Feedback Vertex Set Problem: Part 1

Vahan Mkrtchyan

Lane Department of Computer Science and Electrical Engineering
West Virginia University

February 18, 2014
The Formulation of the Problem

We are given an undirected graph $G = (V, E)$
The Formulation of the Problem

We are given an undirected graph $G = (V, E)$ and a function w assigning non-negative weights to its vertices.
The Formulation of the Problem

We are given an undirected graph $G = (V, E)$ and a function w assigning non-negative weights to its vertices. The objective is to find a minimum weight subset of V, whose removal leaves an acyclic graph.
The Formulation of the Problem

We are given an undirected graph $G = (V, E)$ and a function w assigning non-negative weights to its vertices. The objective is to find a minimum weight subset of V, whose removal leaves an acyclic graph.

Definition

A subset of V whose removal from G leaves an acyclic graph, is called a feedback set.
The Formulation of the Problem

We are given an undirected graph $G = (V, E)$ and a function w assigning non-negative weights to its vertices. The objective is to find a minimum weight subset of V, whose removal leaves an acyclic graph.

Definition

A subset of V whose removal from G leaves an acyclic graph, is called a feedback set.

Remark

Observe that any graph possesses a feedback set.
Recalling Some Topics

We need to recall the notion of a field, linear space over a field, and the directed sum of linear spaces.
Recalling Some Topics

We need to recall the notion of a field, linear space over a field, and the directed sum of linear spaces.

Source

You may have a look at any book on General and Linear Algebra.
Recalling Some Topics

We need to recall the notion of a field, linear space over a field, and the directed sum of linear spaces.

Source

You may have a look at any book on General and Linear Algebra. Also wiki provides good source of information where one can recall basic concepts and facts.
Definition

Let $GF(2)$ denote the set $\{0, 1\}$ with the operations $+$ and \cdot defined on its elements by the following rules: $0 + 0 = 0$, $0 + 1 = 1$, $1 + 0 = 1$, $1 + 1 = 0$.

Definition

For a positive integer $m \geq 1$, let $GF(2)^m$ denote the set of all vectors of length m, whose elements are from $GF(2)$. If $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_m)$ are two vectors from $GF(2)^m$, then the vector $x + y$ is defined as follows:

$x + y = (x_1 + y_1, \ldots, x_m + y_m)$.

If $\lambda \in GF(2)$ and $x = (x_1, \ldots, x_m) \in GF(2)^m$, then the vector $\lambda \cdot x$ is defined as $\lambda \cdot x = (\lambda \cdot x_1, \ldots, \lambda \cdot x_m)$.

Definition

A non-empty set $L \subseteq GF(2)^m$ is defined to be a linear space over $GF(2)$, if for any $x, y \in L$ one has $x + y \in L$.

Remark

Observe that both of $L = \{0 = (0, \ldots, 0)\}$ and $L = GF(2)^m$ form a linear space over $GF(2)$.

Vahan Mkrtchyan
Feedback Vertex Set Problem: Part 1
Definition

Let $GF(2)$ denote the set $\{0, 1\}$ with the operations $+$ and \cdot defined on its elements by the following rules: $0 + 0 = 0$, $0 + 1 = 1$, $1 + 0 = 1$, $1 + 1 = 0$, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.
The Field $GF(2)$ and the vector space $GF(2)^m$

Definition

Let $GF(2)$ denote the set $\{0, 1\}$ with the operations $+$ and \cdot defined on its elements by the following rules: $0 + 0 = 0$, $0 + 1 = 1$, $1 + 0 = 1$, $1 + 1 = 0$, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.

Definition

For a positive integer $m \geq 1$, let $GF(2)^m$ denote the set of all vectors of length m, whose elements are from $GF(2)$.

Remark

Observe that both of $L = \{0\} = \{(0, \ldots, 0)\}$ and $L = GF(2)^m$ form a linear space over $GF(2)$.

Vahan Mkrtchyan
Feedback Vertex Set Problem: Part 1
The Field $GF(2)$ and the vector space $GF(2)^m$

Definition

Let $GF(2)$ denote the set $\{0, 1\}$ with the operations $+$ and \cdot defined on its elements by the following rules: $0 + 0 = 0$, $0 + 1 = 1$, $1 + 0 = 1$, $1 + 1 = 0$, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.

Definition

For a positive integer $m \geq 1$, let $GF(2)^m$ denote the set of all vectors of length m, whose elements are from $GF(2)$. If $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_m)$ are two vectors from $GF(2)^m$, then the vector $x + y$ is defined as follows: $x + y = (x_1 + y_1, \ldots, x_m + y_m)$.
Definition

Let $GF(2)$ denote the set $\{0, 1\}$ with the operations $+$ and \cdot defined on its elements by the following rules: $0 + 0 = 0$, $0 + 1 = 1$, $1 + 0 = 1$, $1 + 1 = 0$, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.

Definition

For a positive integer $m \geq 1$, let $GF(2)^m$ denote the set of all vectors of length m, whose elements are from $GF(2)$. If $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_m)$ are two vectors from $GF(2)^m$, then the vector $x + y$ is defined as follows: $x + y = (x_1 + y_1, \ldots, x_m + y_m)$. If $\lambda \in GF(2)$ and $x = (x_1, \ldots, x_m) \in GF(2)^m$, then the vector $\lambda \cdot x$ is defined as $\lambda \cdot x = (\lambda \cdot x_1, \ldots, \lambda \cdot x_m)$.
Definition

Let $GF(2)$ denote the set $\{0, 1\}$ with the operations $+$ and \cdot defined on its elements by the following rules: $0 + 0 = 0$, $0 + 1 = 1$, $1 + 0 = 1$, $1 + 1 = 0$, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.

Definition

For a positive integer $m \geq 1$, let $GF(2)^m$ denote the set of all vectors of length m, whose elements are from $GF(2)$. If $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_m)$ are two vectors from $GF(2)^m$, then the vector $x + y$ is defined as follows: $x + y = (x_1 + y_1, \ldots, x_m + y_m)$. If $\lambda \in GF(2)$ and $x = (x_1, \ldots, x_m) \in GF(2)^m$, then the vector $\lambda \cdot x$ is defined as $\lambda \cdot x = (\lambda \cdot x_1, \ldots, \lambda \cdot x_m)$.

Definition

A non-empty set $L \subseteq GF(2)^m$ is defined to be a linear space over $GF(2)$, if for any $x, y \in L$ one has $x + y \in L$.
Definition

Let $GF(2)$ denote the set $\{0, 1\}$ with the operations $+$ and \cdot defined on its elements by the following rules: $0 + 0 = 0$, $0 + 1 = 1$, $1 + 0 = 1$, $1 + 1 = 0$, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, and $1 \cdot 1 = 1$.

Definition

For a positive integer $m \geq 1$, let $GF(2)^m$ denote the set of all vectors of length m, whose elements are from $GF(2)$. If $x = (x_1, ..., x_m)$ and $y = (y_1, ..., y_m)$ are two vectors from $GF(2)^m$, then the vector $x + y$ is defined as follows: $x + y = (x_1 + y_1, ..., x_m + y_m)$. If $\lambda \in GF(2)$ and $x = (x_1, ..., x_m) \in GF(2)^m$, then the vector $\lambda \cdot x$ is defined as $\lambda \cdot x = (\lambda \cdot x_1, ..., \lambda \cdot x_m)$.

Definition

A non-empty set $L \subseteq GF(2)^m$ is defined to be a linear space over $GF(2)$, if for any $x, y \in L$ one has $x + y \in L$.

Remark

Observe that both of $L = \{0 = (0, ..., 0)\}$ and $L = GF(2)^m$ form a linear space over $GF(2)$.
Definition

If \(L, L' \subseteq GF(2)^m \) are two linear spaces over \(GF(2) \), and \(L \subseteq L' \), then \(L \) is said to be a subspace of \(L' \).
Linear Subspace, Linear independence and the dimension of a subspace

Definition

If $L, L' \subseteq GF(2)^m$ are two linear spaces over $GF(2)$, and $L \subseteq L'$, then L is said to be a subspace of L'.

Definition

If x_1, \ldots, x_k are k vectors from $GF(2)^m$, then these vectors are said to be linearly independent over $GF(2)$, if for any $\lambda_1, \ldots, \lambda_k \in GF(2)$ the equality

\[\lambda_1 \cdot x_1 + \ldots + \lambda_k \cdot x_k = 0 = (0, \ldots, 0) \]

implies that $\lambda_1 = \ldots = \lambda_k = 0$.

Remark

Observe that the dimension of $L = \{0 = (0, \ldots, 0)\}$ is zero, while it can be shown that the dimension of $L = GF(2)^m$ is m.

Vahan Mkrtchyan
Feedback Vertex Set Problem: Part 1
Linear Subspace, Linear independence and the dimension of a subspace

Definition

If $L, L' \subseteq GF(2)^m$ are two linear spaces over $GF(2)$, and $L \subseteq L'$, then L is said to be a subspace of L'.

Definition

If x_1, \ldots, x_k are k vectors from $GF(2)^m$, then these vectors are said to be linearly independent over $GF(2)$, if for any $\lambda_1, \ldots, \lambda_k \in GF(2)$ the equality $\lambda_1 \cdot x_1 + \ldots + \lambda_k \cdot x_k = 0 = (0, \ldots, 0)$ implies that $\lambda_1 = \ldots = \lambda_k = 0$.

Definition

If $L \subseteq GF(2)^m$ is a linear space, then its dimension is defined to be the maximum number of linearly independent vectors from L.

Remark

Observe that the dimension of $L = \{0 = (0, \ldots, 0)\}$ is zero, while it can be shown that the dimension of $L = GF(2)^m$ is m.

Vahan Mkrtchyan
Feedback Vertex Set Problem: Part 1
Definition

If $L, L' \subseteq GF(2)^m$ are two linear spaces over $GF(2)$, and $L \subseteq L'$, then L is said to be a subspace of L'.

Definition

If $x_1, ..., x_k$ are k vectors from $GF(2)^m$, then these vectors are said to be linearly independent over $GF(2)$, if for any $\lambda_1, ..., \lambda_k \in GF(2)$ the equality $\lambda_1 \cdot x_1 + ... + \lambda_k \cdot x_k = 0 = (0, ..., 0)$ implies that $\lambda_1 = ... = \lambda_k = 0$.

Definition

If $L \subseteq GF(2)^m$ is a linear space, then its dimension is defined to be the maximum number of linearly independent vectors from L.

Remark

Observe that the dimension of $L = \{0 = (0, ..., 0)\}$ is zero, while it can be shown that the dimension of $L = GF(2)^m$ is m.
Definition

If x_1, \ldots, x_k are k vectors from $GF(2)^m$, then an expression of the form

$$\lambda_1 \cdot x_1 + \ldots + \lambda_k \cdot x_k$$

is called a linear combination of x_1, \ldots, x_k.

This is in fact the smallest subspace of $GF(2)^m$ that contains the vectors x_1, \ldots, x_k.

Vahan Mkrtchyan
The span of the vectors x_1, \ldots, x_k

Definition

If x_1, \ldots, x_k are k vectors from $GF(2)^m$, then an expression of the form $\lambda_1 \cdot x_1 + \ldots + \lambda_k \cdot x_k$ is called a linear combination of x_1, \ldots, x_k.

Definition

The set of all ($= 2^k$) linear combinations of x_1, \ldots, x_k forms a linear space, which is called the span of the vectors x_1, \ldots, x_k.
The span of the vectors x_1, \ldots, x_k

Definition

If x_1, \ldots, x_k are k vectors from $GF(2)^m$, then an expression of the form $\lambda_1 \cdot x_1 + \ldots + \lambda_k \cdot x_k$ is called a linear combination of x_1, \ldots, x_k.

Definition

The set of all ($= 2^k$) linear combinations of x_1, \ldots, x_k forms a linear space, which is called the span of the vectors x_1, \ldots, x_k. This is in fact the smallest subspace of $GF(2)^m$ that contains the vectors x_1, \ldots, x_k.
Definition

Let L, L', L'' be linear subspaces of $GF(2)^m$. Then L is said to be directed sum of subspaces L' and L'', if for each $x \in L$ there exist exactly one $x' \in L'$ and exactly one $x'' \in L''$, such that $x = x' + x''$. This fact will be denoted by $L = L' \oplus L''$.

Theorem

If $L = L' \oplus L''$, then the dimension of L is equal to the sum of dimensions of L' and L''.

Vahan Mkrtchyan

Feedback Vertex Set Problem: Part 1
Definition

Let L, L', L'' be linear subspaces of $GF(2)^m$. Then L is said to be directed sum of subspaces L' and L'', if for each $x \in L$ there exist exactly one $x' \in L'$ and exactly one $x'' \in L''$, such that $x = x' + x''$. This fact will be denoted by $L = L' \oplus L''$. Theorem

If $L = L' \oplus L''$, then the dimension of L is equal to the sum of dimensions L' and L''.

Vahan Mkrtchyan Feedback Vertex Set Problem: Part 1
The directed some of linear subspaces and their dimension

Definition

Let L, L', L'' be linear subspaces of $GF(2)^m$. Then L is said to be directed sum of subspaces L' and L'', if for each $x \in L$ there exist exactly one $x' \in L'$ and exactly one $x'' \in L''$, such that $x = x' + x''$. This fact will be denoted by $L = L' \oplus L''$.

Theorem

If $L = L' \oplus L''$, then the dimension of L is equal to the sum of dimensions L' and L''.

Vahan Mkrtchyan

Feedback Vertex Set Problem: Part 1
Definition

Let L, L', L'' be linear subspaces of $GF(2)^m$. Then L is said to be directed sum of subspaces L' and L'', if for each $x \in L$ there exist exactly one $x' \in L'$ and exactly one $x'' \in L''$, such that $x = x' + x''$. This fact will be denoted by $L = L' \oplus L''$.

Theorem

If $L = L' \oplus L''$, then the dimension of L is equal to the sum of dimensions L' and L''.
Let G be a graph, which contains m edges.
The Cycle Space of a Graph

The Characteristic vector of a cycle

Let G be a graph, which contains m edges. Assume that its edges are ordered as follows: e_1, \ldots, e_m.

The Cycle Space

The span of characteristic vectors corresponding to all simple cycles of G, is called the cycle space of the graph G.

Vahan Mkrtchyan

Feedback Vertex Set Problem: Part 1
Let G be a graph, which contains m edges. Assume that its edges are ordered as follows: e_1, \ldots, e_m. Let C be a simple cycle of G.

The Characteristic vector of a cycle

Consider the characteristic vector of C defined as follows:

$$\chi_C = (l_1(C), \ldots, l_m(C)),$$

where $l_i(C) = 1$ if $e_i \in C$, and $l_i(C) = 0$ if $e_i \notin C$.

The Cycle Space

The span of characteristic vectors corresponding to all simple cycles of G, is called cycle space of the graph G.

Vahan Mkrtchyan

Feedback Vertex Set Problem: Part 1
Let G be a graph, which contains m edges. Assume that its edges are ordered as follows: e_1, \ldots, e_m. Let C be a simple cycle of G. Consider the characteristic vector of C defined as follows: $\chi_C = (l_1(C), \ldots, l_m(C))$, where $l_i(C) = 1$ if $e_i \in C$, and $l_i(C) = 0$ if $e_i \notin C$.
The Characteristic vector of a cycle

Let G be a graph, which contains m edges. Assume that its edges are ordered as follows: e_1, \ldots, e_m. Let C be a simple cycle of G. Consider the characteristic vector of C defined as follows: $\chi_C = (l_1(C), \ldots, l_m(C))$, where $l_i(C) = 1$ if $e_i \in C$, and $l_i(C) = 0$ if $e_i \notin C$.

The Cycle Space

The span of characteristic vectors corresponding to all simple cycles of G, is called cycle space of the graph G.
The Dimension of the Cycle Space

Theorem

The dimension of the cycle space of a graph \(G = (V, E) \), denoted by \(\text{cyc}(G) \), is given by the formula: \(\text{cyc}(G) = |E| - |V| + \text{comps}(G) \), where \(\text{comps}(G) \) is the number of connected components of \(G \).

Proof.

The proof can be found in chapter 6 of Vazirani’s book. It uses the notion of an orthogonal subspace in Euclidean spaces.
Theorem

The dimension of the cycle space of a graph \(G = (V, E) \), denoted by \(\text{cyc}(G) \), is given by the formula: \(\text{cyc}(G) = |E| - |V| + \text{comps}(G) \), where \(\text{comps}(G) \) is the number of connected components of \(G \).

Definition

\(\text{cyc}(G) \) is called the cyclomatic number of a graph \(G \).
The Dimension of the Cycle Space

Theorem

The dimension of the cycle space of a graph $G = (V, E)$, denoted by $\text{cyc}(G)$, is given by the formula: $\text{cyc}(G) = |E| - |V| + \text{comps}(G)$, where $\text{comps}(G)$ is the number of connected components of G.

Definition

$cyc(G)$ is called the cyclomatic number of a graph G.

Proof.

The proof can be found in chapter 6 of Vazirani’s book. It uses the notion of an orthogonal subspace in Euclidean spaces.