Induction - Complete Induction

K. Subramani

1 Lane Department of Computer Science and Electrical Engineering
West Virginia University

April 1 2013
1 Complete Induction
Complete Induction or Strong Induction

Axiom Schema

\[(\forall n) \left((\forall n') (n' < n \rightarrow P(n')) \rightarrow P(n) \right) \rightarrow (\forall x) P(x). \]

Note: Do we need a base case? Has it been addressed?
Complete Induction or Strong Induction

Axiom Schema

\[\left(\forall n \right) \left(\forall n' \right) \left(\left(n' < n \right) \rightarrow P(n') \right) \rightarrow P(n) \rightarrow \left(\forall x \right) P(x). \]
Complete Induction or Strong Induction

Axiom Schema

\[((\forall n) (\forall n') ((n' < n) \rightarrow P(n')) \rightarrow P(n)] \rightarrow (\forall x) P(x). \]

Note

Do we need a base case? Has it been addressed?
Complete Induction or Strong Induction

Axiom Schema

\[\left[\left(\forall n \left(\forall n' \left((n' < n) \rightarrow P(n') \right) \right) \rightarrow P(n)\right] \rightarrow \left(\forall x\right) P(x).\]

Note

Do we need a base case?
Complete Induction or Strong Induction

Axiom Schema

\[((\forall n) (\forall n') ((n' < n) \rightarrow P(n')) \rightarrow P(n)) \rightarrow (\forall x) P(x). \]

Note

Do we need a base case? Has it been addressed?
Example

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen a and b.

Proof.
The conjecture is clearly true for 8, 9 and 10.
Assume that the conjecture holds for all r, $8 \leq r \leq k$.
Consider the integer $k+1$.
Without loss of generality, we assume that $(k+1) \geq 11$.
Observe that $(k+1) - 3 = k - 2$ is at least 8 and less than k.
As per the inductive hypothesis, $k-2$ can be expressed in the form $3a+5b$, for suitably chosen a and b.
It follows that $(k+1) = 3(a+1) + 5b$, can also be so expressed.
Applying the second principle of mathematical induction, we conclude that the conjecture is true.
Example

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10.
Example

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all r, $8 \leq r \leq k$.

Example

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all r, $8 \leq r \leq k$. Consider the integer $k + 1$.
Example

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all r, $8 \leq r \leq k$. Consider the integer $k + 1$. Without loss of generality, we assume that $(k + 1) \geq 11$.
Example

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all r, $8 \leq r \leq k$. Consider the integer $k + 1$. Without loss of generality, we assume that $(k + 1) \geq 11$. Observe that $(k + 1) - 3 = k - 2$ is at least 8 and less than k.

As per the inductive hypothesis, $k - 2$ can be expressed in the form $3a + 5b$, for suitably chosen a and b. It follows that $(k + 1) = 3(a + 1) + 5b$, can also be so expressed.

Applying the second principle of mathematical induction, we conclude that the conjecture is true.
Example

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all r, $8 \leq r \leq k$. Consider the integer $k + 1$. Without loss of generality, we assume that $(k + 1) \geq 11$. Observe that $(k + 1) - 3 = k - 2$ is at least 8 and less than k. As per the inductive hypothesis, $k - 2$ can be expressed in the form $3a + 5b$, for suitably chosen a and b. It follows that $(k + 1) = 3(a + 1) + 5b$, can also be so expressed. Applying the second principle of mathematical induction, we conclude that the conjecture is true.
Example
Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen a and b.

Proof.
The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all r, $8 \leq r \leq k$. Consider the integer $k + 1$. Without loss of generality, we assume that $(k + 1) \geq 11$. Observe that $(k + 1) - 3 = k - 2$ is at least 8 and less than k. As per the inductive hypothesis, $k - 2$ can be expressed in the form $3a + 5b$, for suitably chosen a and b. It follows that $(k + 1) = 3 \cdot (a + 1) + 5 \cdot b$, can also be so expressed.
Example

Show that every number greater than or equal to 8 can be expressed in the form $5 \cdot a + 3 \cdot b$, for suitably chosen a and b.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all r, $8 \leq r \leq k$. Consider the integer $k + 1$. Without loss of generality, we assume that $(k + 1) \geq 11$. Observe that $(k + 1) - 3 = k - 2$ is at least 8 and less than k. As per the inductive hypothesis, $k - 2$ can be expressed in the form $3a + 5b$, for suitably chosen a and b. It follows that $(k + 1) = 3 \cdot (a + 1) + 5 \cdot b$, can also be so expressed. Applying the second principle of mathematical induction, we conclude that the conjecture is true.
The theory T^*_{PA}

Consider the theory of T^*_{PA}, which is the theory of Peano arithmetic T_{PA}, augmented by the following axioms:

- A_1: $(\forall x)(\forall y) (x < y) \rightarrow [\text{quot}(x, y) = 0].$

- A_2: $(\forall x)(\forall y) (y > 0) \rightarrow [\text{quot}(x + y, y) = \text{quot}(x, y) + 1].$

- A_3: $(\forall x)(\forall y) (x < y) \rightarrow [\text{rem}(x, y) = x].$

- A_4: $(\forall x)(\forall y) (y > 0) \rightarrow [\text{rem}(x + y, y) = \text{rem}(x, y)].$

Example: Argue that $(\forall x)(\forall y) (y > 0) \rightarrow [\text{rem}(x, y) < y].$
The theory T^*_PA is the theory of Peano arithmetic T_PA, augmented by the following axioms:

A1. $\forall x \forall y (x < y) \rightarrow [\text{quot}(x, y) = 0]$.

A2. $\forall x \forall y (y > 0) \rightarrow [\text{quot}(x + y, y) = \text{quot}(x, y) + 1]$.

A3. $\forall x \forall y (x < y) \rightarrow [\text{rem}(x, y) = x]$.

A4. $\forall x \forall y (y > 0) \rightarrow [\text{rem}(x + y, y) = \text{rem}(x, y)]$.

Example: Argue that $\forall x \forall y (y > 0) \rightarrow [\text{rem}(x, y) < y]$.
The theory T^*_{PA}

Peano Arithmetic with division

Consider the theory of T^*_{PA}, which is the theory of Peano arithmetic T_{PA}, augmented by the following axioms:

1. $(\forall x)(\forall y) (x < y \rightarrow [\text{quot}(x, y) = 0])$
2. $(\forall x)(\forall y) (y > 0 \rightarrow [\text{quot}(x + y, y) = \text{quot}(x, y) + 1])$
3. $(\forall x)(\forall y) (x < y \rightarrow [\text{rem}(x, y) = x])$
4. $(\forall x)(\forall y) (y > 0 \rightarrow [\text{rem}(x + y, y) = \text{rem}(x, y)])$

Example

Argue that $(\forall x)(\forall y) (y > 0 \rightarrow [\text{rem}(x, y) < y])$.
The theory T_{PA}^*

Peano Arithmetic with division

Consider the theory of T_{PA}^*, which is the theory of Peano arithmetic T_{PA}, augmented by the following axioms:
The theory T_{PA}^*

Peano Arithmetic with division

Consider the theory of T_{PA}^*, which is the theory of Peano arithmetic T_{PA}, augmented by the following axioms:

A_1. $(\forall x)(\forall y) (x < y) \rightarrow [\text{quot}(x, y) = \text{rem}(x, y)]$
Peano Arithmetic with division

Consider the theory of T^*_PA, which is the theory of Peano arithmetic T_{PA}, augmented by the following axioms:

$A1. \ (\forall x)(\forall y) \ (x < y) \rightarrow [\text{quot}(x, y) = 0].$
The theory T_{PA}^*

Consider the theory of T_{PA}^*, which is the theory of Peano arithmetic T_{PA}, augmented by the following axioms:

$A1$. $(\forall x)(\forall y) (x < y) \rightarrow [\text{quot}(x, y) = 0]$.

$A2$. $(\forall x)(\forall y) (y > 0) \rightarrow [\text{quot}(x + y, y) =$
The theory T^*_{PA}

Peano Arithmetic with division

Consider the theory of T^*_{PA}, which is the theory of Peano arithmetic T_{PA}, augmented by the following axioms:

$A1$. $(\forall x)(\forall y) (x < y) \rightarrow [\text{quot}(x, y) = 0].$

$A2$. $(\forall x)(\forall y) (y > 0) \rightarrow [\text{quot}(x + y, y) = \text{quot}(x, y) + 1].$
The theory T^*_PA

Consider the theory of T^*_PA, which is the theory of Peano arithmetic T_{PA}, augmented by the following axioms:

A_1. $(\forall x)(\forall y) (x < y) \rightarrow [\text{quot}(x, y) = 0]$.

A_2. $(\forall x)(\forall y) (y > 0) \rightarrow [\text{quot}(x + y, y) = \text{quot}(x, y) + 1]$.

A_3. $(\forall x)(\forall y) (x < y) \rightarrow [\text{rem}(x, y) = \ldots]$
Consider the theory of T^*_PA, which is the theory of Peano arithmetic T_{PA}, augmented by the following axioms:

\begin{enumerate}
 \item $\forall x \forall y (x < y) \rightarrow [\text{quot}(x, y) = 0].$
 \item $\forall x \forall y (y > 0) \rightarrow [\text{quot}(x + y, y) = \text{quot}(x, y) + 1].$
 \item $\forall x \forall y (x < y) \rightarrow [\text{rem}(x, y) = x].$
\end{enumerate}
The theory T^*_PA

Peano Arithmetic with division

Consider the theory of T^*_PA, which is the theory of Peano arithmetic $T\text{PA}$, augmented by the following axioms:

$A1. \quad (\forall x)(\forall y) (x < y) \rightarrow [\text{quot}(x, y) = 0].$

$A2. \quad (\forall x)(\forall y) (y > 0) \rightarrow [\text{quot}(x + y, y) = \text{quot}(x, y) + 1].$

$A3. \quad (\forall x)(\forall y) (x < y) \rightarrow [\text{rem}(x, y) = x].$

$A4. \quad (\forall x)(\forall y) (y > 0) \rightarrow [\text{rem}(x + y, y) =$
The theory T^*_PA

Peano Arithmetic with division

Consider the theory of T^*_PA, which is the theory of Peano arithmetic T_{PA}, augmented by the following axioms:

A1. $(\forall x)(\forall y) (x < y) \rightarrow [\text{quot}(x, y) = 0]$.

A2. $(\forall x)(\forall y) (y > 0) \rightarrow [\text{quot}(x + y, y) = \text{quot}(x, y) + 1]$.

A3. $(\forall x)(\forall y) (x < y) \rightarrow [\text{rem}(x, y) = x]$.

A4. $(\forall x)(\forall y) (y > 0) \rightarrow [\text{rem}(x + y, y) = \text{rem}(x, y)]$.
Complete Induction

The theory T_{PA}^*

Consider the theory of T_{PA}^*, which is the theory of Peano arithmetic T_{PA}, augmented by the following axioms:

A_1. $(\forall x)(\forall y) (x < y) \rightarrow [\text{quot}(x, y) = 0]$.

A_2. $(\forall x)(\forall y) (y > 0) \rightarrow [\text{quot}(x + y, y) = \text{quot}(x, y) + 1]$.

A_3. $(\forall x)(\forall y) (x < y) \rightarrow [\text{rem}(x, y) = x]$.

A_4. $(\forall x)(\forall y) (y > 0) \rightarrow [\text{rem}(x + y, y) = \text{rem}(x, y)]$.

Example

Argue that

$(\forall x)(\forall y) (y > 0) \rightarrow [\text{rem}(x, y) < y]$.