First Order Logic - Syntax and Semantics

K. Subramani

1 Lane Department of Computer Science and Electrical Engineering
 West Virginia University

30 January, 4 February, 6 February 2013
Outline

1. Motivation

2. Syntax
 - Translation
First Order Logic
Propositional Logic has limited expressiveness.
Limitations of Propositional Logic

Propositional Logic has limited expressiveness. For instance, how would you capture the assertion, “Property P is true of every positive number”?
Limitations of Propositional Logic

Propositional Logic has limited expressiveness. For instance, how would you capture the assertion, “Property P is true of every positive number”? $P_1 \land P_2 \ldots P_\infty$ is neither compact nor useful.
Limitations of Propositional Logic

Propositional Logic has limited expressiveness. For instance, how would you capture the assertion, “Property P is true of every positive number”? $P_1 \land P_2 \ldots P_\infty$ is neither compact nor useful. First-order Logic (FOL) extends Propositional Logic (PL) with predicates, functions and quantifiers.
Syntax of FOL
Syntax of FOL

Basics
Syntax of FOL

Basics

(i) Predicates are used to describe properties of objects. e.g., $P(x)$ could stand for the property that x is divisible by 3.
Syntax of FOL

Basics

(i) Predicates are used to describe properties of objects. e.g., $P(x)$ could stand for the property that x is divisible by 3.

(ii) The universal quantifier $(\forall x)P(x)$ indicates that property P holds for all x in some domain.
Syntax of FOL

Basics

(i) Predicates are used to describe properties of objects. e.g., $P(x)$ could stand for the property that x is divisible by 3.

(ii) The universal quantifier $(\forall x)P(x)$ indicates that property P holds for all x in some domain.

(iii) The existential quantifier $(\exists x)P(x)$ indicates that property P holds for some x in some domain.
Motivation
Syntax
Semantics
Translation

Syntax of FOL

Basics

(i) Predicates are used to describe properties of objects. e.g., $P(x)$ could stand for the property that x is divisible by 3.

(ii) The universal quantifier $(\forall x) P(x)$ indicates that property P holds for all x in some domain.

(iii) The existential quantifier $(\exists x) P(x)$ indicates that property P holds for some x in some domain.

(iv) A function is a mapping from the domain of interest to a range.
Syntax of FOL

Basics

(i) Predicates are used to describe properties of objects. e.g., $P(x)$ could stand for the property that x is divisible by 3.

(ii) The universal quantifier $(\forall x)P(x)$ indicates that property P holds for all x in some domain.

(iii) The existential quantifier $(\exists x)P(x)$ indicates that property P holds for some x in some domain.

(iv) A function is a mapping from the domain of interest to a range.

(v) Variables are used as placeholders (0-ary predicates).
Syntax of FOL

Basics

(i) Predicates are used to describe properties of objects. e.g., $P(x)$ could stand for the property that x is divisible by 3.

(ii) The universal quantifier $(\forall x)P(x)$ indicates that property P holds for all x in some domain.

(iii) The existential quantifier $(\exists x)P(x)$ indicates that property P holds for some x in some domain.

(iv) A function is a mapping from the domain of interest to a range.

(v) Variables are used as placeholders (0-ary predicates).

(vi) Constants are used to represent values that do not change.
(i) Predicates are used to describe properties of objects. e.g., $P(x)$ could stand for the property that x is divisible by 3.

(ii) The universal quantifier $(\forall x)P(x)$ indicates that property P holds for all x in some domain.

(iii) The existential quantifier $(\exists x)P(x)$ indicates that property P holds for some x in some domain.

(iv) A function is a mapping from the domain of interest to a range.

(v) Variables are used as placeholders (0-ary predicates).

(vi) Constants are used to represent values that do not change.

(vii) Terms, atom, literal, formula.
Scope

Bound and Free variables
Consider the expression:

\[(\forall x)[Q(x, y) \rightarrow (\exists y)R(x, y)]\]
Consider the expression:

\[(\forall x)[Q(x, y) \rightarrow (\exists y)R(x, y)]\]

The \(x\) occurrences are bound to the \((\forall x)\) quantifier.
Consider the expression:

$$\forall x [Q(x, y) \rightarrow \exists y R(x, y)]$$

The x occurrences are bound to the $(\forall x)$ quantifier. The first y is said to be a free variable, since it is not bound to any quantifier.
Consider the expression:

\[(\forall x)[Q(x, y) \rightarrow (\exists y)R(x, y)]\]

The \(x\) occurrences are bound to the \((\forall x)\) quantifier. The first \(y\) is said to be a free variable, since it is not bound to any quantifier. The scope of a quantifier is the portion of the predicate formula to which it applies.
Consider the expression:

$$(\forall x)[Q(x, y) \rightarrow (\exists y)R(x, y)]$$

The x occurrences are bound to the $(\forall x)$ quantifier. The first y is said to be a free variable, since it is not bound to any quantifier. The scope of a quantifier is the portion of the predicate formula to which it applies. A formula F is closed if it has no free variables.
Scope

Bound and Free variables

Consider the expression:

$$(\forall x)[Q(x, y) \rightarrow (\exists y)R(x, y)]$$

The x occurrences are bound to the $(\forall x)$ quantifier. The first y is said to be a free variable, since it is not bound to any quantifier. The scope of a quantifier is the portion of the predicate formula to which it applies. A formula F is closed if it has no free variables.

Closures

Subramani

First Order Logic
Consider the expression:

$$(\forall x)[Q(x, y) \rightarrow (\exists y)R(x, y)]$$

The x occurrences are bound to the $(\forall x)$ quantifier. The first y is said to be a free variable, since it is not bound to any quantifier. The scope of a quantifier is the portion of the predicate formula to which it applies. A formula F is closed if it has no free variables.

(i) Existential closure.
Bound and Free variables

Consider the expression:

$$(\forall x)[Q(x, y) \rightarrow (\exists y)R(x, y)]$$

The x occurrences are bound to the $(\forall x)$ quantifier. The first y is said to be a free variable, since it is not bound to any quantifier. The scope of a quantifier is the portion of the predicate formula to which it applies. A formula F is closed if it has no free variables.

Closures

(i) Existential closure.
(ii) Universal closure.
Consider the expression:

\[(\forall x)[Q(x, y) \rightarrow (\exists y)R(x, y)]\]

The x occurrences are bound to the $(\forall x)$ quantifier. The first y is said to be a free variable, since it is not bound to any quantifier. The scope of a quantifier is the portion of the predicate formula to which it applies. A formula F is closed if it has no free variables.

Closures

(i) Existential closure.
(ii) Universal closure.

Subformulas and Subterms
Bound and Free variables

Consider the expression:

\[(\forall x)[Q(x,y) \rightarrow (\exists y)R(x,y)]\]

The \(x\) occurrences are bound to the \((\forall x)\) quantifier. The first \(y\) is said to be a free variable, since it is not bound to any quantifier. The scope of a quantifier is the portion of the predicate formula to which it applies. A formula \(F\) is closed if it has no free variables.

Closures

(i) Existential closure.
(ii) Universal closure.

Subformulas and Subterms

- Subformulas and strict subformulas.
Scope

Bound and Free variables

Consider the expression:

$$(\forall x)[Q(x, y) \rightarrow (\exists y)R(x, y)]$$

The x occurrences are bound to the $(\forall x)$ quantifier. The first y is said to be a free variable, since it is not bound to any quantifier. The scope of a quantifier is the portion of the predicate formula to which it applies. A formula F is closed if it has no free variables.

Closures

(i) Existential closure.

(ii) Universal closure.

Subformulas and Subterms

1. Subformulas and strict subformulas.
2. Subterms and strict subterms.
Outline

1. Motivation
2. Syntax
 - Translation
3. Semantics
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Syntax</th>
<th>Semantics</th>
<th>Translation</th>
</tr>
</thead>
</table>

Converting English to Predicate Logic
Converting English to Predicate Logic

Note

Not an easy task!
Motivation
Syntax
Semantics
Translation

Converting English to Predicate Logic

Note

Not an easy task! More than one result possible, depending on semantics of English language (which is not unambiguous).
Converting English to Predicate Logic

Note

Not an easy task! More than one result possible, depending on semantics of English language (which is not unambiguous). “Hang him not, let him free” and “Hang him, not let him free”!
Converting English to Predicate Logic

Note

Not an easy task! More than one result possible, depending on semantics of English language (which is not unambiguous). “Hang him not, let him free” and “Hang him, not let him free”!

Example
Converting English to Predicate Logic

Note

Not an easy task! More than one result possible, depending on semantics of English language (which is not unambiguous). “Hang him not, let him free” and “Hang him, not let him free”!

Example

(i) All parrots are ugly.
Converting English to Predicate Logic

Note

Not an easy task! More than one result possible, depending on semantics of English language (which is not unambiguous). “Hang him not, let him free” and “Hang him, not let him free”!

Example

(i) All parrots are ugly. \((\forall x)[P(x) \rightarrow U(x)]\).
Converting English to Predicate Logic

Note

Not an easy task! More than one result possible, depending on semantics of English language (which is not unambiguous). “Hang him not, let him free” and “Hang him, not let him free”!

Example

(i) All parrots are ugly. \((\forall x)[P(x) \rightarrow U(x)]\).
(ii) Some parrots are ugly.
Converting English to Predicate Logic

Note

Not an easy task! More than one result possible, depending on semantics of English language (which is not unambiguous). “Hang him not, let him free” and “Hang him, not let him free”!

Example

(i) All parrots are ugly. \((\forall x)[P(x) \rightarrow U(x)]\).
(ii) Some parrots are ugly. \((\exists x)[P(x) \land U(x)]\).
Converting English to Predicate Logic

Note

Not an easy task! More than one result possible, depending on semantics of English language (which is not unambiguous). “Hang him not, let him free” and “Hang him, not let him free”!

Example

(i) All parrots are ugly. \((\forall x)[P(x) \rightarrow U(x)]\).

(ii) Some parrots are ugly. \((\exists x)[P(x) \land U(x)]\).

(iii) All dogs chase all rabbits.
Converting English to Predicate Logic

Note

Not an easy task! More than one result possible, depending on semantics of English language (which is not unambiguous). “Hang him not, let him free” and “Hang him, not let him free”!

Example

(i) All parrots are ugly. \((\forall x)[P(x) \rightarrow U(x)]\).

(ii) Some parrots are ugly. \((\exists x)[P(x) \land U(x)]\).

(iii) All dogs chase all rabbits. \((\forall x)[D(x) \rightarrow (\forall y)[R(y) \rightarrow C(x, y)]]\).
Converting English to Predicate Logic

Note

Not an easy task! More than one result possible, depending on semantics of English language (which is not unambiguous). “Hang him not, let him free” and “Hang him, not let him free”!

Example

(i) All parrots are ugly. \((\forall x)[P(x) \rightarrow U(x)]\).
(ii) Some parrots are ugly. \((\exists x)[P(x) \land U(x)]\).
(iii) All dogs chase all rabbits. \((\forall x)[D(x) \rightarrow (\forall y)[R(y) \rightarrow C(x, y)]]\).
(iv) Some dogs chase all rabbits.
Motivation
Syntax
Semantics
Translation

Converting English to Predicate Logic

Note
Not an easy task! More than one result possible, depending on semantics of English language (which is not unambiguous). “Hang him not, let him free” and “Hang him, not let him free”!

Example
(i) All parrots are ugly. \((\forall x)[P(x) \rightarrow U(x)]\).
(ii) Some parrots are ugly. \((\exists x)[P(x) \land U(x)]\).
(iii) All dogs chase all rabbits. \((\forall x)[D(x) \rightarrow (\forall y)[R(y) \rightarrow C(x, y)]]\).
(iv) Some dogs chase all rabbits. \((\exists x)[D(x) \land (\forall y)[R(y) \rightarrow C(x, y)]]\).
Exercise

Let $S(x)$ denote “x is a student”, $I(x)$ denote “x is intelligent” and $M(x)$ denote “x likes music”.
Exercise

Let $S(x)$ denote “x is a student”, $I(x)$ denote “x is intelligent” and $M(x)$ denote “x likes music”. Give predicate wffs for:

(i) All students are intelligent.
(ii) Some intelligent students like music.
(iii) Only intelligent students like music.
Exercise

Let $S(x)$ denote “x is a student”, $I(x)$ denote “x is intelligent” and $M(x)$ denote “x likes music”. Give predicate wffs for:

(i) All students are intelligent.

(ii) Some intelligent students like music.

(iii) Only intelligent students like music.

Solution

(i) $(\forall x)[S(x) \rightarrow I(x)]$.
Exercise

Let $S(x)$ denote “x is a student”, $I(x)$ denote “x is intelligent” and $M(x)$ denote “x likes music”. Give predicate wffs for:

(i) All students are intelligent.
(ii) Some intelligent students like music.
(iii) Only intelligent students like music.

Solution

(i) $(\forall x)[S(x) \rightarrow I(x)]$.
(ii) $(\exists x)[S(x) \land I(x) \land M(x)]$.

Exercise

Let $S(x)$ denote “x is a student”, $I(x)$ denote “x is intelligent” and $M(x)$ denote “x likes music”. Give predicate wffs for:

(i) All students are intelligent.
(ii) Some intelligent students like music.
(iii) Only intelligent students like music.

Solution

(i) $(\forall x)[S(x) \rightarrow I(x)]$.
(ii) $(\exists x)[S(x) \land I(x) \land M(x)]$.
(iii) $(\forall x)[M(x) \rightarrow [S(x) \land I(x)]]$.
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Syntax</th>
<th>Semantics</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOL in mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FOL in mathematics

Example
Example

(i) The length of one side of a triangle is less than the sum of the lengths of the other two sides.
Example

(i) The length of one side of a triangle is less than the sum of the lengths of the other two sides.

(ii) Fermat’s last theorem.
<table>
<thead>
<tr>
<th>Main Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Main Points

(i) As with propositional logic, a FOL formula evaluates to \textbf{true} or \textbf{false}.
Main Points

(i) As with propositional logic, a FOL formula evaluates to **true** or **false**.

(ii) Terms of a FOL formula evaluate to values from a specified domain.
Semantics

Main Points

(i) As with propositional logic, a FOL formula evaluates to **true** or **false**.
(ii) Terms of a FOL formula evaluate to values from a specified domain.
(iii) A first order interpretation \(I \),
Main Points

(i) As with propositional logic, a FOL formula evaluates to true or false.
(ii) Terms of a FOL formula evaluate to values from a specified domain.
(iii) A first order interpretation I, is a 2-tuple (D_I, α_I), where D_I is a non-empty set called the domain of interpretation and α_I is an assignment function.
Main Points

(i) As with propositional logic, a FOL formula evaluates to **true** or **false**.

(ii) Terms of a FOL formula evaluate to values from a specified domain.

(iii) A first order interpretation I, is a 2-tuple (D_I, α_I), where D_I is a non-empty set called the domain of interpretation and α_I is an assignment function. The assignment function maps constants and variables in the expression to objects in the domain,
Main Points

(i) As with propositional logic, a FOL formula evaluates to true or false.
(ii) Terms of a FOL formula evaluate to values from a specified domain.
(iii) A first order interpretation I, is a 2-tuple (D_I, α_I), where D_I is a non-empty set called the domain of interpretation and α_I is an assignment function. The assignment function maps constants and variables in the expression to objects in the domain, predicates in the domain to properties of objects in the domain,
Semantics

Main Points

(i) As with propositional logic, a FOL formula evaluates to **true** or **false**.

(ii) Terms of a FOL formula evaluate to values from a specified domain.

(iii) A first order interpretation I, is a 2-tuple (D_I, α_I), where D_I is a non-empty set called the domain of interpretation and α_I is an assignment function. The assignment function maps constants and variables in the expression to objects in the domain, predicates in the domain to properties of objects in the domain, and functions in the expression to functions over the domain,
<table>
<thead>
<tr>
<th>Main Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) As with propositional logic, a FOL formula evaluates to true or false.</td>
</tr>
<tr>
<td>(ii) Terms of a FOL formula evaluate to values from a specified domain.</td>
</tr>
<tr>
<td>(iii) A first order interpretation I, is a 2-tuple (D_I, α_I), where D_I is a non-empty set called the domain of interpretation and α_I is an assignment function. The assignment function maps constants and variables in the expression to objects in the domain, predicates in the domain to properties of objects in the domain, and functions in the expression to functions over the domain, respecting arity.</td>
</tr>
</tbody>
</table>
Semantics

Main Points

(i) As with propositional logic, a FOL formula evaluates to true or false.
(ii) Terms of a FOL formula evaluate to values from a specified domain.
(iii) A first order interpretation I, is a 2-tuple (D_I, α_I), where D_I is a non-empty set called the domain of interpretation and α_I is an assignment function. The assignment function maps constants and variables in the expression to objects in the domain, predicates in the domain to properties of objects in the domain, and functions in the expression to functions over the domain, respecting arity.

Example

What is the truth-value of

Subramani First Order Logic
Main Points

(i) As with propositional logic, a FOL formula evaluates to true or false.
(ii) Terms of a FOL formula evaluate to values from a specified domain.
(iii) A first order interpretation I, is a 2-tuple (D_I, α_I), where D_I is a non-empty set called the domain of interpretation and α_I is an assignment function. The assignment function maps constants and variables in the expression to objects in the domain, predicates in the domain to properties of objects in the domain, and functions in the expression to functions over the domain, respecting arity.

Example

What is the truth-value of

(i) $F : x + y \geq z \rightarrow y \geq z - x$?
Main Points

(i) As with propositional logic, a FOL formula evaluates to **true** or **false**.

(ii) Terms of a FOL formula evaluate to values from a specified domain.

(iii) A first order interpretation I, is a 2-tuple (D_I, α_I), where D_I is a non-empty set called the domain of interpretation and α_I is an assignment function. The assignment function maps constants and variables in the expression to objects in the domain, predicates in the domain to properties of objects in the domain, and functions in the expression to functions over the domain, respecting arity.

Example

What is the truth-value of

(i) $F : x + y \geq z \rightarrow y \geq z - x$?

(ii) $G : (\forall x) P(x, a)$?
Motivation
Syntax
Semantics

Semantics

Main Points

(i) As with propositional logic, a FOL formula evaluates to true or false.
(ii) Terms of a FOL formula evaluate to values from a specified domain.
(iii) A first order interpretation I, is a 2-tuple (D_I, α_I), where D_I is a non-empty set called the domain of interpretation and α_I is an assignment function. The assignment function maps constants and variables in the expression to objects in the domain, predicates in the domain to properties of objects in the domain, and functions in the expression to functions over the domain, respecting arity.

Example

What is the truth-value of

(i) $F : x + y \geq z \rightarrow y \geq z - x$?
(ii) $G : (\forall x) P(x, a)$?

These questions are meaningless without the interpretation! Consider the following interpretation for G:
Main Points

(i) As with propositional logic, a FOL formula evaluates to **true** or **false**.

(ii) Terms of a FOL formula evaluate to values from a specified domain.

(iii) A first order interpretation I, is a 2-tuple (D_I, α_I), where D_I is a non-empty set called the domain of interpretation and α_I is an assignment function. The assignment function maps constants and variables in the expression to objects in the domain, predicates in the domain to properties of objects in the domain, and functions in the expression to functions over the domain, respecting arity.

Example

What is the truth-value of

(i) $F : x + y \geq z \rightarrow y \geq z - x$?

(ii) $G : (\forall x) P(x, a)$?

These questions are meaningless without the interpretation! Consider the following interpretation for G: The domain is the set of natural numbers $N = \{0, 1, \ldots, \}$, $P(x, y)$ stands for $x \geq y$ and a is 0.
Motivation
Syntax
Semantics

Main Points

(i) As with propositional logic, a FOL formula evaluates to true or false.
(ii) Terms of a FOL formula evaluate to values from a specified domain.
(iii) A first order interpretation \(I \), is a 2-tuple \((D_I, \alpha_I)\), where \(D_I \) is a non-empty set called the domain of interpretation and \(\alpha_I \) is an assignment function. The assignment function maps constants and variables in the expression to objects in the domain, predicates in the domain to properties of objects in the domain, and functions in the expression to functions over the domain, respecting arity.

Example

What is the truth-value of

(i) \(F : x + y \geq z \rightarrow y \geq z - x \)?
(ii) \(G : (\forall x) P(x, a) \)?

These questions are meaningless without the interpretation! Consider the following interpretation for \(G \): The domain is the set of natural numbers \(N = \{0, 1, \ldots, \} \), \(P(x, y) \) stands for \(x \geq y \) and \(a \) is 0. Clearly, in this interpretation, the expression is true.
Main Points

(i) As with propositional logic, a FOL formula evaluates to **true** or **false**.
(ii) Terms of a FOL formula evaluate to values from a specified domain.
(iii) A first order interpretation \(I \), is a 2-tuple \((D_I, \alpha_I)\), where \(D_I\) is a non-empty set called the domain of interpretation and \(\alpha_I\) is an assignment function. The assignment function maps constants and variables in the expression to objects in the domain, predicates in the domain to properties of objects in the domain, and functions in the expression to functions over the domain, respecting arity.

Example

What is the truth-value of

(i) \(F : x + y \geq z \rightarrow y \geq z - x? \)
(ii) \(G : (\forall x) P(x, a)? \)

These questions are meaningless without the interpretation! Consider the following interpretation for \(G \): The domain is the set of natural numbers \(N = \{0, 1, \ldots\} \), \(P(x, y) \) stands for \(x \geq y \) and \(a \) is 0. Clearly, in this interpretation, the expression is **true**. Can you think of an interpretation in which \(G \) is **false**?
Inductive definition of semantics
Given a FOL formula F and an interpretation $I : (D_I, \alpha_I)$, we want to compute if F evaluates to true, under that interpretation.
Inductive definition of semantics

Goal

Given a FOL formula F and an interpretation $I : (D_I, \alpha_I)$, we want to compute if F evaluates to $true$, under that interpretation.

Truth Symbols
Inductive definition of semantics

Goal

Given a FOL formula F and an interpretation $I : (D_I, \alpha_I)$, we want to compute if F evaluates to true, under that interpretation.

Truth Symbols

(i) $I \models T$.

Motivation

Syntax

Semantics
Inductive definition of semantics

Goal

Given a FOL formula F and an interpretation $I : (D_I, \alpha_I)$, we want to compute if F evaluates to true, under that interpretation.

Truth Symbols

(i) $I \models \top$.
(ii) $I \not\models \bot$.
Inductive definition of semantics

Goal

Given a FOL formula F and an interpretation $I : (D_I, \alpha_I)$, we want to compute if F evaluates to **true**, under that interpretation.

Truth Symbols

(i) $I \models \top$.
(ii) $I \not\models \bot$.

Atoms
Inductive definition of semantics

Goal

Given a FOL formula F and an interpretation $I : (D_I, \alpha_I)$, we want to compute if F evaluates to true, under that interpretation.

Truth Symbols

(i) $I \models T$.
(ii) $I \not\models \bot$.

Atoms

Use the assignment function α_I to recursively evaluate arbitrary terms and arbitrary atoms.
Inductive definition of semantics

Goal
Given a FOL formula F and an interpretation $I : (D_I, \alpha_I)$, we want to compute if F evaluates to **true**, under that interpretation.

Truth Symbols

(i) $I \models \top$.
(ii) $I \not\models \bot$.

Atoms
Use the assignment function α_I to recursively evaluate arbitrary terms and arbitrary atoms. For instance,
Inductive definition of semantics

Goal
Given a FOL formula F and an interpretation $I : (D_I, \alpha_I)$, we want to compute if F evaluates to true, under that interpretation.

Truth Symbols
(i) $I \models \top$.
(ii) $I \not\models \bot$.

Atoms
Use the assignment function α_I to recursively evaluate arbitrary terms and arbitrary atoms. For instance,
(i) $\alpha_I[f(t_1, t_2, \ldots t_n)] =$
Inductive definition of semantics

Goal

Given a FOL formula F and an interpretation $I : (D_I, \alpha_I)$, we want to compute if F evaluates to **true**, under that interpretation.

Truth Symbols

(i) $I \models \top$.

(ii) $I \not\models \bot$.

Atoms

Use the assignment function α_I to recursively evaluate arbitrary terms and arbitrary atoms. For instance,

(i) $\alpha_I[f(t_1, t_2, \ldots t_n)] = \alpha_I[f(\alpha_I[t_1], \alpha_I[t_2], \ldots \alpha_I[t_n])]$.
Inductive definition of semantics

Goal

Given a FOL formula F and an interpretation $I : (D_I, \alpha_I)$, we want to compute if F evaluates to true, under that interpretation.

Truth Symbols

(i) $I \models \top$.
(ii) $I \not\models \bot$.

Atoms

Use the assignment function α_I to recursively evaluate arbitrary terms and arbitrary atoms. For instance,

(i) $\alpha_I[f(t_1, t_2, \ldots t_n)] = \alpha_I[f(\alpha_I[t_1], \alpha_I[t_2], \ldots \alpha_I[t_n])]$.
(ii) $\alpha_I[p(t_1, t_2, \ldots t_n)] = \ldots$
Inductive definition of semantics

Goal

Given a FOL formula F and an interpretation $I : (D, \alpha_I)$, we want to compute if F evaluates to **true**, under that interpretation.

Truth Symbols

(i) $I \models T$.

(ii) $I \not\models \bot$.

Atoms

Use the assignment function α_I to recursively evaluate arbitrary terms and arbitrary atoms. For instance,

(i) $\alpha_I[f(t_1, t_2, \ldots t_n)] = \alpha_I[f(\alpha_I[t_1], \alpha_I[t_2], \ldots \alpha_I[t_n])]$.

(ii) $\alpha_I[p(t_1, t_2, \ldots t_n)] = \alpha_I[p(\alpha_I[t_1], \alpha_I[t_2], \ldots \alpha_I[t_n])]$.

Subramani
Inductive definition of semantics

Goal

Given a FOL formula F and an interpretation $I : (D_I, \alpha_I)$, we want to compute if F evaluates to **true**, under that interpretation.

Truth Symbols

1. $I \models \top$.
2. $I \not\models \bot$.

Atoms

Use the assignment function α_I to recursively evaluate arbitrary terms and arbitrary atoms. For instance,

1. $\alpha_I[f(t_1, t_2, \ldots t_n)] = \alpha_I[f(\alpha_I[t_1], \alpha_I[t_2], \ldots \alpha_I[t_n])]$.
2. $\alpha_I[p(t_1, t_2, \ldots t_n)] = \alpha_I[p(\alpha_I[t_1], \alpha_I[t_2], \ldots \alpha_I[t_n])]$.

Then

$$I \models p(t_1, t_2, \ldots t_n) \text{ iff }$$
Inductive definition of semantics

Goal

Given a FOL formula F and an interpretation $I: (D_I, \alpha_I)$, we want to compute if F evaluates to **true**, under that interpretation.

Truth Symbols

(i) $I \models \top$.
(ii) $I \not\models \bot$.

Atoms

Use the assignment function α_I to recursively evaluate arbitrary terms and arbitrary atoms. For instance,

(i) $\alpha_I[f(t_1, t_2, \ldots, t_n)] = \alpha_I[f(\alpha_I[t_1], \alpha_I[t_2], \ldots, \alpha_I[t_n])]$.
(ii) $\alpha_I[p(t_1, t_2, \ldots, t_n)] = \alpha_I[p(\alpha_I[t_1], \alpha_I[t_2], \ldots, \alpha_I[t_n])]$.

Then

$I \models p(t_1, t_2, \ldots, t_n)$ iff $\alpha_I[p(\alpha_I[t_1], \alpha_I[t_2], \ldots, \alpha_I[t_n])] = \text{true}$.
Completing the induction
Completing the induction

General unquantified FOL formulas
Completing the induction

General unquantified FOL formulas

(i) \(I \models \neg F \iff I \not\models F \).
Completing the induction

General unquantified FOL formulas

(i) $I \models \neg F$ iff $I \not\models F$.
(ii) $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$.
Completing the induction

General unquantified FOL formulas

(i) $I \models \neg F$ iff $I \not\models F$.

(ii) $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$.

(iii) $I \models F_1 \lor F_2$ iff $I \models F_1$ or $I \models F_2$.
Completing the induction

General unquantified FOL formulas

1. \(I \models \neg F \) iff \(I \not\models F \).
2. \(I \models F_1 \land F_2 \) iff \(I \models F_1 \) and \(I \models F_2 \).
3. \(I \models F_1 \lor F_2 \) iff \(I \models F_1 \) or \(I \models F_2 \).
4. \(I \models F_1 \rightarrow F_2 \) iff if \(I \models F_1 \), then \(I \models F_2 \).
Completing the induction

General unquantified FOL formulas

1. \(I \models \neg F \) iff \(I \not\models F \).
2. \(I \models F_1 \land F_2 \) iff \(I \models F_1 \) and \(I \models F_2 \).
3. \(I \models F_1 \lor F_2 \) iff \(I \models F_1 \) or \(I \models F_2 \).
4. \(I \models F_1 \rightarrow F_2 \) iff if \(I \models F_1 \), then \(I \models F_2 \).

Quantified Formulas
Completing the induction

General unquantified FOL formulas

(i) $I \models \neg F$ iff $I \not\models F$.
(ii) $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$.
(iii) $I \models F_1 \lor F_2$ iff $I \models F_1$ or $I \models F_2$.
(iv) $I \models F_1 \rightarrow F_2$ iff if $I \models F_1$, then $I \models F_2$.

Quantified Formulas

(i) $I \models (\forall x) F$ if and only if for every $v \in D$, $I \sigma \{x \mapsto v\} \models F$.
Completing the induction

General unquantified FOL formulas

(i) \(I \models \neg F \) iff \(I \notmodels F \).

(ii) \(I \models F_1 \land F_2 \) iff \(I \models F_1 \) and \(I \models F_2 \).

(iii) \(I \models F_1 \lor F_2 \) iff \(I \models F_1 \) or \(I \models F_2 \).

(iv) \(I \models F_1 \rightarrow F_2 \) iff if \(I \models F_1 \), then \(I \models F_2 \).

Quantified Formulas

(i) \(I \models (\forall x) F \) if and only if for every \(v \in D \), \(I \triangleleft \{x \mapsto v\} \models F \).

(ii) \(I \models (\exists x) F \) if and only if there exists some \(v \in D \), \(I \triangleleft \{x \mapsto v\} \models F \).
Completing the induction

General unquantified FOL formulas

1. $I \models \neg F$ iff $I \not\models F$.
2. $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$.
3. $I \models F_1 \lor F_2$ iff $I \models F_1$ or $I \models F_2$.
4. $I \models F_1 \rightarrow F_2$ iff if $I \models F_1$, then $I \models F_2$.

Quantified Formulas

1. $I \models (\forall x) F$ if and only if for every $v \in D$, $I \triangleleft \{x \mapsto v\} \models F$.
2. $I \models (\exists x) F$ if and only if there exists some $v \in D$, $I \triangleleft \{x \mapsto v\} \models F$.

Example

Consider the formula $F : x + y > z \rightarrow y > z - x$.
Completing the induction

General unquantified FOL formulas

(i) \(I \models \neg F \) iff \(I \not\models F \).
(ii) \(I \models F_1 \land F_2 \) iff \(I \models F_1 \) and \(I \models F_2 \).
(iii) \(I \models F_1 \lor F_2 \) iff \(I \models F_1 \) or \(I \models F_2 \).
(iv) \(I \models F_1 \rightarrow F_2 \) iff if \(I \models F_1 \), then \(I \models F_2 \).

Quantified Formulas

(i) \(I \models (\forall x) F \) if and only if for every \(v \in D \), \(I \triangleleft \{x \mapsto v\} \models F \).
(ii) \(I \models (\exists x) F \) if and only if there exists some \(v \in D \), \(I \triangleleft \{x \mapsto v\} \models F \).

Example

Consider the formula \(F : x + y > z \rightarrow y > z - x \). Is \(F \) true
Completing the induction

General unquantified FOL formulas

1. \(I \models \neg F \text{ iff } I \not\models F. \)
2. \(I \models F_1 \land F_2 \text{ iff } I \models F_1 \text{ and } I \models F_2. \)
3. \(I \models F_1 \lor F_2 \text{ iff } I \models F_1 \text{ or } I \models F_2. \)
4. \(I \models F_1 \rightarrow F_2 \text{ iff if } I \models F_1, \text{ then } I \models F_2. \)

Quantified Formulas

1. \(I \models (\forall x) F \text{ if and only if for every } v \in D, I \triangleleft \{ x \mapsto v \} \models F. \)
2. \(I \models (\exists x) F \text{ if and only if there exists some } v \in D, I \triangleleft \{ x \mapsto v \} \models F. \)

Example

Consider the formula \(F : x + y > z \rightarrow y > z - x. \) Is \(F \) true under the interpretation \(I : (\mathbb{Z}, \alpha_I), \) where \(\alpha_I : \{ + \mapsto +_{\mathbb{Z}}, - \mapsto -_{\mathbb{Z}}, > \mapsto >_{\mathbb{Z}}, x \mapsto 13_{\mathbb{Z}}, y \mapsto 42_{\mathbb{Z}}, z \mapsto 1_{\mathbb{Z}} \}? \)