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Problem Statement

We are given the processing times p1, ...,pn of n jobs and integer m.

The goal is to find an
assignment of the jobs to m identical machines, so that the final completion time (the makespan)
is minimized.

The Bound for OPT

If L = max{ 1
m ·∑

n
i=1 pi ,max{pi}}, then we have that: L≤ OPT ≤ 2 ·L.

Remark

There exists a schedule with makespan t if and only if n objects of sizes p1, ...,pn can be packed
into m bins of capacity t. If I is the set of sizes p1, ...,pn and bins(I, t) is the minimum number of
bins needed to pack these objects, then one has the following equality:

OPT (makespan) = min{t : bins(I, t)≤m}.
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Definition

A PTAS for a minimization problem Π is an algorithm A, which for all instances I of Π and
error-parameter ε > 0, returns a solution of cost A(I), such that A(I)≤ (1 + ε) ·OPT .

The
running time of the algorithm must be polynomial for each fixed value of ε .
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DP for Exact Restricted Bin Packing

Restricted Instances

Some Notation

Suppose we are given n items to pack into bins of size t .

Moreover, assume that they can have
only k different sizes. Let I = (i1, ..., ik ) denote the input to such a problem, where ij denotes the
number of items j . Let Bins(i1, ..., ik ) be the minimum number of bins needed to pack these
items.

Description of DP

First compute the set Q of all k -tuples (q1, ...,qk ), such that Bins(q1, ...,qk ) = 1. There are at
most O(nk ) of them and they can be found in O(nk ) time.

For each q ∈ Q set BINS(q) = 1.

If there exists j , such that ij < 0, then Bins(i1, ..., ik ) = +∞.

For all other q’s use the following recurrence:

Bins(i1, ..., ik ) = 1 + min
(q1,...,qk )∈Q

Bins(i1−q1, ..., ik −qk ).

Remark

Since there are O(nk ) entries, and the calculation of each entry can be carried out in time
O(nk ), we have that this DP runs in time O(n2k ).
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Core Algorithm

Theorem

Let k = dlog1+ε
1
ε
e, and L≤ t ≤ 2L.

There exists an algorithm that in O(n2k ) time finds a bin
packing of I that uses α(I, t,ε) bins of size t · (1 + ε). The packing has the property that

α(I, t,ε)≤ Bins(I, t)

for each t and ε .

The Core Algorithm

An object in I is small if its size is at most ε · t .
Round non-small objects as follows: if pj ∈ [t · ε(1 + ε)i , t · ε(1 + ε)i+1], then set
p′j = t · ε(1 + ε)i . There can be at most k different sizes.

Use the DP to pack non-small objects optimally into bins of size t using costs p′j . Observe
that rounding can reduce the size by a factor of 1 + ε , so the resulting packing is valid for
bins of size (1 + ε) · t .
Apply First -Fit to the resulting packing for small items.
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Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at
least size t .

Thus the optimal packing into bins of size t must use at least α(I, t,ε) bins. On the
other hand, if the algorithm does not open new bins, then let I′ be the set of non-small items.
Then:

α(I, t,ε) = α(I′, t,ε)

≤ bins(I′, t)

≤ bins(I, t).
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Bin-Packing

A PTAS for Minimum Makespan

The General Case

Theorem

There exists an algorithm A, such that for each ε > 0 it finds a schedule with makespan at most
(1 + 3 · ε) ·OPT.

The running time of the algorithm is O(n2k · dlog2
1
ε
e), where k = dlog1+ε

1
ε
e.

In other words, bin packing problem admits a PTAS.

The Algorithm

If α(I,L,ε)≤m, then use packing given by core algorithm for t = L.

If α(I,L,ε) > m, then perform a binary search to find an interval [T ′,T ]⊆ [L,2 ·L] with
T −T ′ ≤ ε ·L, such that α(I,T ′,ε) > m and α(I,T ,ε)≤m. Then return the packing given
by core algorithm for t = T .
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A PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most dlog2
1
ε
e steps, hence the running time is as in the statement of

the theorem.

The Analysis: Case α(I,L,ε)≤m

Then the makespan returned by the algorithm is at most

≤ L · (1 + ε)

≤ (1 + ε) ·OPT

≤ (1 + 3 · ε) ·OPT .
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The Analysis: Case α(I,L,ε) > m

m < α(I,T ′,ε)≤ bins(I,T ′), so T ′ ≤ OPT

and

T ≤ T ′+ ε ·L
≤ OPT + ε ·OPT

= (1 + ε) ·OPT .

Since the core algorithm for T = t returns a schedule with makespan at most (1 + ε) ·T , the
makespan of the returned schedule is at most

(1 + ε) ·T ≤ (1 + ε)2 ·OPT

≤ (1 + 3 · ε) ·OPT .
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