A PTAS for Minimum Makespan

Vahan Mkrtchyan'

Lane Department of Computer Science and Electrical Engineering
West Virginia University

March 24, 2014

LOutIine

Outline

El Preliminaries

LOutIine

Outline

El Preliminaries

H Problem definition

LOutIine

Outline

El Preliminaries
H Problem definition

H Definition of PTAS

LOutIine

Outline

El Preliminaries B DP for Exact Restricted Bin Packing

H Problem definition

H Definition of PTAS

LOutIine

Outline

El Preliminaries B DP for Exact Restricted Bin Packing
HE Problem definition H The Core Algorithm

H Definition of PTAS

LOutIine

Outline

El Preliminaries B DP for Exact Restricted Bin Packing

HE Problem definition H The Core Algorithm

B Definition of PTAS A A PTAS for Minimum Makespan

[Preliminaries

Topics

[Preliminaries

Topics

[Preliminaries

Topics

@ Problem definition.

[Preliminaries

Topics

@ Problem definition.
@ Definition of PTAS.

[Preliminaries

Topics

@ Problem definition.
@ Definition of PTAS.
© DP for Exact Restricted Bin Packing.

[Preliminaries

Topics

@ Problem definition.

@ Definition of PTAS.

© DP for Exact Restricted Bin Packing.
© The Core Algorithm.

[Preliminaries

Topics

@ Problem definition.

@ Definition of PTAS.

© DP for Exact Restricted Bin Packing.
© The Core Algorithm.

@ A PTAS for Minimum Makespan.

[Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., p, of n jobs and integer m.

[Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., pn of n jobs and integer m. The goal is to find an
assignment of the jobs to m identical machines, so that the final completion time (the makespan)

is minimized.

[Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., pn of n jobs and integer m. The goal is to find an
assignment of the jobs to m identical machines, so that the final completion time (the makespan)
is minimized.

The Bound for OPT

If L=max{L X7, p;,max{pi}}, then we have that: L < OPT < 2-L.

[Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., pn of n jobs and integer m. The goal is to find an
assignment of the jobs to m identical machines, so that the final completion time (the makespan)
is minimized.

The Bound for OPT
If L=max{L - X7, p;,max{pi}}, then we have that: L < OPT < 2-L.

There exists a schedule with makespan t if and only if n objects of sizes p1, ..., p, can be packed
into m bins of capacity t.

[Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., pn of n jobs and integer m. The goal is to find an
assignment of the jobs to m identical machines, so that the final completion time (the makespan)
is minimized.

The Bound for OPT
If L=max{L - X7, p;,max{pi}}, then we have that: L < OPT < 2-L.

There exists a schedule with makespan t if and only if n objects of sizes p1, ..., p, can be packed
into m bins of capacity t. If | is the set of sizes py, ..., pn, and bins(1,t) is the minimum number of
bins needed to pack these objects,

[Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., pn of n jobs and integer m. The goal is to find an
assignment of the jobs to m identical machines, so that the final completion time (the makespan)
is minimized.

The Bound for OPT

If L=max{L - X7, p;,max{pi}}, then we have that: L < OPT < 2-L.

There exists a schedule with makespan t if and only if n objects of sizes py, ..., p, can be packed
into m bins of capacity t. If | is the set of sizes py, ..., pn, and bins(1,t) is the minimum number of
bins needed to pack these objects, then one has the following equality:

OPT (makespan) = min{t : bins(/,t) < m}.

[Definition of PTAS

PTAS

Definition

A PTAS for a minimization problem I1 is an algorithm A, which for all instances / of I'1 and
error-parameter € > 0, returns a solution of cost A(/), such that A(/) < (1+¢€)- OPT.

[Definition of PTAS

PTAS

Definition

A PTAS for a minimization problem I1 is an algorithm A, which for all instances / of I'1 and
error-parameter € > 0, returns a solution of cost A(/), such that A(/) < (1+¢€)- OPT. The
running time of the algorithm must be polynomial for each fixed value of €.

L DP for Exact Restricted Bin Packing

Restricted Instances

Some Notation

Suppose we are given n items to pack into bins of size t.

L DP for Exact Restricted Bin Packing

Restricted Instances

Some Notation

Suppose we are given n items to pack into bins of size t. Moreover, assume that they can have
only k different sizes.

L DP for Exact Restricted Bin Packing

Restricted Instances

Some Notation

Suppose we are given n items to pack into bins of size t. Moreover, assume that they can have
only k different sizes. Let / = (i, ..., ix) denote the input to such a problem, where j; denotes the
number of items j.

L DP for Exact Restricted Bin Packing

Restricted Instances

Some Notation

Suppose we are given n items to pack into bins of size t. Moreover, assume that they can have
only k different sizes. Let / = (i, ..., ix) denote the input to such a problem, where j; denotes the
number of items j. Let Bins(i, ..., i) be the minimum number of bins needed to pack these
items.

L DP for Exact Restricted Bin Packing

Restricted Instances

Some Notation

Suppose we are given n items to pack into bins of size t. Moreover, assume that they can have

only k different sizes. Let / = (i, ..., ix) denote the input to such a problem, where j; denotes the
number of items j. Let Bins(iy, ..., ik) be the minimum number of bins needed to pack these
items.

Description of DP

| \

First compute the set Q of all k-tuples (g1, ..., k), such that Bins(gi, ..., qx) = 1.

L DP for Exact Restricted Bin Packing

Restricted Instances

Some Notation

Suppose we are given n items to pack into bins of size t. Moreover, assume that they can have

only k different sizes. Let / = (i, ..., ix) denote the input to such a problem, where j; denotes the
number of items j. Let Bins(iy, ..., ik) be the minimum number of bins needed to pack these
items.

Description of DP

| \

First compute the set Q of all k-tuples (g1, ..., k), such that Bins(gy, ..., qx) = 1. There are at
most O(n*) of them and they can be found in O(n¥) time.

L DP for Exact Restricted Bin Packing

Restricted Instances

Some Notation

Suppose we are given n items to pack into bins of size t. Moreover, assume that they can have

only k different sizes. Let / = (i, ..., ix) denote the input to such a problem, where j; denotes the
number of items j. Let Bins(iy, ..., ik) be the minimum number of bins needed to pack these
items.

Description of DP

| \

First compute the set Q of all k-tuples (g1, ..., k), such that Bins(gy, ..., qx) = 1. There are at
most O(n*) of them and they can be found in O(n¥) time.

@ Foreach g € Q set BINS(q) = 1.

L DP for Exact Restricted Bin Packing

Restricted Instances

Some Notation

Suppose we are given n items to pack into bins of size t. Moreover, assume that they can have

only k different sizes. Let / = (i, ..., ix) denote the input to such a problem, where j; denotes the
number of items j. Let Bins(iy, ..., ik) be the minimum number of bins needed to pack these
items.

Description of DP

| \

First compute the set Q of all k-tuples (g1, ..., k), such that Bins(gy, ..., qx) = 1. There are at
most O(n*) of them and they can be found in O(n¥) time.

@ Foreach g € Q set BINS(q) = 1.
@ If there exists /, such that j; < 0, then Bins(it ..., i) = +oo.

L DP for Exact Restricted Bin Packing

Restricted Instances

Some Notation

Suppose we are given n items to pack into bins of size t. Moreover, assume that they can have

only k different sizes. Let / = (i, ..., ix) denote the input to such a problem, where j; denotes the
number of items j. Let Bins(iy, ..., ik) be the minimum number of bins needed to pack these
items.

Description of DP

| \

First compute the set Q of all k-tuples (g1, ..., k), such that Bins(gy, ..., qx) = 1. There are at
most O(n*) of them and they can be found in O(n¥) time.

@ Foreach g € Q set BINS(q) = 1.
o If there exists j, such that jj < 0, then Bins(it ..., ik) = +oo.
@ For all other g's use the following recurrence:

Bins(i,...,ik) =1+ min Bins(it — G1,..., ik — Qk)-
(g1,---0k)€Q

L DP for Exact Restricted Bin Packing

Restricted Instances

Some Notation

Suppose we are given n items to pack into bins of size t. Moreover, assume that they can have

only k different sizes. Let / = (i, ..., ix) denote the input to such a problem, where j; denotes the
number of items j. Let Bins(iy, ..., ik) be the minimum number of bins needed to pack these
items.

Description of DP

| A

First compute the set Q of all k-tuples (g1, ..., k), such that Bins(gy, ..., qx) = 1. There are at
most O(n*) of them and they can be found in O(n¥) time.

@ Foreach g € Q set BINS(q) = 1.
@ If there exists /, such that j; < 0, then Bins(it ..., i) = +oo.

@ For all other g's use the following recurrence:

Bins(it,...,ik) =1+ min) Bins(it — Q1 .- ik — Qk)-
e)

v

Since there are O(n’) entries, and the calculation of each entry can be carried out in time
0O(n*), we have that this DP runs in time O(n?¥).

A\

LThe Core Algorithm

Core Algorithm

Letk =[logy ¢ 1], and L <t <2L.

LThe Core Algorithm

Core Algorithm

Letk = [logy ¢ 1], and L < t < 2L. There exists an algorithm that in O(n?*) time finds a bin
packing of | that uses c(1,t,€) bins of size t- (1+€).

LThe Core Algorithm

Core Algorithm

Letk = [logy ¢ 1], and L < t < 2L. There exists an algorithm that in O(n?*) time finds a bin
packing of | that uses o(1,t,€) bins of size t - (1+ €). The packing has the property that

o(l,t,€) < Bins(/,t)

foreacht and €.

LThe Core Algorithm

Core Algorithm

Theorem

Letk = [logy . 1], and L < t < 2L. There exists an algorithm that in O(n?X) time finds a bin
packing of | that uses a(1,t,€) bins of size t- (14 ¢€). The packing has the property that

o(l,t,€) < Bins(/,t)

foreacht and €.

v
The Core Algorithm

@ An objectin /is small if its size is at most € - t.

LThe Core Algorithm

Core Algorithm

Theorem

Letk = [logy . 1], and L < t < 2L. There exists an algorithm that in O(n?X) time finds a bin
packing of | that uses a(1,t,€) bins of size t- (14 ¢€). The packing has the property that

o(l,t,€) < Bins(/,t)

foreacht and €.

v
The Core Algorithm

@ An objectin /is small if its size is at most € - t.

@ Round non-small objects as follows: if p; € [t-&(1 +e),t-e(1+ €)1, then set
pi=te(1+e).

LThe Core Algorithm

Core Algorithm

Theorem

Letk = [logy . 1], and L < t < 2L. There exists an algorithm that in O(n?X) time finds a bin
packing of | that uses a(1,t,€) bins of size t- (14 ¢€). The packing has the property that

o(l,t,€) < Bins(/,t)

foreacht and €.

v
The Core Algorithm

@ An objectin /is small if its size is at most € - t.

@ Round non-small objects as follows: if p; € [t-&(1 +e),t-e(1+ €)1, then set
pj =t-€(1+¢)". There can be at most k different sizes.

LThe Core Algorithm

Core Algorithm

Theorem

Letk = [logy . 1], and L < t < 2L. There exists an algorithm that in O(n?X) time finds a bin
packing of | that uses a(1,t,€) bins of size t- (14 ¢€). The packing has the property that

o(l,t,€) < Bins(/,t)

foreacht and €.

v
The Core Algorithm

@ An objectin /is small if its size is at most € - t.

@ Round non-small objects as follows: if p; € [t-&(1 +e),t-e(1+ €)1, then set
pj =t-€(1+¢)". There can be at most k different sizes.

@ Use the DP to pack non-small objects optimally into bins of size t using costs pj’-.

LThe Core Algorithm

Core Algorithm

Theorem

Letk = [logy . 1], and L < t < 2L. There exists an algorithm that in O(n?X) time finds a bin
packing of | that uses a(1,t,€) bins of size t- (14 ¢€). The packing has the property that

o(l,t,€) < Bins(/,t)
foreach t and €.

v
The Core Algorithm

@ An objectin /is small if its size is at most € - t.

@ Round non-small objects as follows: if p; € [t-&(1 +e),t-e(1+ €)1, then set
pj =t-€(1+¢)". There can be at most k different sizes.

@ Use the DP to pack non-small objects optimally into bins of size t using costs pj’-. Observe
that rounding can reduce the size by a factor of 1 4- €, so the resulting packing is valid for
bins of size (14¢€)-t.

LThe Core Algorithm

Core Algorithm

Theorem

Letk = [logy . 1], and L < t < 2L. There exists an algorithm that in O(n?X) time finds a bin
packing of | that uses a(1,t,€) bins of size t- (14 ¢€). The packing has the property that

o(l,t,€) < Bins(/,t)

foreacht and €.

v
The Core Algorithm

@ An objectin /is small if its size is at most € - t.

@ Round non-small objects as follows: if p; € [t-&(1 +e),t-e(1+ €)1, then set
pj =t-€(1+¢)". There can be at most k different sizes.
@ Use the DP to pack non-small objects optimally into bins of size t using costs pj’-. Observe

that rounding can reduce the size by a factor of 1 4- €, so the resulting packing is valid for
bins of size (14¢€)-t.

@ Apply First -Fit to the resulting packing for small items.

LThe Core Algorithm

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at
least size t.

LThe Core Algorithm

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at
least size t. Thus the optimal packing into bins of size t must use at least o/(/, t, €) bins.

LThe Core Algorithm

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at
least size t. Thus the optimal packing into bins of size ¢t must use at least o/(/, t, €) bins. On the
other hand, if the algorithm does not open new bins, then let I be the set of non-small items.

LThe Core Algorithm

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at
least size t. Thus the optimal packing into bins of size ¢t must use at least o/(/, t, €) bins. On the
other hand, if the algorithm does not open new bins, then let I be the set of non-small items.
Then:

ol,t.e) =

LThe Core Algorithm

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at
least size t. Thus the optimal packing into bins of size ¢t must use at least o/(/, t, €) bins. On the
other hand, if the algorithm does not open new bins, then let I be the set of non-small items.
Then:

a(l,t,e) = a(l.te)

LThe Core Algorithm

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at
least size t. Thus the optimal packing into bins of size ¢t must use at least o/(/, t, €) bins. On the
other hand, if the algorithm does not open new bins, then let I be the set of non-small items.
Then:

a(l,t,e) = a(l.te)

IN

LThe Core Algorithm

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at
least size t. Thus the optimal packing into bins of size ¢t must use at least o/(/, t, €) bins. On the
other hand, if the algorithm does not open new bins, then let I be the set of non-small items.
Then:

a(l,t,e) = ol te)
bins(/', t)

IN

LThe Core Algorithm

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at
least size t. Thus the optimal packing into bins of size ¢t must use at least o/(/, t, €) bins. On the
other hand, if the algorithm does not open new bins, then let I be the set of non-small items.
Then:

a(l,t,e) = ol te)
bins(/', t)

LThe Core Algorithm

Core Algorithm: Proof of Correctness

The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at
least size t. Thus the optimal packing into bins of size ¢t must use at least o/(/, t, €) bins. On the
other hand, if the algorithm does not open new bins, then let I be the set of non-small items.
Then:

o(l,t,€) a(l',t,€)
bins(/', t)

bins(1,t).

IA A

LA PTAS for Minimum Makespan

The General Case

There exists an algorithm A, such that for each € > 0 it finds a schedule with makespan at most
(1+3-¢)-OPT.

LA PTAS for Minimum Makespan

The General Case

There exists an algorithm A, such that for each € > 0 it finds a schedule with makespan at most
(1+3-€)- OPT. The running time of the algorithm is O(?* - [log, 1), where k = [logy 4 1].

LA PTAS for Minimum Makespan

The General Case

There exists an algorithm A, such that for each € > 0 it finds a schedule with makespan at most
(1+3-€)- OPT. The running time of the algorithm is O(?* - [log, 1), where k = [logy 4 1].
In other words, bin packing problem admits a PTAS.

LA PTAS for Minimum Makespan

The General Case

Theorem

There exists an algorithm A, such that for each € > 0 it finds a schedule with makespan at most
(1+3-€)- OPT. The running time of the algorithm is O(?* - [log, 1), where k = [logy 4 1].
In other words, bin packing problem admits a PTAS.

’

The Algorithm

o If a(/,L,€) < m, then use packing given by core algorithm for ¢t = L.

LA PTAS for Minimum Makespan

The General Case

Theorem

There exists an algorithm A, such that for each € > 0 it finds a schedule with makespan at most
(1+3-€)- OPT. The running time of the algorithm is O(?* - [log, 1), where k = [logy 4 1].
In other words, bin packing problem admits a PTAS.

’

The Algorithm
o If a(/,L,€) < m, then use packing given by core algorithm for ¢t = L.

o If a(/,L,€) > m, then perform a binary search to find an interval [T’, T] C [L,2- L] with
T—T <e-L, suchthat ot(/, T’,€) > mand o(/, T,€) < m.

LA PTAS for Minimum Makespan

The General Case

Theorem

There exists an algorithm A, such that for each € > 0 it finds a schedule with makespan at most
(1+3-€)- OPT. The running time of the algorithm is O(?* - [log, 1), where k = [logy 4 1].
In other words, bin packing problem admits a PTAS.

’

The Algorithm
o If a(/,L,€) < m, then use packing given by core algorithm for ¢t = L.

o If a(/,L,€) > m, then perform a binary search to find an interval [T’, T] C [L,2- L] with
T—T <e-L, suchthat ot(/, T’,€) > mand a(/, T,€) < m. Then return the packing given
by core algorithm for t = T.

v

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most [log, 15} steps, hence the running time is as in the statement of
the theorem.

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most [log, 15} steps, hence the running time is as in the statement of
the theorem.

4

The Analysis: Case o(/,L,€) <m

Then the makespan returned by the algorithm is at most

<

\

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most [log, 15} steps, hence the running time is as in the statement of
the theorem.

4

The Analysis: Case o(/,L,€) <m

Then the makespan returned by the algorithm is at most

< L-(1+¢)

\

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most [log, 15} steps, hence the running time is as in the statement of
the theorem.

4

The Analysis: Case o(/,L,€) <m

Then the makespan returned by the algorithm is at most

< L-(1+¢)
<

\

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most [log, 15} steps, hence the running time is as in the statement of
the theorem.

4

The Analysis: Case o(/,L,€) <m

Then the makespan returned by the algorithm is at most

IA

L-(1+¢€)
(1+¢€)-OPT

A

\

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most [log, 15} steps, hence the running time is as in the statement of
the theorem.

4

The Analysis: Case o(/,L,€) <m

Then the makespan returned by the algorithm is at most

< L-(1+¢)
(1+¢)-OPT

\

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Running Time

The binary search uses at most [log, 15} steps, hence the running time is as in the statement of
the theorem.

4

The Analysis: Case o(/,L,€) <m

Then the makespan returned by the algorithm is at most

< L-(1+¢)
< (1+¢€)-OPT
< (1+3-£)-OPT.

\

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m

m< o(l,T',€) < bins(I,T"), so T' < OPT

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m

m< a(l,T',&) < bins(1,T'),so T < OPT and

T <

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m

m< a(l,T',&) < bins(1,T'),so T < OPT and

T < T+e-L

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m

m< a(l,T',&) < bins(1,T'),so T < OPT and

T T +eL

<
<

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m

m< a(l,T',&) < bins(1,T'),so T < OPT and

T +eL
OPT +¢-OPT

T

INCIN

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m

m< a(l,T',&) < bins(1,T'),so T < OPT and

T +eL
OPT +¢-OPT

T

INCIN

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m

m< a(l,T',&) < bins(1,T'),so T < OPT and

T +eL
OPT +¢-OPT
(1+¢)-OPT.

T

INCIN

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m

m< a(l,T',&) < bins(1,T'),so T < OPT and

T +eL
OPT +¢-OPT
(1+¢)-OPT.

T

INCIN

Since the core algorithm for T = t returns a schedule with makespan at most (1+¢€)- T,

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m
m< a(l,T',&) < bins(1,T'),so T < OPT and

T T +eL
OPT +¢-OPT

(14¢)-OPT.

INCIN

Since the core algorithm for T = t returns a schedule with makespan at most (1+¢)- T, the
makespan of the returned schedule is at most

(1+¢)- T <

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m
m< a(l,T',&) < bins(1,T'),so T < OPT and

T T +eL
OPT +¢-OPT

(14¢)-OPT.

INCIN

Since the core algorithm for T = t returns a schedule with makespan at most (1+¢)- T, the
makespan of the returned schedule is at most

(14+e)- T < (1+¢&)?-0PT

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m
m< a(l,T',&) < bins(1,T'),so T < OPT and

T +eL
OPT +¢-OPT
(1+¢)-OPT.

T

INCIN

Since the core algorithm for T = t returns a schedule with makespan at most (1+¢)- T, the
makespan of the returned schedule is at most

(14+e)- T < (1+¢&)?-0PT
<

LA PTAS for Minimum Makespan

The Analysis of the Algorithm

The Analysis: Case o/(/,L,€) > m
m< a(l,T',&) < bins(1,T'),so T < OPT and

T +eL
OPT +¢-OPT
(1+¢)-OPT.

T

INCIN

Since the core algorithm for T = t returns a schedule with makespan at most (1+¢)- T, the
makespan of the returned schedule is at most

(14+e)- T < (1+¢&)?-0PT
< (1+3-¢)-OPT.

	Outline
	Main Talk
	Preliminaries
	Problem definition
	Definition of PTAS
	DP for Exact Restricted Bin Packing
	The Core Algorithm
	A PTAS for Minimum Makespan

