A PTAS for Minimum Makespan

Vahan Mkrtchyan'

Lane Department of Computer Science and Electrical Engineering
West Virginia University

March 24, 2014



LOutIine

Outline

El Preliminaries



LOutIine

Outline

El Preliminaries

H Problem definition



LOutIine

Outline

El Preliminaries
H Problem definition

H Definition of PTAS



LOutIine

Outline

El Preliminaries B DP for Exact Restricted Bin Packing

H Problem definition

H Definition of PTAS



LOutIine

Outline

El Preliminaries B DP for Exact Restricted Bin Packing
HE Problem definition H The Core Algorithm

H Definition of PTAS



LOutIine

Outline

El Preliminaries B DP for Exact Restricted Bin Packing

HE Problem definition H The Core Algorithm

B Definition of PTAS A A PTAS for Minimum Makespan



[ Preliminaries

Topics




[ Preliminaries

Topics




[ Preliminaries

Topics

@ Problem definition.




[ Preliminaries

Topics

@ Problem definition.
@ Definition of PTAS.




[ Preliminaries

Topics

@ Problem definition.
@ Definition of PTAS.
© DP for Exact Restricted Bin Packing.




[ Preliminaries

Topics

@ Problem definition.

@ Definition of PTAS.

© DP for Exact Restricted Bin Packing.
© The Core Algorithm.




[ Preliminaries

Topics

@ Problem definition.

@ Definition of PTAS.

© DP for Exact Restricted Bin Packing.
© The Core Algorithm.

@ A PTAS for Minimum Makespan.




[ Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., p, of n jobs and integer m.




[ Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., pn of n jobs and integer m. The goal is to find an
assignment of the jobs to m identical machines, so that the final completion time (the makespan)

is minimized.




[ Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., pn of n jobs and integer m. The goal is to find an
assignment of the jobs to m identical machines, so that the final completion time (the makespan)
is minimized.

The Bound for OPT

If L=max{L X7, p;,max{pi}}, then we have that: L < OPT < 2-L.




[ Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., pn of n jobs and integer m. The goal is to find an
assignment of the jobs to m identical machines, so that the final completion time (the makespan)
is minimized.

The Bound for OPT
If L=max{L - X7, p;,max{pi}}, then we have that: L < OPT < 2-L.

There exists a schedule with makespan t if and only if n objects of sizes p1, ..., p, can be packed
into m bins of capacity t.




[ Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., pn of n jobs and integer m. The goal is to find an
assignment of the jobs to m identical machines, so that the final completion time (the makespan)
is minimized.

The Bound for OPT
If L=max{L - X7, p;,max{pi}}, then we have that: L < OPT < 2-L.

There exists a schedule with makespan t if and only if n objects of sizes p1, ..., p, can be packed
into m bins of capacity t. If | is the set of sizes py, ..., pn, and bins(1,t) is the minimum number of
bins needed to pack these objects,




[ Problem definition

Problem definition

Problem Statement

We are given the processing times py, ..., pn of n jobs and integer m. The goal is to find an
assignment of the jobs to m identical machines, so that the final completion time (the makespan)
is minimized.

The Bound for OPT

If L=max{L - X7, p;,max{pi}}, then we have that: L < OPT < 2-L.

There exists a schedule with makespan t if and only if n objects of sizes py, ..., p, can be packed
into m bins of capacity t. If | is the set of sizes py, ..., pn, and bins(1,t) is the minimum number of
bins needed to pack these objects, then one has the following equality:

OPT (makespan) = min{t : bins(/,t) < m}.
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PTAS

Definition

A PTAS for a minimization problem I1 is an algorithm A, which for all instances / of I'1 and
error-parameter € > 0, returns a solution of cost A(/), such that A(/) < (1+¢€)- OPT. The
running time of the algorithm must be polynomial for each fixed value of €.
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Some Notation

Suppose we are given n items to pack into bins of size t. Moreover, assume that they can have

only k different sizes. Let / = (i, ..., ix) denote the input to such a problem, where j; denotes the
number of items j. Let Bins(iy, ..., ik ) be the minimum number of bins needed to pack these
items.

Description of DP

| A

First compute the set Q of all k-tuples (g1, ..., k), such that Bins(gy, ..., qx) = 1. There are at
most O(n*) of them and they can be found in O(n¥) time.

@ Foreach g € Q set BINS(q) = 1.
@ If there exists /, such that j; < 0, then Bins(it ..., i) = +oo.

@ For all other g's use the following recurrence:

Bins(it,...,ik) =1+ min) Bins(it — Q1 .- ik — Qk)-
e)

v

Since there are O(n’) entries, and the calculation of each entry can be carried out in time
0O(n*), we have that this DP runs in time O(n?¥).

A\
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Letk = [logy . 1], and L < t < 2L. There exists an algorithm that in O(n?X) time finds a bin
packing of | that uses a(1,t,€) bins of size t- (14 ¢€). The packing has the property that
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v
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@ An objectin /is small if its size is at most € - t.

@ Round non-small objects as follows: if p; € [t-&(1 +e),t-e(1+ €)1, then set
pj =t-€(1+¢)". There can be at most k different sizes.
@ Use the DP to pack non-small objects optimally into bins of size t using costs pj’-. Observe

that rounding can reduce the size by a factor of 1 4- €, so the resulting packing is valid for
bins of size (14¢€)-t.

@ Apply First -Fit to the resulting packing for small items.
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The Proof

If the algorithm opens new bins, then all of the bins except possibly the last one are filled to at
least size t. Thus the optimal packing into bins of size ¢t must use at least o/(/, t, €) bins. On the
other hand, if the algorithm does not open new bins, then let I be the set of non-small items.
Then:

o(l,t,€) a(l',t,€)
bins(/', t)

bins(1,t).
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There exists an algorithm A, such that for each € > 0 it finds a schedule with makespan at most
(1+3-€)- OPT. The running time of the algorithm is O(?* - [log, 1), where k = [logy 4 1].
In other words, bin packing problem admits a PTAS.

’

The Algorithm
o If a(/,L,€) < m, then use packing given by core algorithm for ¢t = L.

o If a(/,L,€) > m, then perform a binary search to find an interval [T’, T] C [L,2- L] with
T—T <e-L, suchthat ot(/, T’,€) > mand a(/, T,€) < m. Then return the packing given
by core algorithm for t = T.

v
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