} X_i \right] = E[T] \cdot E[X].$$

Proof
Wald’s Equation

Theorem

Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution X. Let T be a stopping time for this sequence. If T and X have bounded expectation, then

$$E \left[\sum_{i=1}^{T} X_i \right] = E[T] \cdot E[X].$$

Proof

For $i \geq 1$, let

$$Z_i = \sum_{j=1}^{i} (X_j - E[X]).$$
Wald’s Equation

Theorem

Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution X. Let T be a stopping time for this sequence. If T and X have bounded expectation, then

$$
\mathbb{E} \left[\sum_{i=1}^{T} X_i \right] = \mathbb{E}[T] \cdot \mathbb{E}[X].
$$

Proof

For $i \geq 1$, let

$$
Z_i = \sum_{j=1}^{i} (X_j - \mathbb{E}[X]).
$$

The sequence Z_1, Z_2, \ldots is a martingale with respect to X_1, X_2, \ldots, and $\mathbb{E}[Z_1] = 0$.
Theorem

Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution X. Let T be a stopping time for this sequence. If T and X have bounded expectation, then

$$
E\left[\sum_{i=1}^{T} X_i\right] = E[T] \cdot E[X].
$$

Proof

For $i \geq 1$, let

$$Z_i = \sum_{j=1}^{i} (X_j - E[X]).$$

The sequence Z_1, Z_2, \ldots is a martingale with respect to X_1, X_2, \ldots, and $E[Z_1] = 0$. Now, $E[T] < \infty$ and
Wald’s Equation

Theorem

Let X_1, X_2, \ldots be a nonnegative, independent, identically distributed random variables with distribution X. Let T be a stopping time for this sequence. If T and X have bounded expectation, then

$$
E\left[\sum_{i=1}^{T} X_i\right] = E[T] \cdot E[X].
$$

Proof

For $i \geq 1$, let

$$Z_i = \sum_{j=1}^{i} (X_j - E[X]).$$

The sequence Z_1, Z_2, \ldots is a martingale with respect to X_1, X_2, \ldots, and $E[Z_1] = 0$. Now, $E[T] < \infty$ and

$$E[|Z_{i+1} - Z_i| \mid X_1, \ldots, X_i] = E[|X_{i+1} - E[X]|] \leq 2E[X].$$
Proof

Hence on applying martingale stopping theorem

\[E[Z_T] = E[Z_1] = 0. \]

we now find

\[
E[Z_T] = E\left[T \sum_{j=1}^{T} (X_j - E[X]) \right] = E\left[\sum_{j=1}^{T} X_j - T \cdot E[X] \right] = E\left[\sum_{j=1}^{T} X_j \right] - E[T] \cdot E[X] = 0,
\]

which gives the result.
Hence on applying martingale stopping theorem, we find
\[E[Z_T] = E[Z_1] = 0 \]

Proof

\[
E[Z_T] = E\left[\sum_{j=1}^{T} (X_j - E[X]) \right] = E\left[\sum_{j=1}^{T} X_j \right] - E[T] \cdot E[X] = 0,
\]
which gives the result.
Hence on applying martingale stopping theorem

$$E[Z_T] = E[Z_1] = 0.$$
Wald’s Equation

Proof

Hence on applying martingale stopping theorem

\[E[Z_\tau] = E[Z_1] = 0. \]

we now find
Proof

Hence on applying martingale stopping theorem

\[E[Z_T] = E[Z_1] = 0. \]

we now find

\[E[Z_T] = E \left[\sum_{j=1}^{T} (X_j - E[X]) \right] \]
Proof

Hence on applying martingale stopping theorem

\[E[Z_T] = E[Z_1] = 0. \]

we now find

\[
E[Z_T] = E \left[\sum_{j=1}^{T} (X_j - E[X]) \right] = \left[\left(\sum_{j=1}^{T} X_j \right) - T \cdot E[X] \right] = E \left[\left(\sum_{j=1}^{T} X_j \right) \right] - T \cdot E[X],
\]

which gives the result.
Wald’s Equation

Proof

Hence on applying martingale stopping theorem

\[E[Z_T] = E[Z_1] = 0. \]

we now find

\[
E[Z_T] = E \left[\sum_{j=1}^{T} (X_j - E[X]) \right]
= E \left[\left(\sum_{j=1}^{T} X_j \right) - T \cdot E[X] \right]
= E \left[\left(\sum_{j=1}^{T} X_j \right) \right] - E[T] \cdot E[X]
\]
Wald’s Equation

Proof

Hence on applying martingale stopping theorem

\[E[Z_T] = E[Z_1] = 0. \]

we now find

\[
E[Z_T] = E \left[\sum_{j=1}^{T} (X_j - E[X]) \right]
\]

\[
= E \left[\left(\sum_{j=1}^{T} X_j \right) - T \cdot E[X] \right]
\]

\[
= E \left[\left(\sum_{j=1}^{T} X_j \right) \right] - E[T] \cdot E[X]
\]

\[= 0 , \quad \text{which gives the result.} \]
Wald’s Equation

Definition
Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable T is a stopping time for the sequence if the event $T = n$ is independent of $Z_n + 1, Z_{n+2}, \ldots$

Example
Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?

Solution
For $1 \leq i \leq X$, let Y_i be the outcome of the ith die in the second round. Then

$$E[Z] = E[X \sum_{i=1}^X Y_i] = E[X] \cdot E[Y_i] = \left(\frac{7}{2}\right)^2 = \frac{49}{4}$$
Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable T is a stopping time for the sequence if the event $T = n$ is independent of $Z_n + 1, Z_n + 2, \ldots$

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice.

Solution

For $1 \leq i \leq X$, let Y_i be the outcome of the ith die in the second round. Then $E[Z] = E[X \sum_{i=1}^{X} Y_i] = E[X] \cdot E[Y_i] = \left(\frac{7}{2}\right)^2 = 49/4$
Wald’s Equation

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable T is a stopping time for the sequence if the event $T = n$ is independent of Z_{n+1}, Z_{n+2}, \ldots
Wald’s Equation

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable T is a stopping time for the sequence if the event $T = n$ is independent of Z_{n+1}, Z_{n+2}, \ldots.

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?

Solution

For $1 \leq i \leq X$, let Y_i be the outcome of the ith die in the second round. Then

$$E[Z] = E\left[\sum_{i=1}^{X} Y_i\right] = E[X] \cdot E[Y_i] = \left(\frac{7}{2}\right)^2 = \frac{49}{4}.$$
Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable T is a stopping time for the sequence if the event $T = n$ is independent of Z_{n+1}, Z_{n+2}, \ldots.

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?

Solution

For $1 \leq i \leq X$, let Y_i be the outcome of the ith die in the second round. Then

$$E[Z] = E\left[\sum_{i=1}^{X} Y_i\right] = E[X] \cdot E[Y_i] = \left(\frac{7}{2}\right)^2 = \frac{49}{4}.$$
Wald’s Equation

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable T is a stopping time for the sequence if the event $T = n$ is independent of Z_{n+1}, Z_{n+2}, \ldots.

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice.
Wald’s Equation

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable T is a stopping time for the sequence if the event $T = n$ is independent of Z_{n+1}, Z_{n+2}, \ldots

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?
Definition
Let \(Z_0, Z_1, \ldots \) be a sequence of independent random variables. A non-negative, integer-valued random variable \(T \) is a stopping time for the sequence if the event \(T = n \) is independent of \(Z_{n+1}, Z_{n+2}, \ldots \).

Example
Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is \(X \) then she rolls \(X \) new standard dice and her gain \(Z \) is the sum of the outcome of the \(X \) dice. What is the outcome of this game?

Solution
Wald’s Equation

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable T is a stopping time for the sequence if the event $T = n$ is independent of Z_{n+1}, Z_{n+2}, \ldots.

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?

Solution

For $1 \leq i \leq X$, let Y_i be the outcome of the i^{th} die in the second round. Then
Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable T is a stopping time for the sequence if the event $T = n$ is independent of Z_{n+1}, Z_{n+2}, \ldots.

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?

Solution

For $1 \leq i \leq X$, let Y_i be the outcome of the i^{th} die in the second round. Then

$$E[Z] = E \left[\sum_{i=1}^{X} Y_i \right] = \ldots$$
Wald’s Equation

Definition

Let Z_0, Z_1, \ldots be a sequence of independent random variables. A non-negative, integer-valued random variable T is a stopping time for the sequence if the event $T = n$ is independent of Z_{n+1}, Z_{n+2}, \ldots.

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is X then she rolls X new standard dice and her gain Z is the sum of the outcome of the X dice. What is the outcome of this game?

Solution

For $1 \leq i \leq X$, let Y_i be the outcome of the i^{th} die in the second round. Then

$$
E[Z] = E \left[\sum_{i=1}^{X} Y_i \right] = E[X] \cdot E[Y_i] =
$$
Wald’s Equation

Definition

Let \(Z_0, Z_1, \ldots \) be a sequence of independent random variables. A non-negative, integer-valued random variable \(T \) is a stopping time for the sequence if the event \(T = n \) is independent of \(Z_{n+1}, Z_{n+2}, \ldots \).

Example

Consider a gambling game in which a player first rolls one standard die. If the outcome of the roll is \(X \) then she rolls \(X \) new standard dice and her gain \(Z \) is the sum of the outcome of the \(X \) dice. What is the outcome of this game?

Solution

For \(1 \leq i \leq X \), let \(Y_i \) be the outcome of the \(i^{\text{th}} \) die in the second round. Then

\[
E[Z] = E \left[\sum_{i=1}^{X} Y_i \right] = E[X] \cdot E[Y_i] = \left(\frac{7}{2} \right)^2 = \frac{49}{4}
\]
Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Application
Wald’s equation can be used in the analysis of Las Vegas algorithms. If N is the number of trials until a correct answer is found and X_i is the running time for the two subroutines on the ith trial, then according to Wald’s equation

$$
E\left[\sum_{i=1}^{N} X_i\right] = E[N] \cdot E[X]
$$
Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Application

Wald’s equation can be used in the analysis of Las Vegas algorithms. If N is the number of trials until a correct answer is found and X_i is the running time for the two subroutines on the ith trial, then according to Wald’s equation

$$
E \left[N \sum_{i=1}^{N} X_i \right] = E[N] \cdot E[X].
$$
Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times.
Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer.
Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct;
Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and
Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Wald’s Equation

Wald’s equation can be used in the analysis of Las Vegas algorithms. If \(N \) is the number of trials until a correct answer is found and \(X_i \) is the running time for the two subroutines on the \(i \)th trial, then according to Wald’s equation

\[
E\left[\sum_{i=1}^{N} X_i\right] = E[N] \cdot E[X].
\]
Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Application

Wald’s equation can be used in the analysis of Las Vegas algorithms. If N is the number of trials until a correct answer is found and X_i is the running time for the two subroutines on the ith trial, then according to Wald’s equation

$$E\left[\sum_{i=1}^{N} X_i \right] = E\left[N\right] \cdot E\left[X\right].$$
Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Wald’s equation can be used in the analysis of Las Vegas algorithms.
Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Application

Wald’s equation can be used in the analysis of Las Vegas algorithms. If N is the number of trials until a correct answer is found and X_i is the running time for the two subroutines on the i^{th} trial, then according to Wald’s equation
Las Vegas algorithms

Las Vegas algorithms are the algorithms that always give the right answer but have variable running times. In a Las Vegas algorithm we often repeatedly perform some randomized subroutine that may or may not return the right answer. We then use some deterministic checking subroutine to determine whether or not the answer is correct; if correct the Las Vegas algorithm terminates with the correct answer, and otherwise the randomized subroutine is run again.

Application

Wald’s equation can be used in the analysis of Las Vegas algorithms. If N is the number of trials until a correct answer is found and X_i is the running time for the two subroutines on the i^{th} trial, then according to Wald’s equation

$$
\mathbb{E} \left[\sum_{i=1}^{N} X_i \right] = \mathbb{E}[N] \cdot \mathbb{E}[X].
$$
Consider a set of n servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server’s buffer until they are successfully transmitted. At each time slot, if the server’s buffer is not empty then with probability $1/n$ it attempts to send the first packet in its buffer.

What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Let N be the number of packets successfully sent until each server has successfully sent at least one packet. Let t_i be the time slot in which the ith successfully transmitted packet is sent, starting from time $t_0 = 0$, and let $r_i = t_i - t_{i-1}$ and let T be the number of time slots until each server successfully sends at least one packet, then $T = \sum_{i=1}^{N} r_i$.
Consider a set of n servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted. At each time slot, if the server's buffer is not empty then with probability $1/n$ it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Let N be the number of packets successfully sent until each server has successfully sent at least one packet. Let t_i be the time slot in which the i-th successfully transmitted packet is sent, starting from time $t_0 = 0$, and let $r_i = t_i - t_{i-1} - 1$ and let T be the number of time slots until each server successfully sends at least one packet, then $T = N \sum_{i=1}^{N} r_i$.
Example

Consider a set of \(n \) servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel.
Consider a set of n servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted.
Consider a set of n servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server’s buffer until they are successfully transmitted. At each time slot, if the server’s buffer is not empty then with probability $1/n$ it attempts to send the first packet in its buffer.
Example

Consider a set of n servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server’s buffer until they are successfully transmitted. At each time slot, if the server’s buffer is not empty then with probability $1/n$ it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?
Example

Consider a set of n servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server’s buffer until they are successfully transmitted. At each time slot, if the server’s buffer is not empty then with probability $1/n$ it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Let N be the number of packets successfully sent until each server has successfully sent at least one packet. Let t_i be the time slot in which the i-th successfully transmitted packet is sent, starting from time $t_0 = 0$, and let $r_i = t_i - t_{i-1}$ and let T be the number of time slots until each server successfully sends at least one packet, then $T = N \sum_{i=1}^{N} r_i$.

Nitesh
Example

Consider a set of n servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server’s buffer until they are successfully transmitted. At each time slot, if the server’s buffer is not empty then with probability $1/n$ it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Let N be the number of packets successfully sent until each server has successfully sent at least one packet.
Consider a set of n servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server's buffer until they are successfully transmitted. At each time slot, if the server's buffer is not empty then with probability $1/n$ it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Let N be the number of packets successfully sent until each server has successfully sent at least one packet. Let t_i be the time slot in which the i^{th} successfully transmitted packet is sent,
Example

Consider a set of n servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server’s buffer until they are successfully transmitted. At each time slot, if the server’s buffer is not empty then with probability $1/n$ it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution

Let N be the number of packets successfully sent until each server has successfully sent at least one packet. Let t_i be the time slot in which the i^{th} successfully transmitted packet is sent, starting from time $t_0 = 0$, and let $r_i = t_i - t_{i-1}$ and
Example
Consider a set of n servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server’s buffer until they are successfully transmitted. At each time slot, if the server’s buffer is not empty then with probability $1/n$ it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution
Let N be the number of packets successfully sent until each server has successfully sent at least one packet. Let t_i be the time slot in which the i^{th} successfully transmitted packet is sent, starting from time $t_0 = 0$, and let $r_i = t_i - t_{i-1}$ and let T be the number of time slots until each server successfully sends at least one packet, then
Example
Consider a set of \(n \) servers communicating through a shared channel. Time is divided into discrete slots. At each time slot, any server that needs to send a packet can transmit it through the channel. If exactly one packet is sent at a time, the transmission is successfully completed. If more than one packet is sent, then none are successful. Packets are stored in the server’s buffer until they are successfully transmitted. At each time slot, if the server’s buffer is not empty then with probability \(\frac{1}{n} \) it attempts to send the first packet in its buffer. What is the expected number of time slots used until each server successfully sends at least one packet?

Solution
Let \(N \) be the number of packets successfully sent until each server has successfully sent at least one packet. Let \(t_i \) be the time slot in which the \(i^{\text{th}} \) successfully transmitted packet is sent, starting from time \(t_0 = 0 \), and let \(r_i = t_i - t_{i-1} \) and let \(T \) be the number of time slots until each server successfully sends at least one packet, then

\[
T = \sum_{i=1}^{N} r_i
\]
The probability that a packet is successfully sent in a given time slot is
\[p = \left(\frac{1}{n} \right)^{n-1} \times \left(\frac{1}{n} \right) \times \left(1 - \frac{1}{n} \right) \approx e^{-1} \]

The \(r_i \) each have a geometric distribution with parameter \(p \), so
\[E[r] = \frac{1}{p} \approx e. \]

Given that a packet was successfully sent at a given time slot, the sender of that packet is uniformly distributed among the \(n \) servers, independent of previous steps.

From the Coupon collector's problem, we deduce that
\[E[N] = n \cdot \log(n) + O(n). \]
The probability that a packet is successfully sent in a given time slot is
\[p = \left(\frac{n-1}{n} \right) \cdot \left(\frac{1}{n} \right) \cdot \left(\frac{1}{n-1} \right) \approx e^{-1} \]

The \(r_i \) each have a geometric distribution with parameter \(p \), so
\[E[r_i] = \frac{1}{p} \approx e. \]

Given that a packet was successfully sent at a given time slot, the sender of that packet
is uniformly distributed among the \(n \) servers, independent of previous steps.

From the coupon collector's problem, we deduce that
\[E[N] = n \cdot H_n = n \cdot \ln n + O(n). \]
The probability that a packet is successfully sent in a given time slot is\[p = \left(\frac{n-1}{n}\right) \cdot \left(\frac{1}{n}\right) \cdot \left(1 - \frac{1}{n}\right)^{n-1} \approx e^{-1}. \]

Each have a geometric distribution with parameter \(p \), so \[E[r_i] = \frac{1}{p} \approx e. \]

Given that a packet was successfully sent at a given time slot, the sender of that packet is uniformly distributed among the \(n \) servers, independent of previous steps.

From the Coupon collector's problem, we deduce that \[E[N] = n \cdot H_n = n \cdot \ln n + O(n). \]
Solution

The probability that a packet is successfully sent in a given time slot is

\[p = \binom{n}{1} \cdot \left(\frac{1}{n} \right) \cdot \left(1 - \frac{1}{n} \right)^{n-1} \approx e^{-1} \]
The probability that a packet is successfully sent in a given time slot is

\[p = \binom{n}{1} \cdot \left(\frac{1}{n} \right) \cdot \left(1 - \frac{1}{n} \right)^{n-1} \approx e^{-1} \]

The \(r_i \) each have a geometric distribution with parameter \(p \), so \(\mathbb{E}[r_i] = \)
The probability that a packet is successfully sent in a given time slot is

\[p = \binom{n}{1} \cdot \left(\frac{1}{n}\right) \cdot \left(1 - \frac{1}{n}\right)^{n-1} \approx e^{-1} \]

The \(r_i \) each have a geometric distribution with parameter \(p \), so \(\mathbb{E}[r_i] = 1/p \approx e \).
The probability that a packet is successfully sent in a given time slot is

\[p = \left(\frac{n}{1} \right) \cdot \left(\frac{1}{n} \right) \cdot \left(1 - \frac{1}{n} \right)^{n-1} \approx e^{-1} \]

The \(r_i \) each have a geometric distribution with parameter \(p \), so \(E[r_i] = 1/p \approx e \).

Given that a packet was successfully sent at a given time slot, the sender of that packet is uniformly distributed among the \(n \) servers, independent of previous steps.
Solution

The probability that a packet is successfully sent in a given time slot is

\[p = \binom{n}{1} \cdot \left(\frac{1}{n} \right) \cdot \left(1 - \frac{1}{n} \right)^{n-1} \approx e^{-1} \]

The \(r_i \) each have a geometric distribution with parameter \(p \), so \(\mathbb{E}[r_i] = 1/p \approx e \).

Given that a packet was successfully sent at a given time slot, the sender of that packet is uniformly distributed among the \(n \) servers, independent of previous steps. From Coupon collector’s problem, we deduce that
The probability that a packet is successfully sent in a given time slot is

\[p = \binom{n}{1} \cdot \left(\frac{1}{n}\right) \cdot \left(1 - \frac{1}{n}\right)^{n-1} \approx e^{-1} \]

The \(r_i \) each have a geometric distribution with parameter \(p \), so \(\mathbb{E}[r_i] = 1/p \approx e \).

Given that a packet was successfully sent at a given time slot, the sender of that packet is uniformly distributed among the \(n \) servers, independent of previous steps. From Coupon collector’s problem, we deduce that

\[\mathbb{E}[N] = n \cdot H_n = n \cdot \ln n + O(n). \]
The probability that a packet is successfully sent in a given time slot is

\[p = \binom{n}{1} \cdot \left(\frac{1}{n}\right) \cdot \left(1 - \frac{1}{n}\right)^{n-1} \approx e^{-1} \]

The \(r_i \) each have a geometric distribution with parameter \(p \), so \(\mathbb{E}[r_i] = 1/p \approx e \). Given that a packet was successfully sent at a given time slot, the sender of that packet is uniformly distributed among the \(n \) servers, independent of previous steps. From Coupon collector’s problem, we deduce that

\[\mathbb{E}[N] = n \cdot H_n = n \cdot \ln n + O(n). \]
Using Wald’s equation we compute
\[E\left[T \right] = \sum_{i=1}^{N} r_i \]
\[= E[N] \cdot E[r_i] \]
\[\approx e \cdot n \cdot \ln n \]
Solution

Using Wald's equation we compute

$$E[T] = E[N] \cdot E[r_i] = n \cdot H_n p \approx e \cdot n \cdot \ln n$$
Solution

Using Wald’s equation we compute
Using Wald’s equation we compute

\[E[T] = E \left[\sum_{i=1}^{N} r_i \right] \]
Solution

Using Wald’s equation we compute

\[E[T] = E\left[\sum_{i=1}^{N} r_i \right] = E[N] \cdot E[r_i] \]
Using Wald’s equation we compute

\[E[T] = E \left[\sum_{i=1}^{N} r_i \right] = E[N] \cdot E[r_i] = \frac{n \cdot H_n}{p} \]
Solution

Using Wald’s equation we compute

\[E[T] = E \left[\sum_{i=1}^{N} r_i \right] = E[N] \cdot E[r_i] = \frac{n \cdot H_n}{p} \approx e \cdot n \cdot \ln n \]