Random Variables - Expectation

K. Subramani

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

19 January, 2012
Outline

1. Recap
Outline

1 Recap
2 Random Variables
Outline

1. Recap
2. Random Variables
3. Expectation
Outline

1. Recap
2. Random Variables
3. Expectation
4. Expectation of a function of a random variable
Outline

1 Recap
2 Random Variables
3 Expectation
4 Expectation of a function of a random variable
5 Linearity of Expectation
6 Conditional Expectation
Main points

Random experiment,
Main points
Random experiment, sample spaces,
Recap

Main points

Random experiment, sample spaces, events,
Recap

Main points
Random experiment, sample spaces, events,
Main points

Random experiment, sample spaces, events, combining events,
Main points

Random experiment, sample spaces, events, combining events, conditional probability,
Main points

Random experiment, sample spaces, events, combining events, conditional probability, independence.
<table>
<thead>
<tr>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome,
Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g.,
Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the sum of the upturned faces is 7.
In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or ...
Random Variables

Motivation
In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or

Example
Let X denote the random variable that is defined as the sum of two fair dice.
Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are the values that X can take?
Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are the values that X can take?

$$P\{X = 1\} =$$
Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are the values that X can take?

$$P\{X = 1\} = 0$$
Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are the values that X can take?

\[
P\{X = 1\} = 0 \\
P\{X = 2\} = \frac{1}{36}
\]
Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the sum of the upturned faces is 7. We may not care whether the actual outcome is (1, 6), (6, 1), or

Example

Let X denote the random variable that is defined as the sum of two fair dice. What are the values that X can take?

\[
\begin{align*}
P\{X = 1\} &= 0 \\
P\{X = 2\} &= \frac{1}{36} \\
\vdots
\end{align*}
\]
Random Variables

Motivation

In case of certain random experiments, we are not so much interested in the actual outcome, but in some function of the outcome, e.g., in the experiment of tossing two dice, we could be interested in knowing whether or not the sum of the upturned faces is 7. We may not care whether the actual outcome is \((1, 6), (6, 1)\), or

Example

Let \(X\) denote the random variable that is defined as the sum of two fair dice. What are the values that \(X\) can take?

\[
egin{align*}
P\{X = 1\} &= 0 \\
P\{X = 2\} &= \frac{1}{36} \\
&\quad \vdots \\
P\{X = 12\} &= \frac{1}{36}
\end{align*}
\]
Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads.
Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads. What values can Y take?
Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads. What values can Y take?

$$P\{Y = 0\} =$$
Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads. What values can Y take?

$$P\{Y = 0\} = \frac{1}{4}$$
Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads. What values can Y take?

$P\{Y = 0\} = \frac{1}{4}$

$P\{Y = 1\} = \frac{1}{4}$
Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads. What values can Y take?

$$P\{Y = 0\} = \frac{1}{4}$$

$$P\{Y = 1\} = \frac{1}{2}$$
Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads. What values can Y take?

\[
P\{Y = 0\} = \frac{1}{4}
\]

\[
P\{Y = 1\} = \frac{1}{2}
\]

\[
P\{Y = 2\} =
\]
Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads. What values can Y take?

\[P\{Y = 0\} = \frac{1}{4} \]

\[P\{Y = 1\} = \frac{1}{2} \]

\[P\{Y = 2\} = \frac{1}{4} \]
Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads. What values can Y take?

\[
P\{Y = 0\} = \frac{1}{4} \\
P\{Y = 1\} = \frac{1}{2} \\
P\{Y = 2\} = \frac{1}{4}
\]

Definition

A random variable that can take on only a countable number of possible values is said to be *discrete*.
Example

Consider the experiment of tossing two fair coins; let Y denote the random variable that counts the number of heads. What values can Y take?

\[
P\{Y = 0\} = \frac{1}{4}
\]
\[
P\{Y = 1\} = \frac{1}{2}
\]
\[
P\{Y = 2\} = \frac{1}{4}
\]

Definition

A random variable that can take on only a countable number of possible values is said to be *discrete*. For a discrete random variable X, the probability mass function (pmf) $p(a)$ is defined as:

\[p(a) = P\{X = a\} \]
The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes;
Main idea

Consider an experiment which has exactly two outcomes; one is labeled a “success” and the other a “failure”.

The Bernoulli Random Variable
The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a “success” and the other a “failure”. If we let the random variable X assume the value 1, if the experiment was a success and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable.
The Bernoulli Random Variable

Main idea

Consider an experiment which has exactly two outcomes; one is labeled a “success” and the other a “failure”. If we let the random variable X assume the value 1, if the experiment was a success and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable. The probability mass function of X is given by:

$$p(1) = P\{X = 1\} = p$$
Main idea

Consider an experiment which has exactly two outcomes; one is labeled a “success” and the other a “failure”. If we let the random variable X assume the value 1, if the experiment was a success and 0, if the experiment was a failure, then X is said to be a Bernoulli random variable. The probability mass function of X is given by:

\[
p(1) = P\{X = 1\} = p \\
p(0) = P\{X = 0\} = 1 - p
\]

where $0 \leq p \leq 1$ is the probability that the experiment results in a success.
The Binomial Random Variable

Motivation

Consider an experiment which consists of \(n \) independent Bernoulli trials, with the probability of success in each trial being \(p \). If \(X \) is the random variable that counts the number of successes in the \(n \) trials, then \(X \) is said to be a Binomial Random Variable.
The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable. The probability mass function of X is given by:
Motivation

Consider an experiment which consists of \(n \) independent Bernoulli trials, with the probability of success in each trial being \(p \). If \(X \) is the random variable that counts the number of successes in the \(n \) trials, then \(X \) is said to be a Binomial Random Variable. The probability mass function of \(X \) is given by:

\[
p(i) = P\{X = i\} =
\]
The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable. The probability mass function of X is given by:

$$p(i) = P\{X = i\} = C(n, i) \cdot p^i \cdot (1 - p)^{n-i}, \quad i = 0, 1, 2, \ldots n$$
Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable. The probability mass function of X is given by:

$$p(i) = P\{X = i\} = C(n, i) \cdot p^i \cdot (1 - p)^{n-i}, \ i = 0, 1, 2, \ldots n$$

Example

Consider the experiment of tossing four fair coins.
The Binomial Random Variable

Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable. The probability mass function of X is given by:

$$p(i) = P\{X = i\} = C(n, i) \cdot p^i \cdot (1 - p)^{n-i}, \ i = 0, 1, 2, \ldots \ n$$

Example

Consider the experiment of tossing four fair coins. What is the probability that you will get two heads and two tails?
Motivation

Consider an experiment which consists of n independent Bernoulli trials, with the probability of success in each trial being p. If X is the random variable that counts the number of successes in the n trials, then X is said to be a Binomial Random Variable. The probability mass function of X is given by:

$$p(i) = P\{X = i\} = C(n, i) \cdot p^i \cdot (1 - p)^{n-i}, \ i = 0, 1, 2, \ldots n$$

Example

Consider the experiment of tossing four fair coins. What is the probability that you will get two heads and two tails?
Example (contd.)

Solution

Let the event of heads turning up denote a “success.”
Example (contd.)

Solution

Let the event of heads turning up denote a “success.” Accordingly, we are interested in the probability of getting exactly two successes in four Bernoulli trials.
Solution

Let the event of heads turning up denote a “success.” Accordingly, we are interested in the probability of getting exactly two successes in four Bernoulli trials. As discussed above,

\[p(2) = \]
Example (contd.)

Solution

Let the event of heads turning up denote a “success.” Accordingly, we are interested in the probability of getting exactly two successes in four Bernoulli trials. As discussed above,

\[p(2) = \binom{4}{2} \cdot \left(\frac{1}{2}\right)^2 \]
Solution

Let the event of heads turning up denote a “success.” Accordingly, we are interested in the probability of getting exactly two successes in four Bernoulli trials. As discussed above,

\[p(2) = C(4, 2) \cdot \left(\frac{1}{2} \right)^2 \cdot \left(1 - \frac{1}{2} \right)^2 \]
Example (contd.)

Solution

Let the event of heads turning up denote a “success.” Accordingly, we are interested in the probability of getting exactly two successes in four Bernoulli trials. As discussed above,

\[p(2) = \binom{4}{2} \cdot \left(\frac{1}{2} \right)^2 \cdot \left(1 - \frac{1}{2} \right)^2 \]

\[= \frac{3}{8} \]
The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs.
Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs. If X is the random variable that counts the number of trials until the first success, then X is said to be a geometric random variable.
The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs. If X is the random variable that counts the number of trials until the first success, then X is said to be a geometric random variable. The probability mass function of X is given by:

$$p(i) = P\{X = i\} =$$
The Geometric Random Variable

Motivation

Suppose that independent Bernoulli trials, each with probability p of success are performed until a success occurs. If X is the random variable that counts the number of trials until the first success, then X is said to be a geometric random variable. The probability mass function of X is given by:

$$p(i) = P\{X = i\} = (1 - p)^{i-1} \cdot p, \quad i = 1, 2, \ldots$$
Definition

Let X denote a discrete random variable with probability mass function $p(x)$.
Definition

Let X denote a discrete random variable with probability mass function $p(x)$. The expected value of X, denoted by $E[X]$ is defined by:

$$E[X] = \sum_x x \cdot p(x)$$
Definition

Let \(X \) denote a discrete random variable with probability mass function \(p(x) \). The expected value of \(X \), denoted by \(E[X] \) is defined by:

\[
E[X] = \sum_x x \cdot p(x)
\]

Note

\(E[X] \) is the weighted average of the possible values that \(X \) can assume, each value being weighted by the probability that \(X \) assumes that value.
Definition

Let X denote a discrete random variable with probability mass function $p(x)$. The expected value of X, denoted by $E[X]$ is defined by:

$$E[X] = \sum_x x \cdot p(x)$$

Note

$E[X]$ is the weighted average of the possible values that X can assume, each value being weighted by the probability that X assumes that value.

Example

Let X denote the random variable that records the outcome of tossing a fair die.
Expectation

Definition

Let X denote a discrete random variable with probability mass function $p(x)$. The expected value of X, denoted by $E[X]$ is defined by:

$$E[X] = \sum_x x \cdot p(x)$$

Note

$E[X]$ is the weighted average of the possible values that X can assume, each value being weighted by the probability that X assumes that value.

Example

Let X denote the random variable that records the outcome of tossing a fair die. What is $E[X]$?
Expectation of a Bernoulli Random Variable

Example
Let X denote a Bernoulli Random Variable with p denoting the probability of success.
Recap
Random Variables
Expectation
Expectation of a function of a random variable
Linearity of Expectation
Conditional Expectation

Expectation of a Bernoulli Random Variable

Example
Let X denote a Bernoulli Random Variable with p denoting the probability of success. What is $E[X]$?
Let X denote a Bernoulli Random Variable with p denoting the probability of success. What is $E[X]$?

Solution:

$$E[X] = 1 \cdot p + 0 \cdot (1 - p)$$
Example

Let X denote a Bernoulli Random Variable with p denoting the probability of success. What is $E[X]$?

Solution:

$$E[X] = 1 \cdot p + 0 \cdot (1 - p)$$

$$= p$$
Example

Let X denote a Binomial Random Variable with parameters n and p.
Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is $E[X]$?
Example

Let X denote a Binomial Random Variable with parameters n and p. What is $E[X]$?

Solution:

$$E[X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$
Example

Let X denote a Binomial Random Variable with parameters n and p. What is $E[X]$?

Solution:

$$E[X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=0}^{n} i \cdot \binom{n}{i} \cdot p^i \cdot (1-p)^{n-i}$$
Let X denote a Binomial Random Variable with parameters n and p. What is $E[X]$?

Solution:

$$E[X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=0}^{n} i \cdot \binom{n}{i} \cdot p^i \cdot (1 - p)^{n-i}$$

$$= \sum_{i=0}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^i \cdot (1 - p)^{n-i}$$
Example

Let X denote a Binomial Random Variable with parameters n and p. What is $E[X]$?

Solution:

$$E[X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=0}^{n} i \cdot C(n, i) \cdot p^i \cdot (1 - p)^{n-i}$$

$$= \sum_{i=0}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^i \cdot (1 - p)^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^i \cdot (1 - p)^{n-i}$$
Expectation of a Binomial Random Variable

Example

Let X denote a Binomial Random Variable with parameters n and p. What is $E[X]$?

Solution:

$$E[X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=0}^{n} i \cdot C(n, i) \cdot p^i \cdot (1 - p)^{n-i}$$

$$= \sum_{i=0}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^i \cdot (1 - p)^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^i \cdot (1 - p)^{n-i}$$

$$= \sum_{i=1}^{n} \frac{n!}{(i-1)!(n-i)!} \cdot p^i \cdot (1 - p)^{n-i}$$
Example

Let X denote a Binomial Random Variable with parameters n and p. What is $E[X]$?

Solution:

$$E[X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=0}^{n} i \cdot \binom{n}{i} \cdot p^i \cdot (1-p)^{n-i}$$

$$= \sum_{i=0}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^i \cdot (1-p)^{n-i}$$

$$= \sum_{i=1}^{n} i \cdot \frac{n!}{i!(n-i)!} \cdot p^i \cdot (1-p)^{n-i}$$

$$= \sum_{i=1}^{n} \frac{n!}{(i-1)!(n-i)!} \cdot p^i \cdot (1-p)^{n-i}$$

$$= n \cdot p \sum_{i=1}^{n} \frac{(n-1)!}{(i-1)!(n-i)!} \cdot p^{i-1} \cdot (1-p)^{n-i}$$
Recap
Random Variables
Expectation

Expectation of a function of a random variable
Linearity of Expectation
Conditional Expectation

Expectation of a Binomial Random Variable

Example

Let \(X \) denote a Binomial Random Variable with parameters \(n \) and \(p \). What is \(E[X] \)?

Solution:

\[
E[X] = \sum_{i=0}^{n} i \cdot p(i), \text{ by definition}
\]

\[
= \sum_{i=0}^{n} i \cdot C(n, i) \cdot p^i \cdot (1 - p)^{n-i}
\]

\[
= \sum_{i=0}^{n} \frac{n!}{i!(n-i)!} \cdot p^i \cdot (1 - p)^{n-i}
\]

\[
= \sum_{i=1}^{n} \frac{n!}{i!(n-i)!} \cdot p^i \cdot (1 - p)^{n-i}
\]

\[
= \sum_{i=1}^{n} \frac{n!}{(i-1)!(n-i)!} \cdot p^i \cdot (1 - p)^{n-i}
\]

\[
= n \cdot p \sum_{i=1}^{n} \frac{(n-1)!}{(i-1)!(n-i)!} \cdot p^{i-1} \cdot (1 - p)^{n-i}
\]

\(\square \)
Example

Substituting $k = i - 1$, we get,

$$E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot (n-k-1)!} \cdot p^k \cdot (1-p)^{n-k-1}$$
Expectation of a Binomial Random Variable (contd.)

Example

Substituting \(k = i - 1 \), we get,

\[
E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot (n-k-1)!} \cdot p^k \cdot (1-p)^{n-k-1}
\]

\[
= n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot ((n-1) - k)!} \cdot p^k \cdot (1-p)^{(n-1)-k}
\]

Example

Substituting $k = i - 1$, we get,

$$E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n - 1)!}{k! \cdot (n - k - 1)!} \cdot p^k \cdot (1 - p)^{n-k-1}$$

$$= n \cdot p \sum_{k=0}^{n-1} \frac{(n - 1)!}{k! \cdot ((n - 1) - k)!} \cdot p^k \cdot (1 - p)^{(n-1)-k}$$

$$= n \cdot p \sum_{k=0}^{n-1} C(n - 1, k) \cdot p^k \cdot (1 - p)^{(n-1)-k}$$
Example

Substituting $k = i - 1$, we get,

$$E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot (n-k-1)!} \cdot p^k \cdot (1-p)^{n-k-1}$$

$$= n \cdot p \sum_{k=0}^{n-1} \frac{(n-1)!}{k! \cdot ((n-1)-k)!} \cdot p^k \cdot (1-p)^{(n-1)-k}$$

$$= n \cdot p \sum_{k=0}^{n-1} C(n-1, k) \cdot p^k \cdot (1-p)^{(n-1)-k}$$

$$= n \cdot p \cdot [p + (1-p)]^{n-1}, \text{ Binomial theorem}$$
Expectation of a Binomial Random Variable (contd.)

Example

Substituting $k = i - 1$, we get,

\[
E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n - 1)!}{k! \cdot (n - k - 1)!} \cdot p^k \cdot (1 - p)^{n-k-1}
\]

\[
= n \cdot p \sum_{k=0}^{n-1} \frac{(n - 1)!}{k! \cdot ((n - 1) - k)!} \cdot p^k \cdot (1 - p)^{(n-1)-k}
\]

\[
= n \cdot p \sum_{k=0}^{n-1} C(n - 1, k) \cdot p^k \cdot (1 - p)^{(n-1)-k}
\]

\[
= n \cdot p \cdot [p + (1 - p)]^{n-1}, \text{ Binomial theorem}
\]

\[
= n \cdot p \cdot 1
\]
Example

Substituting $k = i - 1$, we get,

\[
E[X] = n \cdot p \sum_{k=0}^{n-1} \frac{(n - 1)!}{k! \cdot (n - k - 1)!} \cdot p^k \cdot (1 - p)^{n-k-1}
\]

\[
= n \cdot p \sum_{k=0}^{n-1} \frac{(n - 1)!}{k! \cdot ((n - 1) - k)!} \cdot p^k \cdot (1 - p)^{(n-1)-k}
\]

\[
= n \cdot p \sum_{k=0}^{n-1} C(n - 1, k) \cdot p^k \cdot (1 - p)^{(n-1)-k}
\]

\[
= n \cdot p \cdot [p + (1 - p)]^{n-1}, \text{ Binomial theorem}
\]

\[
= n \cdot p \cdot 1
\]

\[
= n \cdot p
\]
Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p.
Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is $E[X]$?
Example

Let X denote a Geometric Random Variable with parameters n and p. What is $E[X]$?

Solution:

$$E[X] = \sum_{i=1}^{\infty} i \cdot p(i), \text{ by definition}$$
Example

Let X denote a Geometric Random Variable with parameters n and p. What is $E[X]$?

Solution:

\[
E[X] = \sum_{i=1}^{\infty} i \cdot p(i), \text{ by definition}
\]

\[
= \sum_{i=1}^{\infty} i \cdot (1 - p)^{i-1} \cdot p
\]
Example

Let X denote a Geometric Random Variable with parameters n and p. What is $E[X]$?

Solution:

$$E[X] = \sum_{i=1}^{\infty} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=1}^{\infty} i \cdot (1-p)^{i-1} \cdot p$$

$$= \sum_{i=1}^{\infty} i \cdot q^{i-1} \cdot p, \text{ where } q = 1 - p$$
Example

Let X denote a Geometric Random Variable with parameters n and p. What is $E[X]$?

Solution:

$$E[X] = \sum_{i=1}^{\infty} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=1}^{\infty} i \cdot (1 - p)^{i-1} \cdot p$$

$$= \sum_{i=1}^{\infty} i \cdot q^{i-1} \cdot p, \text{ where } q = 1 - p$$

$$= p \cdot \sum_{i=1}^{\infty} i \cdot q^{i-1}$$
Recap
Random Variables
Expectation

Expectation of a function of a random variable
Linearity of Expectation
Conditional Expectation

Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is $E[X]$?

Solution:

$$E[X] = \sum_{i=1}^{\infty} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=1}^{\infty} i \cdot (1 - p)^{i-1} \cdot p$$

$$= \sum_{i=1}^{\infty} i \cdot q^{i-1} \cdot p, \text{ where } q = 1 - p$$

$$= p \cdot \sum_{i=1}^{\infty} i \cdot q^{i-1}$$

$$= p \cdot \sum_{i=1}^{\infty} \frac{d}{dq} [q^i]$$
Expectation of a Geometric Random Variable

Example

Let X denote a Geometric Random Variable with parameters n and p. What is $E[X]$?

Solution:

$$E[X] = \sum_{i=1}^{\infty} i \cdot p(i), \text{ by definition}$$

$$= \sum_{i=1}^{\infty} i \cdot (1 - p)^{i-1} \cdot p$$

$$= \sum_{i=1}^{\infty} i \cdot q^{i-1} \cdot p, \text{ where } q = 1 - p$$

$$= p \cdot \sum_{i=1}^{\infty} i \cdot q^{i-1}$$

$$= p \cdot \sum_{i=1}^{\infty} \frac{d}{dq} [q^i]$$
Expectation of a Geometric Random Variable (contd.)

Example

Solution:

\[E[X] = p \cdot \frac{d}{dq} \left(\sum_{i=1}^{\infty} q^i \right) \]
Expectation of a Geometric Random Variable (contd.)

Example

Solution:

\[E[X] = p \cdot \frac{d}{dq} \left[\sum_{i=1}^{\infty} q^i \right] \]

\[= p \cdot \frac{d}{dq} \left[\frac{q}{1 - q} \right] \]
Example

Solution:

\[E[X] = p \cdot \frac{d}{dq} \left[\sum_{i=1}^{\infty} q^i \right] \]

\[= p \cdot \frac{d}{dq} \left[\frac{q}{1 - q} \right] \]

\[= p \cdot \frac{(1 - q) \cdot \frac{d}{dq} [q] - q \cdot \frac{d}{dq} [1 - q]}{(1 - q)^2} \]
Expectation of a Geometric Random Variable (contd.)

Example

Solution:

\[E[X] = p \cdot \frac{d}{dq} \left[\sum_{i=1}^{\infty} q^i \right] \]

\[= p \cdot \frac{d}{dq} \left[\frac{q}{1 - q} \right] \]

\[= p \cdot \frac{(1 - q) \cdot \frac{d}{dq} [q] - q \cdot \frac{d}{dq} [1 - q]}{(1 - q)^2} \]

\[= p \cdot \frac{(1 - q) \cdot 1 - q \cdot (-1)}{(1 - q)^2} \]
Expectation of a Geometric Random Variable (contd.)

Example

Solution:

\[
E[X] = p \cdot \frac{d}{dq} \left[\sum_{i=1}^{\infty} q^i \right]
\]

\[
= p \cdot \frac{d}{dq} \left[\frac{q}{1 - q} \right]
\]

\[
= p \cdot \frac{(1 - q) \cdot \frac{d}{dq}[q] - q \cdot \frac{d}{dq}[1 - q]}{(1 - q)^2}
\]

\[
= p \cdot \frac{(1 - q) \cdot 1 - q \cdot (-1)}{(1 - q)^2}
\]

\[
= p \cdot \frac{1}{(1 - q)^2}
\]
Example

Solution:

\[E[X] = p \cdot \frac{d}{dq} \left[\sum_{i=1}^{\infty} q^i \right] \]

\[= p \cdot \frac{d}{dq} \left[\frac{q}{1 - q} \right] \]

\[= p \cdot \frac{(1 - q) \cdot \frac{d}{dq} [q] - q \cdot \frac{d}{dq} [1 - q]}{(1 - q)^2} \]

\[= p \cdot \frac{(1 - q) \cdot 1 - q \cdot (-1)}{(1 - q)^2} \]

\[= p \cdot \frac{1}{(1 - q)^2} \]

\[= p \cdot \frac{1}{p^2} \]
Example

Solution:

\[E[X] = p \cdot \frac{d}{dq} \left[\sum_{i=1}^{\infty} q^i \right] \]

\[= p \cdot \frac{d}{dq} \left[\frac{q}{1 - q} \right] \]

\[= p \cdot \frac{(1 - q) \cdot \frac{d}{dq}[q] - q \cdot \frac{d}{dq}[1 - q]}{(1 - q)^2} \]

\[= p \cdot \frac{(1 - q) \cdot 1 - q \cdot (-1)}{(1 - q)^2} \]

\[= p \cdot \frac{1}{(1 - q)^2} \]

\[= p \cdot \frac{1}{p^2} \]

\[= \frac{1}{p} \]
Expectation of a function of a random variable
Linearity of Expectation
Conditional Expectation
Example

Consider the following game:
Example

Consider the following game: A fair die is tossed. If the die turns up 6, person A wins one dollar. Otherwise, he loses a dollar.
Example

Consider the following game: A fair die is tossed. If the die turns up 6, person A wins one dollar. Otherwise, he loses a dollar. How much money can A expect to make from this game?
Example
Consider the following game: A fair die is tossed. If the die turns up 6, person A wins one dollar. Otherwise, he loses a dollar. How much money can A expect to make from this game?

Example
Consider the following variation to the above game:
Example
Consider the following game: A fair die is tossed. If the die turns up 6, person A wins one dollar. Otherwise, he loses a dollar. How much money can A expect to make from this game?

Example
Consider the following variation to the above game: The die is tossed till a 6 turns up. For each toss that does not turn up 6, A loses one dollar. If the toss turns up 6, A gets 6 dollars. How much money can A expect to make from this game?
Recap
Random Variables
Expectation
Expectation of a function of a random variable
Linearity of Expectation
Conditional Expectation

Exercises

Example
Consider the following game: A fair die is tossed. If the die turns up 6, person A wins one dollar. Otherwise, he loses a dollar. How much money can A expect to make from this game?

Example
Consider the following variation to the above game: The die is tossed till a 6 turns up. For each toss that does not turn up 6, A loses one dollar. If the toss turns up 6, A gets 6 dollars. How much money can A expect to make from this game?

Example
Consider yet another variation to the initial game:
Example

Consider the following game: A fair die is tossed. If the die turns up 6, person A wins one dollar. Otherwise, he loses a dollar. How much money can A expect to make from this game?

Example

Consider the following variation to the above game: The die is tossed till a 6 turns up. For each toss that does not turn up 6, A loses one dollar. If the toss turns up 6, A gets 6 dollars. How much money can A expect to make from this game?

Example

Consider yet another variation to the initial game: The die is tossed ten times. For each toss that turns up an even number, A gets 5 dollars. For tosses turning up an odd number, A loses 4 dollars. How much money can A expect to make from this game?
Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the random variable itself.
Recap
Random Variables
Expectation

Expectation of a function of a random variable
Linearity of Expectation
Conditional Expectation

Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the random variable itself. For instance, in the coin-tossing experiment, we could be interested in the square of the number of successes.
Often times, we are interested in a function of the random variable, rather than the random variable itself. For instance, in the coin-tossing experiment, we could be interested in the square of the number of successes. The question of interest then is how to determine the expectation of a function of a random variable, given that we only know the distribution of the random variable.
Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the random variable itself. For instance, in the coin-tossing experiment, we could be interested in the square of the number of successes. The question of interest then is how to determine the expectation of a function of a random variable, given that we only know the distribution of the random variable.

Example

Let X be a random variable, with the following pmf:

$$p(0) = 0.3, \ p(1) = 0.5, \ p(2) = 0.2$$
Expectation of a function of a random variable

Note

Often times, we are interested in a function of the random variable, rather than the random variable itself. For instance, in the coin-tossing experiment, we could be interested in the square of the number of successes. The question of interest then is how to determine the expectation of a function of a random variable, given that we only know the distribution of the random variable.

Example

Let X be a random variable, with the following pmf:

\[p(0) = 0.3, \ p(1) = 0.5, \ p(2) = 0.2 \]

Compute $E[X^2]$.

\[E[X^2] = 0 \cdot 0.3 + 1 \cdot 0.5 + 4 \cdot 0.2 = 0.7 \]
Expectation of functions of random variables (contd.)

Solution

Let $Y = X^2$.
Let $Y = X^2$. Observe that Y is also a random variable.
Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take?
Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4.
Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y.
Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,
Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,

$$P\{Y = 0\} = P\{X^2 = 0\} = P\{X = 0\} = 0.3$$
Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,

$$P\{Y = 0\} = P\{X^2 = 0\} = P\{X = 0\} = 0.3$$

Similarly,

$$P\{Y = 1\} = P\{X^2 = 1\} = P\{X = 1\} = 0.5$$
Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,

$$P\{Y = 0\} = P\{X^2 = 0\} = P\{X = 0\} = 0.3$$

Similarly,

$$P\{Y = 1\} = P\{X^2 = 1\} = P\{X = 1\} = 0.5$$
$$P\{Y = 4\} = P\{X^2 = 4\} = P\{X = 2\} = 0.2$$
Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,

\[P\{Y = 0\} = P\{X^2 = 0\} = P\{X = 0\} = 0.3 \]

Similarly,

\[P\{Y = 1\} = P\{X^2 = 1\} = P\{X = 1\} = 0.5 \]
\[P\{Y = 4\} = P\{X^2 = 4\} = P\{X = 2\} = 0.2 \]

Accordingly,
Solution

Let $Y = X^2$. Observe that Y is also a random variable. What are the values that Y can take? 0, 1 and 4. Let us compute the pmf of Y. Note that,

$$P\{Y = 0\} = P\{X^2 = 0\} = P\{X = 0\} = 0.3$$

Similarly,

$$P\{Y = 1\} = P\{X^2 = 1\} = P\{X = 1\} = 0.5$$
$$P\{Y = 4\} = P\{X^2 = 4\} = P\{X = 2\} = 0.2$$

Accordingly,

$$E[Y] = E[X^2] = 0 \cdot 0.3 + 1 \cdot 0.5 + 4 \cdot 0.2 = 1.3$$
Expectation of functions - The Direct Approach
Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf $p()$, and $g()$ is any real-valued function, then,

$$E[g(X)] = \sum_x g(x) \cdot p(x)$$
Theorem

If X is a random variable with pmf $p()$, and $g()$ is any real-valued function, then,

$$E[g(X)] = \sum_x g(x) \cdot p(x)$$

Proof.

Exercise.
Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf $p()$, and $g()$ is any real-valued function, then,

$$E[g(X)] = \sum_x g(x) \cdot p(x)$$

Proof.

Exercise.

Note

Applying the above theorem to the previous problem,
Theorem

If X is a random variable with pmf $p()$, and $g()$ is any real-valued function, then,

$$E[g(X)] = \sum_{x} g(x) \cdot p(x)$$

Proof.

Exercise.

Note

Applying the above theorem to the previous problem,

$$E[X^2] =$$
Expectation of functions - The Direct Approach

Theorem

If X is a random variable with pmf $p()$, and $g()$ is any real-valued function, then,

$$E[g(X)] = \sum_x g(x) \cdot p(x)$$

Proof.

Exercise.

Note

Applying the above theorem to the previous problem,

$$E[X^2] = 0^2 \cdot 0.3 + 1^2 \cdot 0.5 + 2^2 \cdot 0.2 = 1.3$$
Linearity of Expectation

Proposition
Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space.
Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,
Proposition

Let \(X_1, X_2, \ldots, X_n \) denote \(n \) random variables, defined over some probability space. Let \(a_1, a_2, \ldots, a_n \) denote \(n \) constants. Then,

\[
E\left[\sum_{i=1}^{n} a_i \cdot X_i\right] = \sum_{i=1}^{n} a_i \cdot E[X_i]
\]
Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E\left[\sum_{i=1}^{n} a_i \cdot X_i\right] = \sum_{i=1}^{n} a_i \cdot E[X_i]$$

Lemma

Linearity of Expectation

Proposition

Let X_1, X_2, \ldots, X_n denote n random variables, defined over some probability space. Let a_1, a_2, \ldots, a_n denote n constants. Then,

$$E\left[\sum_{i=1}^{n} a_i \cdot X_i\right] = \sum_{i=1}^{n} a_i \cdot E[X_i]$$

Lemma

Lemma

Let X denote a random variable and let c denote a constant. Then, $E[c \cdot X] = c \cdot E[X]$.

Subramani

Probability Theory
Note

Note that linearity of expectation holds even when the random variables are not independent.
Note

Note that linearity of expectation holds even when the random variables are not independent.

Theorem

If X and Y are independent random variables, then
Note

Note that linearity of expectation holds even when the random variables are not independent.

Theorem

If X and Y are independent random variables, then $E[X \cdot Y] =$
Note that linearity of expectation holds even when the random variables are **not** independent.

Theorem

If X and Y are independent random variables, then $E[X \cdot Y] = E[X] \cdot E[Y]$.
Linearity of Expectation (contd.)

Note

Note that linearity of expectation holds even when the random variables are not independent.

Theorem

*If X and Y are independent random variables, then $E[X \cdot Y] = E[X] \cdot E[Y]$.***

Example

What is the expected value of the sum of the upturned faces, when two fair dice are tossed?
Another Application

Example

Compute the expected value of the Binomial random variable.
Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

\[X_i = 1, \]
Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

\[X_i = 1, \text{ if the } i^{th} \text{ trial is a success} \]
Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

\[X_i = \begin{cases}
1, & \text{if the } i^{\text{th}} \text{ trial is a success} \\
0, & \text{otherwise}
\end{cases} \]
Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

\[X_i = \begin{cases} 1, & \text{if the } i^{\text{th}} \text{ trial is a success} \\ 0, & \text{otherwise} \end{cases} \]

Accordingly, the Binomial random variable (say \(X \)) can be expressed as:

\[X = X_1 + X_2 + \ldots + X_n \]
Example

Compute the expected value of the Binomial random variable.

Solution

Define

\[X_i = \begin{cases} 1, & \text{if the } i^{th} \text{ trial is a success} \\ 0, & \text{otherwise} \end{cases} \]

Accordingly, the Binomial random variable (say \(X \)) can be expressed as:

\[X = X_1 + X_2 + \ldots + X_n \]

However, each \(X_i \) is Bernoulli random variable with probability of success \(p \).
Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

\[X_i = \begin{cases} 1, & \text{if the } i^{th} \text{ trial is a success} \\ 0, & \text{otherwise} \end{cases} \]

Accordingly, the Binomial random variable (say \(X \)) can be expressed as:

\[X = X_1 + X_2 + \ldots + X_n \]

However, each \(X_i \) is Bernoulli random variable with probability of success \(p! \) Hence, using linearity of expectation,

\[E[X] = \]
Recap
Random Variables
Expectation
Expectation of a function of a random variable
Linearity of Expectation
Conditional Expectation

Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

\[X_i = 1, \text{ if the } i^{th} \text{ trial is a success} \]
\[= 0, \text{ otherwise} \]

Accordingly, the Binomial random variable (say \(X \)) can be expressed as:

\[X = X_1 + X_2 + \ldots X_n \]

However, each \(X_i \) is Bernoulli random variable with probability of success \(p \)!
Hence, using linearity of expectation,

\[E[X] = E[X_1 + X_2 + \ldots X_n] \]
Example

Compute the expected value of the Binomial random variable.

Solution

Define

\[X_i = \begin{cases} 1, & \text{if the } i^{th} \text{ trial is a success} \\ 0, & \text{otherwise} \end{cases} \]

Accordingly, the Binomial random variable (say \(X \)) can be expressed as:

\[X = X_1 + X_2 + \ldots + X_n \]

However, each \(X_i \) is Bernoulli random variable with probability of success \(p \) ! Hence, using linearity of expectation,

\[E[X] = E[X_1 + X_2 + \ldots + X_n] \]
\[= \sum_{i=1}^{n} E[X_i] \]
Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

\[X_i = 1, \text{ if the } i^{th} \text{ trial is a success} \]
\[= 0, \text{ otherwise} \]

Accordingly, the Binomial random variable (say \(X \)) can be expressed as:

\[X = X_1 + X_2 + \ldots + X_n \]

However, each \(X_j \) is Bernoulli random variable with probability of success \(p \). Hence, using linearity of expectation,

\[E[X] = E[X_1 + X_2 + \ldots + X_n] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p \]
Another Application

Example

Compute the expected value of the Binomial random variable.

Solution

Define

\[X_i = \begin{cases} 1, & \text{if the } i^{th} \text{ trial is a success} \\ 0, & \text{otherwise} \end{cases} \]

Accordingly, the Binomial random variable (say \(X \)) can be expressed as:

\[X = X_1 + X_2 + \ldots + X_n \]

However, each \(X_i \) is Bernoulli random variable with probability of success \(p \). Hence, using linearity of expectation,

\[E[X] = E[X_1 + X_2 + \ldots + X_n] = \sum_{i=1}^{n} p = n \cdot p \]
Jensen’s inequality
Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?
Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function
Jensen’s inequality

Observation

What is the relation between \(E[X^2] \) and \((E[X])^2 \)?

Definition

Convex function - A function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is said to be convex,
Jensen’s inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function - A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex, if for any x_1, x_2 and
Jensen’s inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function - A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex, if for any x_1, x_2 and any λ, $0 \leq \lambda \leq 1$,
Jensen’s inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function - A function $f : \mathbb{R} \to \mathbb{R}$ is said to be convex, if for any x_1, x_2 and any λ, $0 \leq \lambda \leq 1$,

$$f(\lambda \cdot x_1 + (1 - \lambda) \cdot x_2) \leq \lambda \cdot f(x_1) + (1 - \lambda) \cdot f(x_2)$$
Jensen’s inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function - A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex, if for any x_1, x_2 and any λ, $0 \leq \lambda \leq 1$,

$$f(\lambda \cdot x_1 + (1 - \lambda) \cdot x_2) \leq \lambda \cdot f(x_1) + (1 - \lambda) \cdot f(x_2)$$

Jensen’s inequality
Jensen’s inequality

Observation

What is the relation between $E[X^2]$ and $(E[X])^2$?

Definition

Convex function - A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex, if for any x_1, x_2 and any λ, $0 \leq \lambda \leq 1$,

$$f(\lambda \cdot x_1 + (1 - \lambda) \cdot x_2) \leq \lambda \cdot f(x_1) + (1 - \lambda) \cdot f(x_2)$$

Jensen’s inequality

If $f : \mathbb{R} \rightarrow \mathbb{R}$ is a convex function, and X is a random variable, then

$$f(E[X]) \leq E[f(X)]$$
Conditional Expectation
Conditional Expectation

Definition

Let X and Y denote two random variables. The conditional expectation of X, given that $Y = y$, is defined as follows:

$$E[X \mid Y = y] = \sum_x x \cdot Pr(X = x \mid Y = y).$$
Conditional Expectation

Definition

Let X and Y denote two random variables. The conditional expectation of X, given that $Y = y$, is defined as follows:

$$E[X \mid Y = y] = \sum_x x \cdot Pr(X = x \mid Y = y).$$

Example

Let X_1 and X_2 denote the random variables monitoring the upturned faces of two tossed dice and let $X = X_1 + X_2$.
Conditional Expectation

Definition

Let X and Y denote two random variables. The conditional expectation of X, given that $Y = y$, is defined as follows:

$$E[X \mid Y = y] = \sum_x x \cdot Pr(X = x \mid Y = y).$$

Example

Let X_1 and X_2 denote the random variables monitoring the upturned faces of two tossed dice and let $X = X_1 + X_2$. What is $E[X \mid X_1 = 2]$ and $E[X_1 \mid X = 5]$?
Conditional Expectation

Definition

Let X and Y denote two random variables. The conditional expectation of X, given that $Y = y$, is defined as follows:

$$E[X \mid Y = y] = \sum_x x \cdot Pr(X = x \mid Y = y).$$

Example

Let X_1 and X_2 denote the random variables monitoring the upturned faces of two tossed dice and let $X = X_1 + X_2$. What is $E[X \mid X_1 = 2]$ and $E[X_1 \mid X = 5]$?

Theorem

Let X and Y denote two random variables.
Conditional Expectation

Definition
Let X and Y denote two random variables. The conditional expectation of X, given that $Y = y$, is defined as follows:

$$E[X \mid Y = y] = \sum_x x \cdot Pr(X = x \mid Y = y).$$

Example
Let X_1 and X_2 denote the random variables monitoring the upturned faces of two tossed dice and let $X = X_1 + X_2$. What is $E[X \mid X_1 = 2]$ and $E[X_1 \mid X = 5]$?

Theorem
Let X and Y denote two random variables. Then,

$$E[X] = \sum_y Pr(Y = y) \cdot E[X \mid Y = y]$$
Conditional Expectation (contd.)

Proof.
Recap
Random Variables
Expectation
Expectation of a function of a random variable
Linearity of Expectation
Conditional Expectation

Conditional Expectation (contd.)

Proof.

Observe that,

$$\sum_y \Pr(Y = y) \cdot E[X \mid Y = y] =$$
Proof.

Observe that,

\[\sum_y \Pr(Y = y) \cdot E[X \mid Y = y] = \sum_y \Pr(Y = y) \cdot \sum_x x \cdot \Pr(X = x \mid Y = y) \]
Proof.

Observe that,

\[\sum_y \Pr(Y = y) \cdot E[X \mid Y = y] = \sum_y \Pr(Y = y) \cdot \sum_x x \cdot \Pr(X = x \mid Y = y) \]

\[= \sum_x \sum_y x \cdot \Pr(X = x \mid Y = y) \cdot \Pr(Y = y) \]
Proof.

Observe that,

$$\sum_y Pr(Y = y) \cdot E[X \mid Y = y] = \sum_y Pr(Y = y) \cdot \sum_x x \cdot Pr(X = x \mid Y = y)$$

$$= \sum_x \sum_y x \cdot Pr(X = x \mid Y = y) \cdot Pr(Y = y)$$

$$= \sum_x x \cdot \sum_y Pr(X = x \mid Y = y) \cdot Pr(Y = y)$$
Conditional Expectation (contd.)

Proof.

Observe that,

\[\sum_y Pr(Y = y) \cdot E[X \mid Y = y] = \sum_y Pr(Y = y) \cdot \sum_x x \cdot Pr(X = x \mid Y = y) \]

\[= \sum_x \sum_y x \cdot Pr(X = x \mid Y = y) \cdot Pr(Y = y) \]

\[= \sum_x x \cdot \sum_y Pr(X = x \mid Y = y) \cdot Pr(Y = y) \]

\[= \sum_x x \cdot Pr(X = x) \]
Proof.

Observe that,

\[
\sum_y \Pr(Y = y) \cdot E[X \mid Y = y] = \sum_y \Pr(Y = y) \cdot \sum_x x \cdot \Pr(X = x \mid Y = y)
\]

\[
= \sum_x \sum_y x \cdot \Pr(X = x \mid Y = y) \cdot \Pr(Y = y)
\]

\[
= \sum_x x \cdot \sum_y \Pr(X = x \mid Y = y) \cdot \Pr(Y = y)
\]

\[
= \sum_x x \cdot \Pr(X = x)
\]

\[
= E[X]
\]
Conditional Expectation (contd.)
Conditional Expectation (contd.)

Definition

The expression $E[X \mid Y]$ is a random variable and takes on the values $E[X \mid Y = y]$, when $Y = y$.
Conditional Expectation (contd.)

Definition
The expression $E[X \mid Y]$ is a random variable and takes on the values $E[X \mid Y = y]$, when $Y = y$.

Theorem
Let X and Y denote any two random variables.
Definition

The expression \(E[X \mid Y] \) is a random variable and takes on the values \(E[X \mid Y = y] \), when \(Y = y \).

Theorem

Let \(X \) and \(Y \) denote any two random variables. Then,

\[
E[X] = E[E[X \mid Y]]
\]