A PTAS for Minimum Makespan

Vahan Mkrtchyan¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

March 24, 2014

Outline	

1 Preliminaries

1 Preliminaries

2 Problem definition

- 1 Preliminaries
- 2 Problem definition
- 3 Definition of PTAS

1 Preliminaries

- 2 Problem definition
- 3 Definition of PTAS

4 DP for Exact Restricted Bin Packing

1 Preliminaries

- 2 Problem definition
- 3 Definition of PTAS

- 4 DP for Exact Restricted Bin Packing
- 5 The Core Algorithm

1 Preliminaries

- 2 Problem definition
- 3 Definition of PTAS

4 DP for Exact Restricted Bin Packing
5 The Core Algorithm
6 A PTAS for Minimum Makespan

Outline

Problem definition.

- Problem definition.
- 2 Definition of PTAS.

- Problem definition.
- 2 Definition of PTAS.
- OP for Exact Restricted Bin Packing.

- Problem definition.
- 2 Definition of PTAS.
- OP for Exact Restricted Bin Packing.
- The Core Algorithm.

- Problem definition.
- 2 Definition of PTAS.
- OP for Exact Restricted Bin Packing.
- The Core Algorithm.
- A PTAS for Minimum Makespan.

Problem Statement

We are given the processing times $p_1, ..., p_n$ of *n* jobs and integer *m*.

Problem Statement

We are given the processing times $p_1, ..., p_n$ of *n* jobs and integer *m*. The goal is to find an assignment of the jobs to *m* identical machines, so that the final completion time (the makespan) is minimized.

Problem Statement

We are given the processing times $p_1, ..., p_n$ of *n* jobs and integer *m*. The goal is to find an assignment of the jobs to *m* identical machines, so that the final completion time (the makespan) is minimized.

The Bound for OPT

If $L = \max\{\frac{1}{m} \cdot \sum_{i=1}^{n} p_i, \max\{p_i\}\}$, then we have that: $L \leq OPT \leq 2 \cdot L$.

Problem Statement

We are given the processing times $p_1, ..., p_n$ of *n* jobs and integer *m*. The goal is to find an assignment of the jobs to *m* identical machines, so that the final completion time (the makespan) is minimized.

The Bound for OPT

If
$$L = \max\{\frac{1}{m} \cdot \sum_{i=1}^{n} p_i, \max\{p_i\}\}$$
, then we have that: $L \leq OPT \leq 2 \cdot L$.

Remark

There exists a schedule with makespan t if and only if n objects of sizes $p_1, ..., p_n$ can be packed into m bins of capacity t.

Problem Statement

We are given the processing times $p_1, ..., p_n$ of *n* jobs and integer *m*. The goal is to find an assignment of the jobs to *m* identical machines, so that the final completion time (the makespan) is minimized.

The Bound for OPT

If
$$L = \max\{\frac{1}{m} \cdot \sum_{i=1}^{n} p_i, \max\{p_i\}\}$$
, then we have that: $L \leq OPT \leq 2 \cdot L$.

Remark

There exists a schedule with makespan t if and only if n objects of sizes $p_1, ..., p_n$ can be packed into m bins of capacity t. If I is the set of sizes $p_1, ..., p_n$ and bins(l, t) is the minimum number of bins needed to pack these objects,

Problem Statement

We are given the processing times $p_1, ..., p_n$ of *n* jobs and integer *m*. The goal is to find an assignment of the jobs to *m* identical machines, so that the final completion time (the makespan) is minimized.

The Bound for OPT

If
$$L = \max\{\frac{1}{m} \cdot \sum_{i=1}^{n} p_i, \max\{p_i\}\}$$
, then we have that: $L \leq OPT \leq 2 \cdot L$.

Remark

There exists a schedule with makespan t if and only if n objects of sizes $p_1, ..., p_n$ can be packed into m bins of capacity t. If I is the set of sizes $p_1, ..., p_n$ and bins(I, t) is the minimum number of bins needed to pack these objects, then one has the following equality:

 $OPT(makespan) = \min\{t : bins(l, t) \le m\}.$

PTAS

Definition

A PTAS for a minimization problem Π is an algorithm *A*, which for all instances *I* of Π and error-parameter $\varepsilon > 0$, returns a solution of cost A(I), such that $A(I) \le (1 + \varepsilon) \cdot OPT$.

PTAS

Definition

A PTAS for a minimization problem Π is an algorithm *A*, which for all instances *I* of Π and error-parameter $\varepsilon > 0$, returns a solution of cost A(I), such that $A(I) \leq (1 + \varepsilon) \cdot OPT$. The running time of the algorithm must be polynomial for each fixed value of ε .

Some Notation

Suppose we are given *n* items to pack into bins of size *t*.

Some Notation

Suppose we are given *n* items to pack into bins of size *t*. Moreover, assume that they can have only *k* different sizes.

Some Notation

Suppose we are given *n* items to pack into bins of size *t*. Moreover, assume that they can have only *k* different sizes. Let $I = (i_1, ..., i_k)$ denote the input to such a problem, where i_j denotes the number of items *j*.

Some Notation

Suppose we are given *n* items to pack into bins of size *t*. Moreover, assume that they can have only *k* different sizes. Let $I = (i_1, ..., i_k)$ denote the input to such a problem, where i_j denotes the number of items *j*. Let $Bins(i_1, ..., i_k)$ be the minimum number of bins needed to pack these items.

Some Notation

Suppose we are given *n* items to pack into bins of size *t*. Moreover, assume that they can have only *k* different sizes. Let $I = (i_1, ..., i_k)$ denote the input to such a problem, where i_j denotes the number of items *j*. Let $Bins(i_1, ..., i_k)$ be the minimum number of bins needed to pack these items.

Description of DP

First compute the set *Q* of all *k*-tuples $(q_1, ..., q_k)$, such that $Bins(q_1, ..., q_k) = 1$.

Some Notation

Suppose we are given *n* items to pack into bins of size *t*. Moreover, assume that they can have only *k* different sizes. Let $I = (i_1, ..., i_k)$ denote the input to such a problem, where i_j denotes the number of items *j*. Let $Bins(i_1, ..., i_k)$ be the minimum number of bins needed to pack these items.

Description of DP

First compute the set Q of all k-tuples $(q_1, ..., q_k)$, such that $Bins(q_1, ..., q_k) = 1$. There are at most $O(n^k)$ of them and they can be found in $O(n^k)$ time.

Some Notation

Suppose we are given *n* items to pack into bins of size *t*. Moreover, assume that they can have only *k* different sizes. Let $I = (i_1, ..., i_k)$ denote the input to such a problem, where i_j denotes the number of items *j*. Let $Bins(i_1, ..., i_k)$ be the minimum number of bins needed to pack these items.

Description of DP

First compute the set Q of all k-tuples $(q_1, ..., q_k)$, such that $Bins(q_1, ..., q_k) = 1$. There are at most $O(n^k)$ of them and they can be found in $O(n^k)$ time.

• For each $q \in Q$ set BINS(q) = 1.

Some Notation

Suppose we are given *n* items to pack into bins of size *t*. Moreover, assume that they can have only *k* different sizes. Let $I = (i_1, ..., i_k)$ denote the input to such a problem, where i_j denotes the number of items *j*. Let $Bins(i_1, ..., i_k)$ be the minimum number of bins needed to pack these items.

Description of DP

First compute the set Q of all k-tuples $(q_1, ..., q_k)$, such that $Bins(q_1, ..., q_k) = 1$. There are at most $O(n^k)$ of them and they can be found in $O(n^k)$ time.

- For each $q \in Q$ set BINS(q) = 1.
- If there exists *j*, such that $i_j < 0$, then $Bins(i_1, ..., i_k) = +\infty$.

Some Notation

Suppose we are given *n* items to pack into bins of size *t*. Moreover, assume that they can have only *k* different sizes. Let $I = (i_1, ..., i_k)$ denote the input to such a problem, where i_j denotes the number of items *j*. Let $Bins(i_1, ..., i_k)$ be the minimum number of bins needed to pack these items.

Description of DP

First compute the set Q of all k-tuples $(q_1, ..., q_k)$, such that $Bins(q_1, ..., q_k) = 1$. There are at most $O(n^k)$ of them and they can be found in $O(n^k)$ time.

- For each $q \in Q$ set BINS(q) = 1.
- If there exists *j*, such that *i_j* < 0, then *Bins*(*i*₁,...,*i_k*) = +∞.
- For all other q's use the following recurrence:

$$Bins(i_1,...,i_k) = 1 + \min_{(q_1,...,q_k) \in Q} Bins(i_1 - q_1,...,i_k - q_k).$$

Some Notation

Suppose we are given *n* items to pack into bins of size *t*. Moreover, assume that they can have only *k* different sizes. Let $I = (i_1, ..., i_k)$ denote the input to such a problem, where i_j denotes the number of items *j*. Let $Bins(i_1, ..., i_k)$ be the minimum number of bins needed to pack these items.

Description of DP

First compute the set Q of all k-tuples $(q_1, ..., q_k)$, such that $Bins(q_1, ..., q_k) = 1$. There are at most $O(n^k)$ of them and they can be found in $O(n^k)$ time.

- For each $q \in Q$ set BINS(q) = 1.
- If there exists *j*, such that *i_j* < 0, then *Bins*(*i*₁,...,*i_k*) = +∞.
- For all other q's use the following recurrence:

$$Bins(i_1,...,i_k) = 1 + \min_{(q_1,...,q_k) \in Q} Bins(i_1 - q_1,...,i_k - q_k).$$

Remark

Since there are $O(n^k)$ entries, and the calculation of each entry can be carried out in time $O(n^k)$, we have that this DP runs in time $O(n^{2k})$.

Core Algorithm

Theorem

Let $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$, and $L \le t \le 2L$.

Core Algorithm

Theorem

Let $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$, and $L \le t \le 2L$. There exists an algorithm that in $O(n^{2k})$ time finds a bin packing of *I* that uses $\alpha(I, t, \varepsilon)$ bins of size $t \cdot (1 + \varepsilon)$.

Theorem

Let $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$, and $L \le t \le 2L$. There exists an algorithm that in $O(n^{2k})$ time finds a bin packing of I that uses $\alpha(I, t, \varepsilon)$ bins of size $t \cdot (1 + \varepsilon)$. The packing has the property that

 $\alpha(I,t,\varepsilon) \leq Bins(I,t)$

for each t and ε .

Theorem

Let $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$, and $L \le t \le 2L$. There exists an algorithm that in $O(n^{2k})$ time finds a bin packing of I that uses $\alpha(I, t, \varepsilon)$ bins of size $t \cdot (1 + \varepsilon)$. The packing has the property that

 $\alpha(I,t,\varepsilon) \leq Bins(I,t)$

for each t and ε .

The Core Algorithm

An object in *l* is small if its size is at most ε · t.

Let $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$, and $L \le t \le 2L$. There exists an algorithm that in $O(n^{2k})$ time finds a bin packing of I that uses $\alpha(I, t, \varepsilon)$ bins of size $t \cdot (1 + \varepsilon)$. The packing has the property that

 $\alpha(I,t,\varepsilon) \leq Bins(I,t)$

for each t and ε .

- An object in *I* is small if its size is at most *ε* · *t*.
- Round non-small objects as follows: if $p_j \in [t \cdot \varepsilon(1 + \varepsilon)^i, t \cdot \varepsilon(1 + \varepsilon)^{i+1}]$, then set $p'_j = t \cdot \varepsilon(1 + \varepsilon)^i$.

Let $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$, and $L \le t \le 2L$. There exists an algorithm that in $O(n^{2k})$ time finds a bin packing of I that uses $\alpha(I, t, \varepsilon)$ bins of size $t \cdot (1 + \varepsilon)$. The packing has the property that

 $\alpha(I,t,\varepsilon) \leq Bins(I,t)$

for each t and ε .

- An object in *I* is small if its size is at most *\varepsilon \cdot t*.
- Round non-small objects as follows: if $p_j \in [t \cdot \varepsilon(1 + \varepsilon)^i, t \cdot \varepsilon(1 + \varepsilon)^{i+1}]$, then set $p'_j = t \cdot \varepsilon(1 + \varepsilon)^i$. There can be at most *k* different sizes.

Let $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$, and $L \le t \le 2L$. There exists an algorithm that in $O(n^{2k})$ time finds a bin packing of I that uses $\alpha(I, t, \varepsilon)$ bins of size $t \cdot (1 + \varepsilon)$. The packing has the property that

 $\alpha(I,t,\varepsilon) \leq Bins(I,t)$

for each t and ε .

- An object in *l* is small if its size is at most ε · t.
- Round non-small objects as follows: if $p_i \in [t \cdot \varepsilon(1 + \varepsilon)^i, t \cdot \varepsilon(1 + \varepsilon)^{i+1}]$, then set $p'_i = t \cdot \varepsilon(1 + \varepsilon)^i$. There can be at most *k* different sizes.
- Use the DP to pack non-small objects optimally into bins of size t using costs p'_i.

Let $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$, and $L \le t \le 2L$. There exists an algorithm that in $O(n^{2k})$ time finds a bin packing of I that uses $\alpha(I, t, \varepsilon)$ bins of size $t \cdot (1 + \varepsilon)$. The packing has the property that

 $\alpha(I,t,\varepsilon) \leq Bins(I,t)$

for each t and ε .

- An object in *I* is small if its size is at most ε · t.
- Round non-small objects as follows: if $p_i \in [t \cdot \varepsilon(1 + \varepsilon)^i, t \cdot \varepsilon(1 + \varepsilon)^{i+1}]$, then set $p'_i = t \cdot \varepsilon(1 + \varepsilon)^i$. There can be at most *k* different sizes.
- Use the DP to pack non-small objects optimally into bins of size *t* using costs p'_j. Observe that rounding can reduce the size by a factor of 1 + ε, so the resulting packing is valid for bins of size (1 + ε) · t.

Core Algorithm

Theorem

Let $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$, and $L \le t \le 2L$. There exists an algorithm that in $O(n^{2k})$ time finds a bin packing of I that uses $\alpha(I, t, \varepsilon)$ bins of size $t \cdot (1 + \varepsilon)$. The packing has the property that

 $\alpha(I,t,\varepsilon) \leq Bins(I,t)$

for each t and ε .

- An object in *I* is small if its size is at most ε · t.
- Round non-small objects as follows: if $p_j \in [t \cdot \varepsilon(1 + \varepsilon)^i, t \cdot \varepsilon(1 + \varepsilon)^{i+1}]$, then set $p'_i = t \cdot \varepsilon(1 + \varepsilon)^i$. There can be at most *k* different sizes.
- Use the DP to pack non-small objects optimally into bins of size t using costs p'_j. Observe that rounding can reduce the size by a factor of 1 + ε, so the resulting packing is valid for bins of size (1 + ε) · t.
- Apply First -Fit to the resulting packing for small items.

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at least size t.

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at least size *t*. Thus the optimal packing into bins of size *t* must use at least $\alpha(I, t, \varepsilon)$ bins.

Core Algorithm: Proof of Correctness

The Proof

Core Algorithm: Proof of Correctness

The Proof

$$\alpha(I,t,\varepsilon) =$$

Core Algorithm: Proof of Correctness

The Proof

$$\alpha(l,t,\varepsilon) = \alpha(l',t,\varepsilon)$$

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at least size *t*. Thus the optimal packing into bins of size *t* must use at least $\alpha(l, t, \varepsilon)$ bins. On the other hand, if the algorithm does not open new bins, then let l' be the set of non-small items. Then:

$$\alpha(l,t,\varepsilon) = \alpha(l',t,\varepsilon)$$

 \leq

Core Algorithm: Proof of Correctness

The Proof

$$egin{array}{rcl} lpha(l,t,arepsilon) &=& lpha(l',t,arepsilon) \ &\leq& \mathit{bins}(l',t) \end{array}$$

Core Algorithm: Proof of Correctness

The Proof

$$lpha(l,t,arepsilon) = lpha(l',t,arepsilon) \ \leq \ bins(l',t) \ \leq$$

Core Algorithm: Proof of Correctness

The Proof

$$lpha(l,t,arepsilon) = lpha(l',t,arepsilon) \ \leq \ bins(l',t) \ \leq \ bins(l,t).$$

The General Case

Theorem

There exists an algorithm A, such that for each $\varepsilon > 0$ it finds a schedule with makespan at most $(1+3 \cdot \varepsilon) \cdot OPT$.

Theorem

There exists an algorithm A, such that for each $\varepsilon > 0$ it finds a schedule with makespan at most $(1+3 \cdot \varepsilon) \cdot OPT$. The running time of the algorithm is $O(n^{2k} \cdot \lceil \log_2 \frac{1}{p} \rceil)$, where $k = \lceil \log_{1+\varepsilon} \frac{1}{p} \rceil$.

Theorem

There exists an algorithm A, such that for each $\varepsilon > 0$ it finds a schedule with makespan at most $(1+3 \cdot \varepsilon) \cdot OPT$. The running time of the algorithm is $O(n^{2k} \cdot \lceil \log_2 \frac{1}{\varepsilon} \rceil)$, where $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$. In other words, bin packing problem admits a PTAS.

Theorem

There exists an algorithm A, such that for each $\varepsilon > 0$ it finds a schedule with makespan at most $(1+3 \cdot \varepsilon) \cdot OPT$. The running time of the algorithm is $O(n^{2k} \cdot \lceil \log_2 \frac{1}{\varepsilon} \rceil)$, where $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$. In other words, bin packing problem admits a PTAS.

The Algorithm

• If $\alpha(I, L, \varepsilon) \leq m$, then use packing given by core algorithm for t = L.

Theorem

There exists an algorithm A, such that for each $\varepsilon > 0$ it finds a schedule with makespan at most $(1+3 \cdot \varepsilon) \cdot OPT$. The running time of the algorithm is $O(n^{2k} \cdot \lceil \log_2 \frac{1}{\varepsilon} \rceil)$, where $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$. In other words, bin packing problem admits a PTAS.

The Algorithm

- If $\alpha(I, L, \varepsilon) \leq m$, then use packing given by core algorithm for t = L.
- If $\alpha(I,L,\varepsilon) > m$, then perform a binary search to find an interval $[T',T] \subseteq [L,2 \cdot L]$ with $T T' \leq \varepsilon \cdot L$, such that $\alpha(I,T',\varepsilon) > m$ and $\alpha(I,T,\varepsilon) \leq m$.

Theorem

There exists an algorithm A, such that for each $\varepsilon > 0$ it finds a schedule with makespan at most $(1+3 \cdot \varepsilon) \cdot OPT$. The running time of the algorithm is $O(n^{2k} \cdot \lceil \log_2 \frac{1}{\varepsilon} \rceil)$, where $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$. In other words, bin packing problem admits a PTAS.

The Algorithm

- If $\alpha(I, L, \varepsilon) \leq m$, then use packing given by core algorithm for t = L.
- If $\alpha(I,L,\varepsilon) > m$, then perform a binary search to find an interval $[T',T] \subseteq [L,2 \cdot L]$ with $T T' \leq \varepsilon \cdot L$, such that $\alpha(I,T',\varepsilon) > m$ and $\alpha(I,T,\varepsilon) \leq m$. Then return the packing given by core algorithm for t = T.

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most $\lceil \log_2 \frac{1}{\epsilon} \rceil$ steps, hence the running time is as in the statement of the theorem.

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most $\lceil \log_2 \frac{1}{\epsilon} \rceil$ steps, hence the running time is as in the statement of the theorem.

The Analysis: Case $\alpha(I, L, \varepsilon) \leq m$

Then the makespan returned by the algorithm is at most

 \leq

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most $\lceil \log_2 \frac{1}{\epsilon} \rceil$ steps, hence the running time is as in the statement of the theorem.

The Analysis: Case $\alpha(I, L, \varepsilon) \leq m$

$$\leq L \cdot (1 + \varepsilon)$$

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most $\lceil \log_2 \frac{1}{\epsilon} \rceil$ steps, hence the running time is as in the statement of the theorem.

The Analysis: Case $\alpha(I, L, \varepsilon) \leq m$

$$\leq L \cdot (1 + \varepsilon)$$

 \leq

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most $\lceil \log_2 \frac{1}{\epsilon} \rceil$ steps, hence the running time is as in the statement of the theorem.

The Analysis: Case $\alpha(I, L, \varepsilon) \leq m$

$$\leq L \cdot (1 + \varepsilon) \\ \leq (1 + \varepsilon) \cdot OP^{2}$$

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most $\lceil \log_2 \frac{1}{\epsilon} \rceil$ steps, hence the running time is as in the statement of the theorem.

The Analysis: Case $\alpha(I, L, \varepsilon) \leq m$

$$\leq L \cdot (1 + \varepsilon) \\ \leq (1 + \varepsilon) \cdot OPT \\ \leq$$

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most $\lceil \log_2 \frac{1}{\epsilon} \rceil$ steps, hence the running time is as in the statement of the theorem.

The Analysis: Case $\alpha(I, L, \varepsilon) \leq m$

$$\leq L \cdot (1 + \varepsilon) \\ \leq (1 + \varepsilon) \cdot OPT \\ < (1 + 3 \cdot \varepsilon) \cdot OPT.$$

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

 $m < \alpha(I, T', \varepsilon) \leq bins(I, T')$, so $T' \leq OPT$

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

 $m < lpha({\it I},{\it T}',arepsilon) \le {\it bins}({\it I},{\it T}'),$ so ${\it T}' \le {\it OPT}$ and

 $T \leq$

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

$$T \leq T' + \varepsilon \cdot L$$

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

$$\begin{array}{rcl} T & \leq & T' + \varepsilon \cdot L \\ & \leq & \end{array}$$

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

$$T \leq T' + \varepsilon \cdot L$$

< OPT + $\varepsilon \cdot OP$

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

$$T \leq T' + \varepsilon \cdot L \\ \leq OPT + \varepsilon \cdot OPT$$

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

$$T \leq T' + \varepsilon \cdot L$$

$$\leq OPT + \varepsilon \cdot OPT$$

$$= (1 + \varepsilon) \cdot OPT.$$

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

 $\mathit{m} < lpha(\mathit{I},\mathit{T}',arepsilon) \leq \mathit{bins}(\mathit{I},\mathit{T}'),$ so $\mathit{T}' \leq \mathit{OPT}$ and

$$T \leq T' + \varepsilon \cdot L$$

$$\leq OPT + \varepsilon \cdot OPT$$

$$= (1 + \varepsilon) \cdot OPT.$$

Since the core algorithm for T = t returns a schedule with makespan at most $(1 + \varepsilon) \cdot T$,

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

 $m < lpha({\it I},{\it T}',arepsilon) \le {\it bins}({\it I},{\it T}'),$ so ${\it T}' \le {\it OPT}$ and

 $\begin{aligned} T &\leq T' + \varepsilon \cdot L \\ &\leq OPT + \varepsilon \cdot OPT \\ &= (1 + \varepsilon) \cdot OPT. \end{aligned}$

Since the core algorithm for T = t returns a schedule with makespan at most $(1 + \varepsilon) \cdot T$, the makespan of the returned schedule is at most

$$(1+\varepsilon) \cdot T \leq$$

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

 $m < lpha({\it I},{\it T}',arepsilon) \le {\it bins}({\it I},{\it T}'),$ so ${\it T}' \le {\it OPT}$ and

 $\begin{aligned} T &\leq T' + \varepsilon \cdot L \\ &\leq OPT + \varepsilon \cdot OPT \\ &= (1 + \varepsilon) \cdot OPT. \end{aligned}$

Since the core algorithm for T = t returns a schedule with makespan at most $(1 + \varepsilon) \cdot T$, the makespan of the returned schedule is at most

 $(1+\varepsilon) \cdot T \leq (1+\varepsilon)^2 \cdot OPT$

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

 $m < lpha({\it I},{\it T}',arepsilon) \le {\it bins}({\it I},{\it T}'),$ so ${\it T}' \le {\it OPT}$ and

$$T \leq T' + \varepsilon \cdot L$$

$$\leq OPT + \varepsilon \cdot OPT$$

$$= (1 + \varepsilon) \cdot OPT.$$

Since the core algorithm for T = t returns a schedule with makespan at most $(1 + \varepsilon) \cdot T$, the makespan of the returned schedule is at most

$$(1+\varepsilon) \cdot T \leq (1+\varepsilon)^2 \cdot OPT \leq$$

The Analysis of the Algorithm

The Analysis: Case $\alpha(I, L, \varepsilon) > m$

 $m < lpha({\it I},{\it T}',arepsilon) \le {\it bins}({\it I},{\it T}'),$ so ${\it T}' \le {\it OPT}$ and

 $\begin{aligned} T &\leq T' + \varepsilon \cdot L \\ &\leq OPT + \varepsilon \cdot OPT \\ &= (1 + \varepsilon) \cdot OPT. \end{aligned}$

Since the core algorithm for T = t returns a schedule with makespan at most $(1 + \varepsilon) \cdot T$, the makespan of the returned schedule is at most

 $\begin{array}{rcl} (1+\varepsilon) \cdot T & \leq & (1+\varepsilon)^2 \cdot OPT \\ & \leq & (1+3 \cdot \varepsilon) \cdot OPT. \end{array}$