First Order Theories - Recursive Data Structures

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering
West Virginia University

March 8 2013
Outline

1. Introduction
Outline

1. Introduction
2. Theory of Lists
Outline

1 Introduction
2 Theory of Lists
3 General Theory of RDS
Outline

1. Introduction
2. Theory of Lists
3. General Theory of RDS
4. Theory of Acyclic Lists
1. Introduction
2. Theory of Lists
3. General Theory of RDS
4. Theory of Acyclic Lists
5. Theory of Lists with Specified Atoms
1. Introduction
2. Theory of Lists
3. General Theory of RDS
4. Theory of Acyclic Lists
5. Theory of Lists with Specified Atoms
6. Theory of Lists with Equality
Introduction

Theory of Lists
General Theory of RDS
Theory of Acyclic Lists
Theory of Lists with Specified Atoms
Theory of Lists with Equality
Introduction

Recursive data structures
Recursive data structures

The theory of recursive data structures (T_{RDS}) describes a set of data structures such as linked lists, stacks and binary trees that are ubiquitous in programming.
Recursive data structures

The theory of recursive data structures (T_{RDS}) describes a set of data structures such as linked lists, stacks and binary trees that are ubiquitous in programming. T_{RDS} formalizes reasoning over such structures.
Introduction
Theory of Lists
General Theory of RDS
Theory of Acyclic Lists
Theory of Lists with Specified Atoms
Theory of Lists with Equality

Theory of Lists
The theory of lists, T_{cons}, has signature:
Main points

The theory of lists, T_{cons}, has signature:

$$\Sigma_{cons} : \{\text{cons, car, cdr, atom, } =\}$$

where,
Main points

The theory of lists, T_{cons}, has signature:

$$\Sigma_{cons} : \{\text{cons, car, cdr, atom, } = \}$$

where,
Main points

The theory of lists, T_{cons}, has signature:

$$\Sigma_{cons} : \{\text{cons, car, cdr, atom, =}\}$$

where,

(i) cons is a binary function called the constructor: $\text{cons}(a, b)$ is the list obtained by concatenating a to b.
Main points

The theory of lists, T_{cons}, has signature:

$$\Sigma_{cons} : \{\text{cons, car, cdr, atom, } = \}$$

where,

(i) cons is a binary function called the constructor: $\text{cons}(a, b)$ is the list obtained by concatenating a to b.

(ii) car is a unary function, called the left projector: $\text{car}(\text{cons}(a, b)) = a$.
Main points

The theory of lists, T_{cons}, has signature:

$$
\Sigma_{cons} : \{\text{cons, car, cdr, atom, } = \}
$$

where,

(i) cons is a binary function called the constructor: $\text{cons}(a, b)$ is the list obtained by concatenating a to b.

(ii) car is a unary function, called the left projector: $\text{car}(\text{cons}(a, b)) = a$.

(iii) cdr is a unary function, called the right projector: $\text{cdr}(\text{cons}(a, b)) = b$.
The theory of lists, T_{cons}, has signature:

$$\Sigma_{cons} : \{\text{cons, car, cdr, atom, =}\}$$

where,

(i) cons is a binary function called the constructor: $\text{cons}(a, b)$ is the list obtained by concatenating a to b.

(ii) car is a unary function, called the left projector: $\text{car}(\text{cons}(a, b)) = a$.

(iii) cdr is a unary function, called the right projector: $\text{cdr}(\text{cons}(a, b)) = b$.

(iv) atom is a unary predicate: $\text{atom}(x)$ is true if and only if x is a single element list.
Theory of Lists

Main points

The theory of lists, T_{cons}, has signature:

$$\Sigma_{\text{cons}} : \{\text{cons, car, cdr, atom, } =\}$$

where,

(i) cons is a binary function called the constructor: $\text{cons}(a, b)$ is the list obtained by concatenating a to b.

(ii) car is a unary function, called the left projector: $\text{car}(\text{cons}(a, b)) = a$.

(iii) cdr is a unary function, called the right projector: $\text{cdr}(\text{cons}(a, b)) = b$.

(iv) atom is a unary predicate: $\text{atom}(x)$ is true if and only if x is a single element list.

(v) $=$ is a binary predicate.
Axiom set of the Theory of Lists
Axiom set of the Theory of Lists

Axiom set

The axiom set of T_{cons} is the following:
Axiom set

The axiom set of T_{cons} is the following:
The axiom set of T_{cons} is the following:

(\textit{A1}) The axioms of reflexivity, symmetry and transitivity of T_E.

Subramani First Order Theories
Axiom set of the Theory of Lists

The axiom set of T_{cons} is the following:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

(A2.) Instantiations of the function congruence schema for cons, car, and, cdr.
Axiom set of the Theory of Lists

The axiom set of T_{cons} is the following:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

(A2.) Instantiations of the function congruence schema for cons, car, and, cdr.

(A3.) Instantiation of the predicate congruence schema for atom.
Axiom set of the Theory of Lists

Axiom set

The axiom set of T_{cons} is the following:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

(A2.) Instantiations of the function congruence schema for cons, car, and, cdr.

(A3.) Instantiation of the predicate congruence schema for atom.

(A4.) $(\forall x)(\forall y) \text{car}(\text{cons}(x, y)) = x$.
Axiom set of the Theory of Lists

Axiom set

The axiom set of T_{cons} is the following:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

(A2.) Instantiations of the function congruence schema for cons, car, and, cdr.

(A3.) Instantiation of the predicate congruence schema for atom.

(A4.) $(\forall x)(\forall y) \text{car} (\text{cons}(x, y)) = x.$

(A5.) $(\forall x)(\forall y) \text{cdr} (\text{cons}(x, y)) = y.$
Axiom set of the Theory of Lists

The axiom set of T_{cons} is the following:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

(A2.) Instantiations of the function congruence schema for cons, car, and, cdr.

(A3.) Instantiation of the predicate congruence schema for atom.

(A4.) $(\forall x)(\forall y) \ \text{car}(\text{cons}(x, y)) = x$.

(A5.) $(\forall x)(\forall y) \ \text{cdr}(\text{cons}(x, y)) = y$.

(A6.) $(\forall x) \ ̸\text{atom}(x) \rightarrow \text{cons}(\text{car}(x), \text{cdr}(x)) = x$.
Axiom set of the Theory of Lists

The axiom set of T_{cons} is the following:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

(A2.) Instantiations of the function congruence schema for cons, car, and, cdr.

(A3.) Instantiation of the predicate congruence schema for atom.

(A4.) $\forall x \forall y \, \text{car}(\text{cons}(x, y)) = x$.

(A5.) $\forall x \forall y \, \text{cdr}(\text{cons}(x, y)) = y$.

(A6.) $\forall x \, \neg \text{atom}(x) \rightarrow \text{cons}(\text{car}(x), \text{cdr}(x)) = x$.

(A7.) $\forall x \forall y \, \neg \text{atom}(\text{cons}(x, y))$.
General Theory of RDS
General Theory of RDS

Main points
Main points

The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}.
Main points

The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:
The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:

(i) an n-ary constructor C.

Main points

The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:

(i) an n-ary constructor C.

(ii) n projection functions $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Theory of Lists</th>
<th>General Theory of RDS</th>
</tr>
</thead>
</table>
The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:

(i) an n-ary constructor C.
(ii) n projection functions $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.
(iii) One atom predicate atom_C.

Main points

The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:

(i) an n-ary constructor C.

(ii) n projection functions $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.

(iii) One atom predicate atom_C.

Associated with each RDS is an instantiation of the following axiom schema:
Main points

The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:

(i) an n-ary constructor C.

(ii) n projection functions $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.

(iii) One atom predicate atom_C.

Associated with each RDS is an instantiation of the following axiom schema:
The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:

(i) an n-ary constructor C.
(ii) n projection functions $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.
(iii) One atom predicate atom_C.

Associated with each RDS is an instantiation of the following axiom schema:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

Subramani First Order Theories
Main points

The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:

(i) an n-ary constructor C.

(ii) n projection functions π_1^C, π_2^C, \ldots, π_n^C.

(iii) One atom predicate atom_C.

Associated with each RDS is an instantiation of the following axiom schema:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

(A2.) Instantiations of the function congruence axiom schema for the constructor C and the set of projectors π_1^C, π_2^C, \ldots, π_n^C.
The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:

(i) an n-ary constructor C.

(ii) n projection functions $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.

(iii) One atom predicate atom_C.

Associated with each RDS is an instantiation of the following axiom schema:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

(A2.) Instantiations of the function congruence axiom schema for the constructor C and the set of projectors $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.

(A3.) An instantiation of the predicate congruence axiom schema for atom_C.

Subramani First Order Theories
Main points

The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:

(i) an n-ary constructor C.

(ii) n projection functions $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.

(iii) One atom predicate atom_C.

Associated with each RDS is an instantiation of the following axiom schema:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

(A2.) Instantiations of the function congruence axiom schema for the constructor C and the set of projectors $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.

(A3.) An instantiation of the predicate congruence axiom schema for atom_C.

(A4.) $(\forall x_1)(\forall x_2)\ldots(\forall x_n) \pi_i^C(C(x_1, x_2, \ldots, x_n)) = x_i$ for each $i \in \{1, 2, \ldots, n\}$.
Main points

The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:

(i) an n-ary constructor C.

(ii) n projection functions $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.

(iii) One atom predicate atom_C.

Associated with each RDS is an instantiation of the following axiom schema:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

(A2.) Instantiations of the function congruence axiom schema for the constructor C and the set of projectors $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.

(A3.) An instantiation of the predicate congruence axiom schema for atom_C.

(A4.) $(\forall x_1) (\forall x_2) \ldots (\forall x_n) \pi_i^C(C(x_1, x_2, \ldots, x_n)) = x_i$ for each $i \in \{1, 2, \ldots, n\}$.

(A5.) $(\forall x) (\neg \text{atom}_C(x) \rightarrow C(\pi_1^C(x), \pi_2^C(x), \ldots, \pi_n^C(x)) = x)$.
Main points

The theory of lists, T_{cons}, is an instance of the general theory of recursive data structures, T_{RDS}. Each RDS contributes the following to the signature:

(i) an n-ary constructor C.

(ii) n projection functions $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.

(iii) One atom predicate atom_C.

Associated with each RDS is an instantiation of the following axiom schema:

(A1.) The axioms of reflexivity, symmetry and transitivity of T_E.

(A2.) Instantiations of the function congruence axiom schema for the constructor C and the set of projectors $\pi_1^C, \pi_2^C, \ldots, \pi_n^C$.

(A3.) An instantiation of the predicate congruence axiom schema for atom_C.

(A4.) $(\forall x_1)(\forall x_2) \ldots (\forall x_n) \pi_i^C(C(x_1, x_2, \ldots, x_n)) = x_i$ for each $i \in \{1, 2, \ldots, n\}$.

(A5.) $(\forall x) \neg \text{atom}_C(x) \rightarrow C(\pi_1^C(x), \pi_2^C(x), \ldots, \pi_n^C(x)) = x$

(A6.) $(\forall x_1)(\forall x_2) \ldots (\forall x_n) \neg \text{atom}_C(C(x_1, x_2, \ldots, x_n))$.
Acylic lists
Acyclic lists

Main points
Acyclic lists

Main points
Main points

(i) The theory of acyclic lists, T_{cons}^+, is used to reason about structures such as stacks, which are naturally acyclic.
Main points

(i) The theory of acyclic lists, T_{cons}^+, is used to reason about structures such as stacks, which are naturally acyclic.

(ii) In addition to the axioms of T_{cons}, it has the following axiom schema:
Main points

(i) The theory of acyclic lists, T_{cons}^+, is used to reason about structures such as stacks, which are naturally acyclic.

(ii) In addition to the axioms of T_{cons}, it has the following axiom schema:

$$(\forall x) \: \text{car}(x) \neq x.$$
Main points

(i) The theory of acyclic lists, T^+_cons, is used to reason about structures such as stacks, which are naturally acyclic.

(ii) In addition to the axioms of T^+_cons, it has the following axiom schema:

(A1.) $(\forall x) \; \text{car}(x) \neq x.$

(A2.) $(\forall x) \; \text{cdr}(x) \neq x.$
Main points

(i) The theory of acyclic lists, T_{cons}^{+}, is used to reason about structures such as stacks, which are naturally acyclic.

(ii) In addition to the axioms of T_{cons}, it has the following axiom schema:

(A1.) $(\forall x) \text{car}(x) \neq x.$

(A2.) $(\forall x) \text{cdr}(x) \neq x.$

(A3.) $(\forall x) \text{car}(\text{car}(x)) \neq x.$
Main points

(i) The theory of acyclic lists, T_{cons}^+, is used to reason about structures such as stacks, which are naturally acyclic.

(ii) In addition to the axioms of T_{cons}, it has the following axiom schema:

\[(A1.) \ (\forall x) \ car(x) \neq x.\]
\[(A2.) \ (\forall x) \ cdr(x) \neq x.\]
\[(A3.) \ (\forall x) \ car(car(x)) \neq x.\]
\[(A4.) \ (\forall x) \ car(cdr(x)) \neq x.\]
Main points

(i) The theory of acyclic lists, T_{cons}^+, is used to reason about structures such as stacks, which are naturally acyclic.

(ii) In addition to the axioms of T_{cons}, it has the following axiom schema:

\(A_1 \) \hspace{0.5cm} (\forall x) \; \text{car}(x) \neq x.

\(A_2 \) \hspace{0.5cm} (\forall x) \; \text{cdr}(x) \neq x.

\(A_3 \) \hspace{0.5cm} (\forall x) \; \text{car}(ext{car}(x)) \neq x.

\(A_4 \) \hspace{0.5cm} (\forall x) \; \text{car}(ext{cdr}(x)) \neq x.

\(A_5 \) \hspace{0.5cm} (\forall x) \; \text{cdr}(ext{car}(x)) \neq x.
Main points

(i) The theory of acyclic lists, T_{cons}^+, is used to reason about structures such as stacks, which are naturally acyclic.

(ii) In addition to the axioms of T_{cons}, it has the following axiom schema:

(A1.) $(\forall x) \text{car}(x) \neq x$.
(A2.) $(\forall x) \text{cdr}(x) \neq x$.
(A3.) $(\forall x) \text{car(car}(x)) \neq x$.
(A4.) $(\forall x) \text{car(cdr}(x)) \neq x$.
(A5.) $(\forall x) \text{cdr(car}(x)) \neq x$.
(A6.)
Specifying atomic behavior
Specifying atomic behavior

Main point
Specifying atomic behavior

Main point

The axioms of T^+_{cons} do not specify the behavior of cons and cdr on atoms.
Specifying atomic behavior

Main point

The axioms of T_{cons}^+ do not specify the behavior of \texttt{cons} and \texttt{cdr} on atoms. Adding the axiom,

$$(\forall x) \ \text{atom}(x) \rightarrow [\text{atom(car}(x)) \land \text{atom(cdr}(x))]$$

gives a new theory, viz., $T_{\text{cons}}^{\text{atom}}$.
Theory of Lists with Equality
Theory of Lists with Equality

Main points
Main points

(i) The theory $T_{\text{cons}}^=$, is the theory of lists with equality.
Introduction

Theory of Lists

General Theory of RDS

Theory of Acyclic Lists

Theory of Lists with Specified Atoms

Theory of Lists with Equality

Theory of Lists with Equality

Main points

(i) The theory $T_{\text{cons}} = \text{equal}$, is the theory of lists with equality.

(ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
Main points

(i) The theory $T_{\text{cons}}^=\subseteq$, is the theory of lists with equality.

(ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.

(iii) Its signature is $\Sigma_E \cup \Sigma_{\text{cons}}$.
Main points

(i) The theory $T_{\text{cons}}^{=}$, is the theory of lists with equality.
(ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
(iii) Its signature is $\Sigma_E \cup \Sigma_{\text{cons}}$.
(iv) Its set of axioms is the union of the axiom set of T_E and T_{cons}.
Main points

(i) The theory T_{cons}, is the theory of lists with equality.
(ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
(iii) Its signature is $\Sigma_E \cup \Sigma_{\text{cons}}$.
(iv) Its set of axioms is the union of the axiom set of T_E and T_{cons}.

Example
Introduction
Theory of Lists
General Theory of RDS
Theory of Acyclic Lists
Theory of Lists with Specified Atoms
Theory of Lists with Equality

Main points

(i) The theory $T_{\text{cons}}^=$ is the theory of lists with equality.
(ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
(iii) Its signature is $\Sigma_E \cup \Sigma_{\text{cons}}$.
(iv) Its set of axioms is the union of the axiom set of T_E and T_{cons}.

Example
Consider the following formula:
Theory of Lists with Equality

Main points

(i) The theory $T_{cons}^=$, is the theory of lists with equality.

(ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.

(iii) Its signature is $\Sigma_E \cup \Sigma_{cons}$.

(iv) Its set of axioms is the union of the axiom set of T_E and T_{cons}.

Example

Consider the following formula:

$$F : [(\text{car}(a) = \text{car}(b)) \land (\text{cdr}(a) = \text{cdr}(b)) \land \neg \text{atom}(a) \land \neg \text{atom}(b)] \rightarrow [f(a) = f(b)]$$
Main points

(i) The theory $T_{\text{cons}}=\text{cons}$, is the theory of lists with equality.

(ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.

(iii) Its signature is $\Sigma_E \cup \Sigma_{\text{cons}}$.

(iv) Its set of axioms is the union of the axiom set of T_E and T_{cons}.

Example

Consider the following formula:

$$F : [(\text{car}(a) = \text{car}(b)) \land (\text{cdr}(a) = \text{cdr}(b)) \land \neg \text{atom}(a) \land \neg \text{atom}(b)] \rightarrow [f(a) = f(b)]$$

Is F $T_{\text{cons}}=\text{cons}$-valid?
Main points

(i) The theory $T_{cons}^=$, is the theory of lists with equality.
(ii) It is a combination of two theories, viz., the theory of equality and the theory of lists.
(iii) Its signature is $\Sigma_E \cup \Sigma_{cons}$.
(iv) Its set of axioms is the union of the axiom set of T_E and T_{cons}.

Example

Consider the following formula:

$$F : [(\text{car}(a) = \text{car}(b)) \land (\text{cdr}(a) = \text{cdr}(b)) \land \neg \text{atom}(a) \land \neg \text{atom}(b)] \rightarrow [f(a) = f(b)]$$

Is F $T_{cons}^=$-valid? Is it T_{cons}-valid?