Quadratic Programming: Applications

Zola Donovan\(^1\) and Murong Xu\(^1\)

\(^1\)Department of Mathematics
West Virginia University
Morgantown, WV USA

March 10, 2015
Outline

1. Mean-Variance Optimization

2. Brief mention of other MVO models

3. Maximizing the Sharpe Ratio

4. More Topics not covered

5. References

Z. Donovan and M. Xu
Optimization Methods in Finance
Outline

1. Mean-Variance Optimization
2. Brief mention of other MVO models
1. Mean-Variance Optimization
2. Brief mention of other MVO models
3. Maximizing the Sharpe Ratio
Outline

1. Mean-Variance Optimization
2. Brief mention of other MVO models
3. Maximizing the Sharpe Ratio
4. More Topics not covered
Outline

1. Mean-Variance Optimization
2. Brief mention of other MVO models
3. Maximizing the Sharpe Ratio
4. More Topics not covered
5. References
Markowitz’ theory of mean-variance optimization

Markowitz’ theory of mean-variance optimization (MVO) provides a mechanism for the selection of portfolios of securities (or asset classes) by considering the trade-off between risk and return. Consider assets S_1, S_2, \ldots, S_n ($n \geq 2$) with random returns. Let μ_i and σ_i denote the expected return and the standard deviation of the return of asset S_i. For $i \neq j$, ρ_{ij} denotes the correlation coefficient of the returns of assets S_i and S_j. Let $\mu = [\mu_1, \ldots, \mu_n]^T$ and $\Sigma = (\sigma_{ij})$ be the $n \times n$ symmetric covariance matrix with $\sigma_{ii} = \sigma_i^2$ and $\sigma_{ij} = \rho_{ij} \cdot \sigma_i \cdot \sigma_j$ for $i \neq j$.

Z. Donovan and M. Xu
Optimization Methods in Finance
Markowitz’ theory of mean-variance optimization

Mechanism for the selection of portfolios

Markowitz' theory of mean-variance optimization (MVO) provides a mechanism for the selection of portfolios of securities (or asset classes) by considering the trade-off between risk and return. Consider assets S_1, S_2, \cdots, S_n ($n \geq 2$) with random returns. Let μ_i and σ_i denote the expected return and the standard deviation of the return of asset S_i. For $i \neq j$, ρ_{ij} denotes the correlation coefficient of the returns of assets S_i and S_j. Let $\mu = [\mu_1, \cdots, \mu_n]^T$, and $\Sigma = (\sigma_{ij})$ be the $n \times n$ symmetric covariance matrix with $\sigma_{ii} = \sigma^2_i$ and $\sigma_{ij} = \rho_{ij} \cdot \sigma_i \cdot \sigma_j$ for $i \neq j$.
Markowitz’ theory of mean-variance optimization

Mechanism for the selection of portfolios

- Markowitz’ theory of mean-variance optimization (MVO) provides a mechanism for the selection of portfolios of securities (or asset classes)
Markowitz’ theory of mean-variance optimization

Mechanism for the selection of portfolios

- Markowitz’ theory of mean-variance optimization (MVO) provides a mechanism for the selection of portfolios of securities (or asset classes) by considering the trade-off between risk and return.
Markowitz’ theory of mean-variance optimization

Mechanism for the selection of portfolios

- Markowitz’ theory of mean-variance optimization (MVO) provides a mechanism for the selection of portfolios of securities (or asset classes) by considering the trade-off between risk and return.
- Consider assets S_1, S_2, \cdots, S_n ($n \geq 2$) with random returns.
Markowitz’ theory of mean-variance optimization

Mechanism for the selection of portfolios

- Markowitz’ theory of mean-variance optimization (MVO) provides a mechanism for the selection of portfolios of securities (or asset classes) by considering the trade-off between risk and return.
- Consider assets S_1, S_2, \ldots, S_n ($n \geq 2$) with random returns.
- Let μ_i and σ_i denote the expected return and the standard deviation of the return of asset S_i.

Markowitz’ theory of mean-variance optimization (MVO) provides a mechanism for the selection of portfolios of securities (or asset classes) by considering the trade-off between risk and return. Consider assets S_1, S_2, \ldots, S_n ($n \geq 2$) with random returns. Let μ_i and σ_i denote the expected return and the standard deviation of the return of asset S_i.

<table>
<thead>
<tr>
<th>Mechanism for the selection of portfolios</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Markowitz’ theory of mean-variance optimization (MVO) provides a mechanism for the selection of portfolios of securities (or asset classes) by considering the trade-off between risk and return.</td>
</tr>
<tr>
<td>- Consider assets S_1, S_2, \ldots, S_n ($n \geq 2$) with random returns.</td>
</tr>
<tr>
<td>- Let μ_i and σ_i denote the expected return and the standard deviation of the return of asset S_i.</td>
</tr>
</tbody>
</table>
Markowitz’ theory of mean-variance optimization

Mechanism for the selection of portfolios

- Markowitz’ theory of mean-variance optimization (MVO) provides a mechanism for the selection of portfolios of securities (or asset classes) by considering the trade-off between risk and return.
- Consider assets S_1, S_2, \cdots, S_n ($n \geq 2$) with random returns.
- Let μ_i and σ_i denote the expected return and the standard deviation of the return of asset S_i.
- For $i \neq j$, ρ_{ij} denotes the correlation coefficient of the returns of assets S_i and S_j.
Markowitz’ theory of mean-variance optimization

Mechanism for the selection of portfolios

- Markowitz’ theory of mean-variance optimization (MVO) provides a mechanism for the selection of portfolios of securities (or asset classes) by considering the trade-off between risk and return.
- Consider assets S_1, S_2, \cdots, S_n ($n \geq 2$) with random returns.
- Let μ_i and σ_i denote the expected return and the standard deviation of the return of asset S_i.
- For $i \neq j$, ρ_{ij} denotes the correlation coefficient of the returns of assets S_i and S_j.
- Let $\mu = [\mu_1, \cdots, \mu_n]^T$, and $\Sigma = (\sigma_{ij})$ be the $n \times n$ symmetric covariance matrix with $\sigma_{ii} = \sigma_i^2$ and $\sigma_{ij} = \rho_{ij} \cdot \sigma_i \cdot \sigma_j$ for $i \neq j$.
Markowitz theory of mean-variance optimization

Expected return and variance of the portfolio

If we let x_i denote the proportion of the total funds invested in S_i, then the expected return and variance of the portfolio $x = (x_1, \cdots, x_n)$ can be represented as follows:

$$E[x] = \mu_1 \cdot x_1 + \cdots + \mu_n \cdot x_n = \mu^T \cdot x,$$

and

$$\text{Var}[x] = \sum_{i,j} \rho_{ij} \cdot \sigma_i \cdot \sigma_j \cdot x_i \cdot x_j = x^T \cdot \Sigma \cdot x,$$

where $\rho_{ii} \equiv 1$. Since variance is always nonnegative, it follows that $x^T \cdot \Sigma \cdot x \geq 0$ for any x, i.e., Σ is positive semidefinite.
Markowitz theory of mean-variance optimization

Expected return and variance of the portfolio

If we let x_i denote the proportion of the total funds invested in S_i, then the expected return and variance of the portfolio $x = (x_1, \cdots, x_n)$ can be represented as follows:

$$E[x] = \mu_1 x_1 + \cdots + \mu_n x_n = \mu^T x,$$

and

$$\text{Var}[x] = \sum_{i,j} \rho_{ij} \sigma_i \sigma_j x_i x_j = x^T \Sigma x,$$

where $\rho_{ii} \equiv 1$.

Since variance is always nonnegative, it follows that $x^T \Sigma x \geq 0$ for any x, i.e., Σ is positive semidefinite.
Markowitz theory of mean-variance optimization

Expected return and variance of the portfolio

- If we let x_i denote the proportion of the total funds invested in S_i,
Markowitz theory of mean-variance optimization

Expected return and variance of the portfolio

- If we let x_i denote the proportion of the total funds invested in S_i, then the expected return and variance of the portfolio $\mathbf{x} = (x_1, \ldots, x_n)$ can be represented as follows:
Markowitz theory of mean-variance optimization

Expected return and variance of the portfolio

- If we let x_i denote the proportion of the total funds invested in S_i, then the expected return and variance of the portfolio $\mathbf{x} = (x_1, \ldots, x_n)$ can be represented as follows:

$$E[\mathbf{x}] = \mu_1 \cdot x_1 + \cdots + \mu_n \cdot x_n = \mu^T \cdot \mathbf{x},$$

$$\text{Var}[\mathbf{x}] = \sum_{i,j} \rho_{ij} \cdot \sigma_i \cdot \sigma_j \cdot x_i \cdot x_j = \mathbf{x}^T \cdot \Sigma \cdot \mathbf{x},$$

where $\rho_{ii} \equiv 1$. Since variance is always nonnegative, it follows that $\mathbf{x}^T \cdot \Sigma \cdot \mathbf{x} \geq 0$ for any \mathbf{x}, i.e., Σ is positive semidefinite.
Markowitz theory of mean-variance optimization

Expected return and variance of the portfolio

- If we let x_i denote the proportion of the total funds invested in S_i, then the expected return and variance of the portfolio $\mathbf{x} = (x_1, \cdots, x_n)$ can be represented as follows:

$$E[\mathbf{x}] = \mu_1 \cdot x_1 + \cdots + \mu_n \cdot x_n = \mu^T \cdot \mathbf{x},$$

and
Markowitz theory of mean-variance optimization

Expected return and variance of the portfolio

If we let x_i denote the proportion of the total funds invested in S_i, then the expected return and variance of the portfolio $\mathbf{x} = (x_1, \cdots, x_n)$ can be represented as follows:

$$E[\mathbf{x}] = \mu_1 \cdot x_1 + \cdots + \mu_n \cdot x_n = \mu^T \cdot \mathbf{x},$$

and

$$\text{Var}[\mathbf{x}] = \sum_{i,j} \rho_{ij} \cdot \sigma_i \cdot \sigma_j \cdot x_i \cdot x_j = \mathbf{x}^T \cdot \Sigma \cdot \mathbf{x},$$
Expected return and variance of the portfolio

If we let x_i denote the proportion of the total funds invested in S_i, then the expected return and variance of the portfolio $\mathbf{x} = (x_1, \cdots, x_n)$ can be represented as follows:

$$E[\mathbf{x}] = \mu_1 \cdot x_1 + \cdots + \mu_n \cdot x_n = \mathbf{\mu}^T \cdot \mathbf{x},$$

and

$$\text{Var}[\mathbf{x}] = \sum_{i,j} \rho_{ij} \cdot \sigma_i \cdot \sigma_j \cdot x_i \cdot x_j = \mathbf{x}^T \cdot \mathbf{\Sigma} \cdot \mathbf{x},$$

where $\rho_{ii} \equiv 1$.
If we let x_i denote the proportion of the total funds invested in S_i, then the expected return and variance of the portfolio $\mathbf{x} = (x_1, \cdots, x_n)$ can be represented as follows:

$$E[\mathbf{x}] = \mu_1 \cdot x_1 + \cdots + \mu_n \cdot x_n = \mu^T \cdot \mathbf{x},$$

and

$$\text{Var}[\mathbf{x}] = \sum_{i,j} \rho_{ij} \cdot \sigma_i \cdot \sigma_j \cdot x_i \cdot x_j = \mathbf{x}^T \cdot \Sigma \cdot \mathbf{x},$$

where $\rho_{ii} \equiv 1$.

Since variance is always nonnegative, it follows that $\mathbf{x}^T \cdot \Sigma \cdot \mathbf{x} \geq 0$ for any \mathbf{x}, i.e., Σ is positive semidefinite.
Assumptions and constraints

We will assume that Σ is positive definite. This is essentially equivalent to assuming that there are no redundant assets in our collection S_1, S_2, \cdots, S_n. We also assume that the set of admissible portfolios is a nonempty polyhedral set and represent it as

$$X := \{ x : A \cdot x = b, C \cdot x \geq d \},$$

where A is an $m \times n$ matrix, b is an m-dimensional vector, C is a $p \times n$ matrix, and d is a p-dimensional vector.

In particular, one of the constraints in the set X is:

$$\sum_{i=1}^{n} x_i = 1.$$
Assumptions and constraints
Assumptions and constraints

- We will assume that Σ is positive definite.
Assumptions and constraints

- We will assume that Σ is positive definite.
 - This is essentially equivalent to assuming that there are no redundant assets in our collection S_1, S_2, \cdots, S_n.
Assumptions and constraints

- We will assume that Σ is positive definite.
 - This is essentially equivalent to assuming that there are no redundant assets in our collection S_1, S_2, \cdots, S_n.

- We also assume that the set of *admissible* portfolios is a nonempty polyhedral set and represent it as $\mathcal{X} := \{x : A \cdot x = b, C \cdot x \geq d\}$,
Assumptions and constraints

- We will assume that \(\Sigma \) is positive definite.
 - This is essentially equivalent to assuming that there are no redundant assets in our collection \(S_1, S_2, \ldots, S_n \).

- We also assume that the set of *admissible* portfolios is a nonempty polyhedral set and represent it as \(\mathcal{X} := \{ \mathbf{x} : \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \mathbf{C} \cdot \mathbf{x} \geq \mathbf{d} \} \), where \(\mathbf{A} \) is an \(m \times n \) matrix,
Assumptions and constraints

- We will assume that Σ is positive definite.
 - This is essentially equivalent to assuming that there are no redundant assets in our collection S_1, S_2, \cdots, S_n.

- We also assume that the set of *admissible* portfolios is a nonempty polyhedral set and represent it as $\mathcal{X} := \{ x : A \cdot x = b, C \cdot x \geq d \}$, where A is an $m \times n$ matrix, b is an m-dimensional vector, and d is a p-dimensional vector.
Assumptions and constraints

- We will assume that Σ is positive definite.
 - This is essentially equivalent to assuming that there are no redundant assets in our collection S_1, S_2, \cdots, S_n.

- We also assume that the set of admissible portfolios is a nonempty polyhedral set and represent it as $\mathcal{X} := \{x : A \cdot x = b, C \cdot x \geq d\}$, where A is an $m \times n$ matrix, b is an m-dimensional vector, C is a $p \times n$ matrix,
Markowitz theory of mean-variance optimization

Assumptions and constraints

- We will assume that Σ is positive definite.
 - This is essentially equivalent to assuming that there are no redundant assets in our collection S_1, S_2, \ldots, S_n.

- We also assume that the set of *admissible* portfolios is a nonempty polyhedral set and represent it as $\mathcal{X} := \{x : A \cdot x = b, C \cdot x \geq d\}$, where A is an $m \times n$ matrix, b is an m-dimensional vector, C is a $p \times n$ matrix, and d is a p-dimensional vector.
Assumptions and constraints

- We will assume that Σ is positive definite.
 - This is essentially equivalent to assuming that there are no redundant assets in our collection S_1, S_2, \ldots, S_n.

- We also assume that the set of *admissible* portfolios is a nonempty polyhedral set and represent it as $\mathcal{X} := \{x : A \cdot x = b, C \cdot x \geq d\}$, where A is an $m \times n$ matrix, b is an m-dimensional vector, C is a $p \times n$ matrix, and d is a p-dimensional vector.

- In particular, one of the constraints in the set \mathcal{X} is:
We will assume that Σ is positive definite.

This is essentially equivalent to assuming that there are no redundant assets in our collection S_1, S_2, \cdots, S_n.

We also assume that the set of admissible portfolios is a nonempty polyhedral set and represent it as $\mathcal{X} := \{x : A \cdot x = b, C \cdot x \geq d\}$, where A is an $m \times n$ matrix, b is an m-dimensional vector, C is a $p \times n$ matrix, and d is a p-dimensional vector.

In particular, one of the constraints in the set \mathcal{X} is:

$$\sum_{i=1}^{n} x_i = 1.$$
Markowitz theory of mean-variance optimization

The collection of efficient portfolios form the efficient frontier of the portfolio universe.

The efficient frontier is often represented as a curve in a two-dimensional graph where the coordinates of a plotted point corresponds to the standard deviation and the expected return of an efficient portfolio.

When we assume that Σ is positive definite, the variance is a strictly convex function of the portfolio variables and there exists a unique portfolio in \mathcal{X} that has the minimum variance. Let us denote this portfolio with x_{min} and its return $\mu^T \cdot x_{\text{min}}$ with R_{min}.

(Note that x_{min} is an efficient portfolio.) We let R_{max} denote the maximum return for an admissible portfolio.
Markowitz theory of mean-variance optimization

An efficient portfolio is a portfolio with the maximal expected return among all portfolios with the same variance, or alternatively, a portfolio with the minimum variance among all portfolios that have at least a certain expected return. The collection of efficient portfolios forms the efficient frontier of the portfolio universe.

The efficient frontier is often represented as a curve in a two-dimensional graph where the coordinates of a plotted point correspond to the standard deviation and the expected return of an efficient portfolio.

When we assume that Σ is positive definite, the variance is a strictly convex function of the portfolio variables and there exists a unique portfolio in X that has the minimum variance. Let us denote this portfolio with x_{min} and its return $\mu_T \cdot x_{\text{min}}$ with R_{min}.

(Note that x_{min} is an efficient portfolio.) We let R_{max} denote the maximum return for an admissible portfolio.
A feasible portfolio \mathbf{x} is called *efficient* if it has the maximal expected return among all portfolios with the same variance,
Efficient Frontier

A feasible portfolio \mathbf{x} is called *efficient* if it has the maximal expected return among all portfolios with the same variance, or alternatively, if it has the minimum variance among all portfolios that have at least a certain expected return.
A feasible portfolio \mathbf{x} is called efficient if it has the maximal expected return among all portfolios with the same variance, or alternatively, if it has the minimum variance among all portfolios that have at least a certain expected return.

The collection of efficient portfolios form the efficient frontier of the portfolio universe.
A feasible portfolio \(\mathbf{x} \) is called *efficient* if it has the maximal expected return among all portfolios with the same variance, or alternatively, if it has the minimum variance among all portfolios that have at least a certain expected return.

The collection of efficient portfolios form the *efficient frontier* of the portfolio universe.

- The efficient frontier is often represented as a curve in a two-dimensional graph.
A feasible portfolio \(\mathbf{x} \) is called *efficient* if it has the maximal expected return among all portfolios with the same variance, or alternatively, if it has the minimum variance among all portfolios that have at least a certain expected return.

The collection of efficient portfolios form the *efficient frontier* of the portfolio universe.

- The efficient frontier is often represented as a curve in a two-dimensional graph where the coordinates of a plotted point corresponds to the standard deviation and
Markowitz theory of mean-variance optimization

Efficient Frontier

- A feasible portfolio \(\mathbf{x} \) is called *efficient* if it has the maximal expected return among all portfolios with the same variance, or alternatively, if it has the minimum variance among all portfolios that have at least a certain expected return.
- The collection of efficient portfolios form the *efficient frontier* of the portfolio universe.
 - The efficient frontier is often represented as a curve in a two-dimensional graph where the coordinates of a plotted point corresponds to the standard deviation and the expected return of an efficient portfolio.
A feasible portfolio \mathbf{x} is called *efficient* if it has the maximal expected return among all portfolios with the same variance, or alternatively, if it has the minimum variance among all portfolios that have at least a certain expected return.

The collection of efficient portfolios form the *efficient frontier* of the portfolio universe.

- The efficient frontier is often represented as a curve in a two-dimensional graph where the coordinates of a plotted point corresponds to the standard deviation and the expected return of an efficient portfolio.
- When we assume that $\mathbf{\Sigma}$ is positive definite,
A feasible portfolio \mathbf{x} is called *efficient* if it has the maximal expected return among all portfolios with the same variance, or alternatively, if it has the minimum variance among all portfolios that have at least a certain expected return.

The collection of efficient portfolios form the *efficient frontier* of the portfolio universe.

- The efficient frontier is often represented as a curve in a two-dimensional graph where the coordinates of a plotted point corresponds to the standard deviation and the expected return of an efficient portfolio.
- When we assume that Σ is positive definite, the variance is a strictly convex function of the portfolio variables and
A feasible portfolio \mathbf{x} is called *efficient* if it has the maximal expected return among all portfolios with the same variance, or alternatively, if it has the minimum variance among all portfolios that have at least a certain expected return.

The collection of efficient portfolios form the *efficient frontier* of the portfolio universe.

- The efficient frontier is often represented as a curve in a two-dimensional graph where the coordinates of a plotted point corresponds to the standard deviation and the expected return of an efficient portfolio.
- When we assume that Σ is positive definite, the variance is a strictly convex function of the portfolio variables and there exists a unique portfolio in \mathcal{X} that has the minimum variance.
A feasible portfolio \mathbf{x} is called *efficient* if it has the maximal expected return among all portfolios with the same variance, or alternatively, if it has the minimum variance among all portfolios that have at least a certain expected return.

The collection of efficient portfolios form the *efficient frontier* of the portfolio universe.

- The efficient frontier is often represented as a curve in a two-dimensional graph where the coordinates of a plotted point corresponds to the standard deviation and the expected return of an efficient portfolio.
- When we assume that Σ is positive definite, the variance is a strictly convex function of the portfolio variables and there exists a unique portfolio in \mathcal{X} that has the minimum variance.
- Let us denote this portfolio with \mathbf{x}_{min} and its return $\mu^T \cdot \mathbf{x}_{\text{min}}$ with R_{min}.
A feasible portfolio \mathbf{x} is called *efficient* if it has the maximal expected return among all portfolios with the same variance, or alternatively, if it has the minimum variance among all portfolios that have at least a certain expected return.

The collection of efficient portfolios form the *efficient frontier* of the portfolio universe.

- The efficient frontier is often represented as a curve in a two-dimensional graph where the coordinates of a plotted point corresponds to the standard deviation and the expected return of an efficient portfolio.
- When we assume that Σ is positive definite, the variance is a strictly convex function of the portfolio variables and there exists a unique portfolio in \mathcal{X} that has the minimum variance.
- Let us denote this portfolio with \mathbf{x}_{\min} and its return $\mu^T \cdot \mathbf{x}_{\min}$ with R_{\min}. (Note that \mathbf{x}_{\min} is an efficient portfolio.)
Efficient Frontier

A feasible portfolio \mathbf{x} is called *efficient* if it has the maximal expected return among all portfolios with the same variance, or alternatively, if it has the minimum variance among all portfolios that have at least a certain expected return.

The collection of efficient portfolios form the *efficient frontier* of the portfolio universe.

- The efficient frontier is often represented as a curve in a two-dimensional graph where the coordinates of a plotted point corresponds to the standard deviation and the expected return of an efficient portfolio.
- When we assume that Σ is positive definite, the variance is a strictly convex function of the portfolio variables and there exists a unique portfolio in \mathcal{X} that has the minimum variance.
- Let us denote this portfolio with \mathbf{x}_{min} and its return $\mu^T \cdot \mathbf{x}_{\text{min}}$ with R_{min}. (Note that \mathbf{x}_{min} is an efficient portfolio.)
- We let R_{max} denote the maximum return for an admissible portfolio.
Markowitz theory of mean-variance optimization
Markowitz theory of mean-variance optimization

Markowitz MVO problem formulation

Find the minimum variance portfolio that yields at least a target value of expected return. Mathematically, this formulation produces a quadratic programming problem:

\[
\min \quad x^T \Sigma x \quad \text{subject to} \quad \mu^T x \geq R \quad \text{and} \quad C x \geq d
\]

By solving this problem for values of \(R \) ranging between \(R_{\text{min}} \) and \(R_{\text{max}} \), we obtain all efficient portfolios.
Markowitz theory of mean-variance optimization

Markowitz MVO problem formulation

- Find the minimum variance portfolio that yields at least a target value of expected return.
Markowitz theory of mean-variance optimization

Markowitz MVO problem formulation

- Find the minimum variance portfolio that yields at least a target value of expected return.
- Mathematically, this formulation produces a quadratic programming problem:

\[
\begin{align*}
\text{min} & \quad x_1^2 + \cdots + x_n^2 \\
\text{s.t.} & \quad \mu^T x \geq R \\
& \quad A^T x = b \\
& \quad C^T x \geq d
\end{align*}
\]

By solving this problem for values of \(R \) ranging between \(R_{\min} \) and \(R_{\max} \), we obtain all efficient portfolios.
Markowitz theory of mean-variance optimization

Markowitz MVO problem formulation

- Find the minimum variance portfolio that yields at least a target value of expected return.
- Mathematically, this formulation produces a quadratic programming problem:

\[
\min_{\mathbf{x}} \frac{1}{2} \cdot \mathbf{x}^T \cdot \Sigma \cdot \mathbf{x}
\]
Find the minimum variance portfolio that yields at least a target value of expected return.

Mathematically, this formulation produces a quadratic programming problem:

\[
\min_x \frac{1}{2} \cdot x^T \cdot \Sigma \cdot x \\
\mu^T \cdot x \geq R
\]
Markowitz theory of mean-variance optimization

Markowitz MVO problem formulation

- Find the minimum variance portfolio that yields at least a target value of expected return.
- Mathematically, this formulation produces a quadratic programming problem:

$$\min_x \frac{1}{2} \cdot x^T \cdot \Sigma \cdot x$$

$$\mu^T \cdot x \geq R$$

$$A \cdot x = b$$
Markowitz theory of mean-variance optimization

Markowitz MVO problem formulation

- Find the minimum variance portfolio that yields at least a target value of expected return.
- Mathematically, this formulation produces a quadratic programming problem:

\[
\min_x \frac{1}{2} \cdot x^T \cdot \Sigma \cdot x \\
\mu^T \cdot x \geq R \\
A \cdot x = b \\
C \cdot x \geq d
\]
Markowitz theory of mean-variance optimization

Markowitz MVO problem formulation

- Find the minimum variance portfolio that yields at least a target value of expected return.
- Mathematically, this formulation produces a quadratic programming problem:

\[
\begin{align*}
\min_x & \quad \frac{1}{2} \cdot x^T \cdot \Sigma \cdot x \\
\text{subject to} & \quad \mu^T \cdot x \geq R \\
& \quad A \cdot x = b \\
& \quad C \cdot x \geq d
\end{align*}
\]

- By solving this problem for values of \(R \) ranging between \(R_{\text{min}} \) and \(R_{\text{max}} \), we obtain all efficient portfolios.
Markowitz theory of mean-variance optimization

We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality. Thus, \(x \in \mathbb{R} \) is an optimal solution of the problem if and only if there exists \(\lambda \in \mathbb{R} \), \(\gamma \in \mathbb{R}^m \), and \(\gamma \in \mathbb{R}^p \) satisfying the following KKT conditions:

\[
\begin{align*}
\Sigma \cdot x - \lambda \cdot \mu - A^T \cdot \gamma_E - C^T \cdot \gamma_I &= 0 \\
\mu^T \cdot x &\geq R \\
A \cdot x &= b \\
C \cdot x &\geq d \\
\lambda &\geq 0 \\
\gamma_I &\geq 0 \\
\gamma_I^T \cdot (C \cdot x - d) &= 0
\end{align*}
\]
We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality. Thus, $\mathbf{x} \in \mathbb{R}^n$ is an optimal solution of the problem if and only if there exist $\lambda \in \mathbb{R}$, $\gamma \in \mathbb{R}^m$, and $\gamma \in \mathbb{R}^p$ satisfying the following KKT conditions:

$$
\begin{align*}
\mathbf{\Sigma} \cdot \mathbf{x} - \lambda \cdot \mathbf{\mu} - \mathbf{A}^T \cdot \gamma - \mathbf{C}^T \cdot \gamma &= 0, \\
\mathbf{\mu}^T \cdot \mathbf{x} &\geq R, \\
\mathbf{A} \cdot \mathbf{x} &= b, \\
\mathbf{C} \cdot \mathbf{x} &\geq d, \\
\lambda &\geq 0, \\
\lambda \cdot (\mathbf{\mu}^T \cdot \mathbf{x} - R) &= 0, \\
\gamma \cdot \mathbf{I} &= 0, \\
\gamma \cdot \mathbf{C} \cdot \mathbf{x} - d &= 0.
\end{align*}
$$
Markowitz theory of mean-variance optimization

KKT conditions

- We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality.
Markowitz theory of mean-variance optimization

KKT conditions

- We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality.
- Thus, \(x_R \) is an optimal solution of the problem if and only if there exists...
Markowitz theory of mean-variance optimization

KKT conditions

- We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality.
- Thus, \(x_R \) is an optimal solution of the problem if and only if there exists \(\lambda_R \in \mathbb{R} \),
KKT conditions

- We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality.

- Thus, x_R is an optimal solution of the problem if and only if there exists $\lambda_R \in \mathbb{R}$, $\gamma_E \in \mathbb{R}^m$.
We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality.

Thus, \(x_R \) is an optimal solution of the problem if and only if there exists \(\lambda_R \in \mathbb{R} \), \(\gamma_E \in \mathbb{R}^m \), and \(\gamma_I \in \mathbb{R}^p \).
KKT conditions

- We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality.

- Thus, \(x_R \) is an optimal solution of the problem if and only if there exists \(\lambda_R \in \mathbb{R} \), \(\gamma_E \in \mathbb{R}^m \), and \(\gamma_I \in \mathbb{R}^p \) satisfying the following KKT conditions:
KKT conditions

- We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality.
- Thus, \mathbf{x}_R is an optimal solution of the problem if and only if there exists $\lambda_R \in \mathbb{R}$, $\gamma_E \in \mathbb{R}^m$, and $\gamma_I \in \mathbb{R}^p$ satisfying the following KKT conditions:

$$
\Sigma \cdot \mathbf{x}_R - \lambda_R \cdot \mu - \mathbf{A}^T \cdot \gamma_E - \mathbf{C}^T \cdot \gamma_I = \mathbf{0}
$$
We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality.

Thus, \(\mathbf{x}_R \) is an optimal solution of the problem if and only if there exists \(\lambda_R \in \mathbb{R} \), \(\gamma_E \in \mathbb{R}^m \), and \(\gamma_I \in \mathbb{R}^p \) satisfying the following KKT conditions:

\[
\begin{align*}
\Sigma \cdot \mathbf{x}_R - \lambda_R \cdot \mathbf{\mu} - \mathbf{A}^T \cdot \gamma_E - \mathbf{C}^T \cdot \gamma_I &= \mathbf{0} \\
\mathbf{\mu}^T \cdot \mathbf{x}_R &\geq \mathbf{R}, \quad \mathbf{A} \cdot \mathbf{x}_R = \mathbf{b}, \quad \mathbf{C} \cdot \mathbf{x}_R \geq \mathbf{d}
\end{align*}
\]
Markowitz theory of mean-variance optimization

KKT conditions

- We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality.
- Thus, x_R is an optimal solution of the problem if and only if there exists $\lambda_R \in \mathbb{R}$, $\gamma_E \in \mathbb{R}^m$, and $\gamma_I \in \mathbb{R}^p$ satisfying the following KKT conditions:

$$
\Sigma \cdot x_R - \lambda_R \cdot \mu - A^T \cdot \gamma_E - C^T \cdot \gamma_I = 0
$$

$$
\mu^T \cdot x_R \geq R, \quad A \cdot x_R = b, \quad C \cdot x_R \geq d
$$

$$
\lambda_R \geq 0, \quad \lambda_R \cdot (\mu^T \cdot x_R - R) = 0
$$
Markowitz theory of mean-variance optimization

KKT conditions

- We have a convex QP problem for which the first-order conditions are both necessary and sufficient for optimality.
- Thus, \(x_R \) is an optimal solution of the problem if and only if there exists \(\lambda_R \in \mathbb{R} \), \(\gamma_E \in \mathbb{R}^m \), and \(\gamma_I \in \mathbb{R}^p \) satisfying the following KKT conditions:

\[
\begin{align*}
\Sigma \cdot x_R - \lambda_R \cdot \mu - A^T \cdot \gamma_E - C^T \cdot \gamma_I &= 0 \\
\mu^T \cdot x_R &\geq R, \quad A \cdot x_R = b, \quad C \cdot x_R \geq d \\
\lambda_R &\geq 0, \quad \lambda_R \cdot (\mu^T \cdot x_R - R) = 0 \\
\gamma_I &\geq 0, \quad \gamma_I^T \cdot (C \cdot x_R - d) = 0
\end{align*}
\]
Markowitz theory of mean-variance optimization

Example
We apply Markowitz' MVO model to the problem of constructing a portfolio of US stocks, bonds, and cash. We will use historical return data for these three asset classes to estimate their future expected returns. We use the S&P 500 Index for the returns on stocks, the 10-year Treasury Bond Index for the returns on bonds, and we assume that the cash is invested in a money market account whose return is the 1-day federal fund rate. The annual times series for the "total return" for each asset between 1960 and 2003 are given in the next table.
Example

We apply Markowitz' MVO model to the problem of constructing a portfolio of US stocks, bonds, and cash. We will use historical return data for these three asset classes to estimate their future expected returns. We use the S&P 500 Index for the returns on stocks, the 10-year Treasury Bond Index for the returns on bonds, and we assume that the cash is invested in a money market account whose return is the 1-day federal fund rate. The annual times series for the "total return" for each asset between 1960 and 2003 are given in the next table.
Example

We apply Markowitz’ MVO model to the problem of constructing a portfolio of US stocks, bonds, and cash.
Markowitz theory of mean-variance optimization

Example

- We apply Markowitz’ MVO model to the problem of constructing a portfolio of US stocks, bonds, and cash.
- We will use historical return data for these three asset classes to estimate their future expected returns.
We apply Markowitz’ MVO model to the problem of constructing a portfolio of US stocks, bonds, and cash. We will use historical return data for these three asset classes to estimate their future expected returns. We use the S&P 500 Index for the returns on stocks,
Markowitz theory of mean-variance optimization

Example

- We apply Markowitz’ MVO model to the problem of constructing a portfolio of US stocks, bonds, and cash.
- We will use historical return data for these three asset classes to estimate their future expected returns.
 - We use the S&P 500 Index for the returns on stocks, the 10-year Treasury Bond Index for the returns on bonds,
Example

- We apply Markowitz’ MVO model to the problem of constructing a portfolio of US stocks, bonds, and cash.
- We will use historical return data for these three asset classes to estimate their future expected returns.
 - We use the S&P 500 Index for the returns on stocks, the 10-year Treasury Bond Index for the returns on bonds, and we assume that the cash is invested in a money market account whose return is the 1-day federal fund rate.
We apply Markowitz’ MVO model to the problem of constructing a portfolio of US stocks, bonds, and cash.

We will use historical return data for these three asset classes to estimate their future expected returns.

- We use the S&P 500 Index for the returns on stocks, the 10-year Treasury Bond Index for the returns on bonds, and we assume that the cash is invested in a money market account whose return is the 1-day federal fund rate.

The annual times series for the “total return” for each asset between 1960 and 2003 are given in the next table.
Markowitz theory of mean-variance optimization

<table>
<thead>
<tr>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>20.255</td>
<td>262.935</td>
<td>100.00</td>
<td>1982</td>
<td>115.308</td>
<td>777.332</td>
<td>440.68</td>
</tr>
<tr>
<td>1961</td>
<td>25.686</td>
<td>268.730</td>
<td>102.33</td>
<td>1983</td>
<td>141.316</td>
<td>787.357</td>
<td>482.42</td>
</tr>
<tr>
<td>1962</td>
<td>23.430</td>
<td>284.090</td>
<td>105.33</td>
<td>1984</td>
<td>150.181</td>
<td>907.712</td>
<td>522.84</td>
</tr>
<tr>
<td>1963</td>
<td>28.746</td>
<td>289.162</td>
<td>108.89</td>
<td>1985</td>
<td>197.829</td>
<td>1200.63</td>
<td>566.08</td>
</tr>
<tr>
<td>1964</td>
<td>33.448</td>
<td>299.894</td>
<td>113.08</td>
<td>1986</td>
<td>234.755</td>
<td>1469.45</td>
<td>605.20</td>
</tr>
<tr>
<td>1965</td>
<td>37.581</td>
<td>302.695</td>
<td>117.97</td>
<td>1987</td>
<td>247.080</td>
<td>1424.91</td>
<td>646.17</td>
</tr>
<tr>
<td>1966</td>
<td>33.784</td>
<td>318.197</td>
<td>124.34</td>
<td>1988</td>
<td>288.116</td>
<td>1522.40</td>
<td>702.77</td>
</tr>
<tr>
<td>1967</td>
<td>41.873</td>
<td>309.103</td>
<td>129.94</td>
<td>1989</td>
<td>379.409</td>
<td>1804.63</td>
<td>762.16</td>
</tr>
<tr>
<td>1968</td>
<td>46.480</td>
<td>316.051</td>
<td>137.77</td>
<td>1990</td>
<td>367.636</td>
<td>1944.25</td>
<td>817.87</td>
</tr>
<tr>
<td>1969</td>
<td>42.545</td>
<td>298.249</td>
<td>150.12</td>
<td>1991</td>
<td>479.633</td>
<td>2320.64</td>
<td>854.10</td>
</tr>
<tr>
<td>1970</td>
<td>44.221</td>
<td>354.671</td>
<td>157.48</td>
<td>1992</td>
<td>516.178</td>
<td>2490.97</td>
<td>879.04</td>
</tr>
<tr>
<td>1971</td>
<td>50.545</td>
<td>394.532</td>
<td>164.00</td>
<td>1993</td>
<td>568.202</td>
<td>2816.40</td>
<td>905.06</td>
</tr>
<tr>
<td>1972</td>
<td>60.146</td>
<td>403.942</td>
<td>172.74</td>
<td>1994</td>
<td>575.705</td>
<td>2610.12</td>
<td>954.39</td>
</tr>
<tr>
<td>1973</td>
<td>51.311</td>
<td>417.252</td>
<td>189.93</td>
<td>1995</td>
<td>792.042</td>
<td>3287.27</td>
<td>1007.84</td>
</tr>
<tr>
<td>1974</td>
<td>37.731</td>
<td>433.927</td>
<td>206.13</td>
<td>1996</td>
<td>973.897</td>
<td>3291.58</td>
<td>1061.15</td>
</tr>
<tr>
<td>1975</td>
<td>51.777</td>
<td>457.885</td>
<td>216.85</td>
<td>1997</td>
<td>1298.82</td>
<td>3687.33</td>
<td>1119.51</td>
</tr>
<tr>
<td>1976</td>
<td>64.166</td>
<td>529.141</td>
<td>226.93</td>
<td>1998</td>
<td>1670.01</td>
<td>4220.24</td>
<td>1171.91</td>
</tr>
<tr>
<td>1977</td>
<td>59.574</td>
<td>531.144</td>
<td>241.82</td>
<td>1999</td>
<td>2021.40</td>
<td>3903.32</td>
<td>1234.02</td>
</tr>
<tr>
<td>1978</td>
<td>63.488</td>
<td>524.435</td>
<td>266.07</td>
<td>2000</td>
<td>1837.36</td>
<td>4575.33</td>
<td>1313.00</td>
</tr>
<tr>
<td>1979</td>
<td>75.303</td>
<td>531.040</td>
<td>302.74</td>
<td>2001</td>
<td>1618.98</td>
<td>4827.26</td>
<td>1336.89</td>
</tr>
<tr>
<td>1980</td>
<td>99.780</td>
<td>517.860</td>
<td>359.96</td>
<td>2002</td>
<td>1261.18</td>
<td>5558.40</td>
<td>1353.47</td>
</tr>
<tr>
<td>1981</td>
<td>94.867</td>
<td>538.769</td>
<td>404.48</td>
<td>2003</td>
<td>1622.94</td>
<td>5588.19</td>
<td>1366.73</td>
</tr>
</tbody>
</table>

Z. Donovan and M. Xu
Optimization Methods in Finance
Table: Total returns for stocks, bonds, and money market

<table>
<thead>
<tr>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>20.255</td>
<td>262.935</td>
<td>100.00</td>
<td>1982</td>
<td>115.308</td>
<td>777.332</td>
<td>440.68</td>
</tr>
<tr>
<td>1961</td>
<td>25.686</td>
<td>268.730</td>
<td>102.33</td>
<td>1983</td>
<td>141.316</td>
<td>787.357</td>
<td>482.42</td>
</tr>
<tr>
<td>1962</td>
<td>23.430</td>
<td>284.090</td>
<td>105.33</td>
<td>1984</td>
<td>150.181</td>
<td>907.712</td>
<td>522.84</td>
</tr>
<tr>
<td>1963</td>
<td>28.746</td>
<td>289.162</td>
<td>108.89</td>
<td>1985</td>
<td>197.829</td>
<td>1200.63</td>
<td>566.08</td>
</tr>
<tr>
<td>1964</td>
<td>33.448</td>
<td>299.894</td>
<td>113.08</td>
<td>1986</td>
<td>234.755</td>
<td>1469.45</td>
<td>605.20</td>
</tr>
<tr>
<td>1965</td>
<td>37.581</td>
<td>302.695</td>
<td>117.97</td>
<td>1987</td>
<td>247.080</td>
<td>1424.91</td>
<td>646.17</td>
</tr>
<tr>
<td>1966</td>
<td>33.784</td>
<td>318.197</td>
<td>124.34</td>
<td>1988</td>
<td>288.116</td>
<td>1522.40</td>
<td>702.77</td>
</tr>
<tr>
<td>1967</td>
<td>41.873</td>
<td>309.103</td>
<td>129.94</td>
<td>1989</td>
<td>379.409</td>
<td>1804.63</td>
<td>762.16</td>
</tr>
<tr>
<td>1968</td>
<td>46.480</td>
<td>316.051</td>
<td>137.77</td>
<td>1990</td>
<td>367.636</td>
<td>1944.25</td>
<td>817.87</td>
</tr>
<tr>
<td>1969</td>
<td>42.545</td>
<td>298.249</td>
<td>150.12</td>
<td>1991</td>
<td>479.633</td>
<td>2320.64</td>
<td>854.10</td>
</tr>
<tr>
<td>1970</td>
<td>44.221</td>
<td>354.671</td>
<td>157.48</td>
<td>1992</td>
<td>516.178</td>
<td>2490.97</td>
<td>879.04</td>
</tr>
<tr>
<td>1971</td>
<td>50.545</td>
<td>394.532</td>
<td>164.00</td>
<td>1993</td>
<td>568.202</td>
<td>2816.40</td>
<td>905.06</td>
</tr>
<tr>
<td>1972</td>
<td>60.146</td>
<td>403.942</td>
<td>172.74</td>
<td>1994</td>
<td>575.705</td>
<td>2610.12</td>
<td>954.39</td>
</tr>
<tr>
<td>1973</td>
<td>51.311</td>
<td>417.252</td>
<td>189.93</td>
<td>1995</td>
<td>792.042</td>
<td>3287.27</td>
<td>1007.84</td>
</tr>
<tr>
<td>1974</td>
<td>37.731</td>
<td>433.927</td>
<td>206.13</td>
<td>1996</td>
<td>973.897</td>
<td>3291.58</td>
<td>1061.15</td>
</tr>
<tr>
<td>1975</td>
<td>51.777</td>
<td>457.885</td>
<td>216.85</td>
<td>1997</td>
<td>1298.82</td>
<td>3687.33</td>
<td>1119.51</td>
</tr>
<tr>
<td>1976</td>
<td>64.166</td>
<td>529.141</td>
<td>226.93</td>
<td>1998</td>
<td>1670.01</td>
<td>4220.24</td>
<td>1171.91</td>
</tr>
<tr>
<td>1977</td>
<td>59.574</td>
<td>531.144</td>
<td>241.82</td>
<td>1999</td>
<td>2021.40</td>
<td>3903.32</td>
<td>1234.02</td>
</tr>
<tr>
<td>1978</td>
<td>63.488</td>
<td>524.435</td>
<td>266.07</td>
<td>2000</td>
<td>1837.36</td>
<td>4575.33</td>
<td>1313.00</td>
</tr>
<tr>
<td>1979</td>
<td>75.303</td>
<td>531.040</td>
<td>302.74</td>
<td>2001</td>
<td>1618.98</td>
<td>4827.26</td>
<td>1336.89</td>
</tr>
<tr>
<td>1980</td>
<td>99.780</td>
<td>517.860</td>
<td>359.96</td>
<td>2002</td>
<td>1261.18</td>
<td>5558.40</td>
<td>1353.47</td>
</tr>
<tr>
<td>1981</td>
<td>94.867</td>
<td>538.769</td>
<td>404.48</td>
<td>2003</td>
<td>1622.94</td>
<td>5588.19</td>
<td>1366.73</td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

Table: Total returns for stocks, bonds, and money market

<table>
<thead>
<tr>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>20.255</td>
<td>262.935</td>
<td>100.00</td>
<td>1982</td>
<td>115.308</td>
<td>777.332</td>
<td>440.68</td>
</tr>
<tr>
<td>1961</td>
<td>25.686</td>
<td>268.730</td>
<td>102.33</td>
<td>1983</td>
<td>141.316</td>
<td>787.357</td>
<td>482.42</td>
</tr>
<tr>
<td>1962</td>
<td>23.430</td>
<td>284.090</td>
<td>105.33</td>
<td>1984</td>
<td>150.181</td>
<td>907.712</td>
<td>522.84</td>
</tr>
<tr>
<td>1963</td>
<td>28.746</td>
<td>289.162</td>
<td>108.89</td>
<td>1985</td>
<td>197.829</td>
<td>1200.63</td>
<td>566.08</td>
</tr>
<tr>
<td>1964</td>
<td>33.448</td>
<td>299.894</td>
<td>113.08</td>
<td>1986</td>
<td>234.755</td>
<td>1469.45</td>
<td>605.20</td>
</tr>
<tr>
<td>1965</td>
<td>37.581</td>
<td>302.695</td>
<td>117.97</td>
<td>1987</td>
<td>247.080</td>
<td>1424.91</td>
<td>646.17</td>
</tr>
<tr>
<td>1966</td>
<td>33.784</td>
<td>318.197</td>
<td>124.34</td>
<td>1988</td>
<td>288.116</td>
<td>1522.40</td>
<td>702.77</td>
</tr>
<tr>
<td>1967</td>
<td>41.873</td>
<td>309.103</td>
<td>129.94</td>
<td>1989</td>
<td>379.409</td>
<td>1804.63</td>
<td>762.16</td>
</tr>
<tr>
<td>1968</td>
<td>46.480</td>
<td>316.051</td>
<td>137.77</td>
<td>1990</td>
<td>367.636</td>
<td>1944.25</td>
<td>817.87</td>
</tr>
<tr>
<td>1969</td>
<td>42.545</td>
<td>298.249</td>
<td>150.12</td>
<td>1991</td>
<td>479.633</td>
<td>2320.64</td>
<td>854.10</td>
</tr>
<tr>
<td>1970</td>
<td>44.221</td>
<td>354.671</td>
<td>157.48</td>
<td>1992</td>
<td>516.178</td>
<td>2490.97</td>
<td>879.04</td>
</tr>
<tr>
<td>1971</td>
<td>50.545</td>
<td>394.532</td>
<td>164.00</td>
<td>1993</td>
<td>568.202</td>
<td>2816.40</td>
<td>905.06</td>
</tr>
<tr>
<td>1972</td>
<td>60.146</td>
<td>403.942</td>
<td>172.74</td>
<td>1994</td>
<td>575.705</td>
<td>2610.12</td>
<td>954.39</td>
</tr>
<tr>
<td>1973</td>
<td>51.311</td>
<td>417.252</td>
<td>189.93</td>
<td>1995</td>
<td>792.042</td>
<td>3287.27</td>
<td>1007.84</td>
</tr>
<tr>
<td>1974</td>
<td>37.731</td>
<td>433.927</td>
<td>206.13</td>
<td>1996</td>
<td>973.897</td>
<td>3291.58</td>
<td>1061.15</td>
</tr>
<tr>
<td>1975</td>
<td>51.777</td>
<td>457.885</td>
<td>216.85</td>
<td>1997</td>
<td>1298.82</td>
<td>3687.33</td>
<td>1119.51</td>
</tr>
<tr>
<td>1976</td>
<td>64.166</td>
<td>529.141</td>
<td>226.93</td>
<td>1998</td>
<td>1670.01</td>
<td>4220.24</td>
<td>1171.91</td>
</tr>
<tr>
<td>1977</td>
<td>59.574</td>
<td>531.144</td>
<td>241.82</td>
<td>1999</td>
<td>2021.40</td>
<td>3903.32</td>
<td>1234.02</td>
</tr>
<tr>
<td>1978</td>
<td>63.488</td>
<td>524.435</td>
<td>266.07</td>
<td>2000</td>
<td>1837.36</td>
<td>4575.33</td>
<td>1313.00</td>
</tr>
<tr>
<td>1979</td>
<td>75.303</td>
<td>531.040</td>
<td>302.74</td>
<td>2001</td>
<td>1618.98</td>
<td>4827.26</td>
<td>1336.89</td>
</tr>
<tr>
<td>1980</td>
<td>99.780</td>
<td>517.860</td>
<td>359.96</td>
<td>2002</td>
<td>1261.18</td>
<td>5558.40</td>
<td>1353.47</td>
</tr>
<tr>
<td>1981</td>
<td>94.867</td>
<td>538.769</td>
<td>404.48</td>
<td>2003</td>
<td>1622.94</td>
<td>5588.19</td>
<td>1366.73</td>
</tr>
</tbody>
</table>

Z. Donovan and M. Xu Optimization Methods in Finance
Calculating rates of return

Let I_{it} denote the "total return" for asset $i = 1, 2, 3$ and $t = 0, \cdots, T$, where $t = 0$ corresponds to 1960 and $t = T$ corresponds to 2003. For each asset i, we can convert the raw data I_{it}, $t = 0, \cdots, T$, given in the previous table into rates of return r_{it}, $t = 1, \cdots, T$, using the formula

$$r_{it} = \frac{I_{i,t} - I_{i,t-1}}{I_{i,t-1}}$$

These rates of returns are shown in the next table.
Calculating rates of return
Calculating rates of return

Let I_{it} denote the “total return” for asset $i = 1, 2, 3$ and $t = 0, \cdots, T$,
Calculating rates of return

- Let I_{it} denote the “total return” for asset $i = 1, 2, 3$ and $t = 0, \cdots, T$, where $t = 0$ corresponds to 1960.
Let I_{it} denote the “total return” for asset $i = 1, 2, 3$ and $t = 0, \ldots, T$, where $t = 0$ corresponds to 1960 and $t = T$ corresponds to 2003.
Markowitz theory of mean-variance optimization

Calculating rates of return

- Let l_{it} denote the “total return” for asset $i = 1, 2, 3$ and $t = 0, \cdots, T$, where $t = 0$ corresponds to 1960 and $t = T$ corresponds to 2003.

- For each asset i, we can convert the raw data $l_{it}, t = 0, \cdots, T$, given in the previous table into rates of return $r_{it}, t = 1, \cdots, T$, using the formula

$$r_{it} = \frac{l_{it} - l_{i,t-1}}{l_{i,t-1}}$$

These rates of returns are shown in the next table.
Calculating rates of return

- Let \(I_{it} \) denote the “total return” for asset \(i = 1, 2, 3 \) and \(t = 0,\ldots, T \), where \(t = 0 \) corresponds to 1960 and \(t = T \) corresponds to 2003.

- For each asset \(i \), we can convert the raw data \(I_{it}, t = 0,\ldots, T \), given in the previous table into rates of return \(r_{it}, t = 1,\ldots, T \), using the formula...
Markowitz theory of mean-variance optimization

Calculating rates of return

Let l_{it} denote the “total return” for asset $i = 1, 2, 3$ and $t = 0, \cdots, T$, where $t = 0$ corresponds to 1960 and $t = T$ corresponds to 2003.

For each asset i, we can convert the raw data $l_{it}, t = 0, \cdots, T$, given in the previous table into rates of return $r_{it}, t = 1, \cdots, T$, using the formula

$$r_{it} = \frac{l_{i,t} - l_{i,t-1}}{l_{i,t-1}}$$
Calculating rates of return

- Let l_{it} denote the “total return” for asset $i = 1, 2, 3$ and $t = 0, \cdots, T$, where $t = 0$ corresponds to 1960 and $t = T$ corresponds to 2003.

- For each asset i, we can convert the raw data l_{it}, $t = 0, \cdots, T$, given in the previous table into rates of return r_{it}, $t = 1, \cdots, T$, using the formula

$$r_{it} = \frac{l_{i,t} - l_{i,t-1}}{l_{i,t-1}}$$

- These rates of returns are shown in the next table.
Markowitz theory of mean-variance optimization

<table>
<thead>
<tr>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>22.690</td>
<td>1.790</td>
<td>3.38</td>
<td>1985</td>
<td>31.170</td>
<td>32.270</td>
<td>8.27</td>
</tr>
<tr>
<td>1965</td>
<td>12.360</td>
<td>0.930</td>
<td>4.32</td>
<td>1987</td>
<td>5.250</td>
<td>-3.03</td>
<td>6.77</td>
</tr>
<tr>
<td>1966</td>
<td>-10.100</td>
<td>5.120</td>
<td>5.40</td>
<td>1988</td>
<td>16.610</td>
<td>6.84</td>
<td>8.76</td>
</tr>
<tr>
<td>1968</td>
<td>11.000</td>
<td>2.250</td>
<td>6.02</td>
<td>1990</td>
<td>-3.100</td>
<td>7.74</td>
<td>7.31</td>
</tr>
<tr>
<td>1972</td>
<td>18.990</td>
<td>2.390</td>
<td>5.33</td>
<td>1994</td>
<td>1.320</td>
<td>-7.32</td>
<td>5.45</td>
</tr>
<tr>
<td>1974</td>
<td>-26.470</td>
<td>4.000</td>
<td>8.53</td>
<td>1996</td>
<td>22.960</td>
<td>0.13</td>
<td>5.29</td>
</tr>
<tr>
<td>1975</td>
<td>37.230</td>
<td>5.520</td>
<td>5.20</td>
<td>1997</td>
<td>33.360</td>
<td>12.02</td>
<td>5.50</td>
</tr>
<tr>
<td>1977</td>
<td>-7.160</td>
<td>0.380</td>
<td>6.56</td>
<td>1999</td>
<td>21.04</td>
<td>-7.51</td>
<td>5.30</td>
</tr>
<tr>
<td>1979</td>
<td>18.610</td>
<td>-1.260</td>
<td>13.78</td>
<td>2001</td>
<td>-11.89</td>
<td>5.51</td>
<td>1.82</td>
</tr>
<tr>
<td>1981</td>
<td>-4.920</td>
<td>4.040</td>
<td>12.37</td>
<td>2003</td>
<td>28.68</td>
<td>0.54</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

Table: Rates of return for stocks, bonds, and money market

<table>
<thead>
<tr>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>22.690</td>
<td>1.790</td>
<td>3.38</td>
<td>1985</td>
<td>31.170</td>
<td>32.270</td>
<td>8.27</td>
</tr>
<tr>
<td>1965</td>
<td>12.360</td>
<td>0.930</td>
<td>4.32</td>
<td>1987</td>
<td>5.250</td>
<td>-3.03</td>
<td>6.77</td>
</tr>
<tr>
<td>1966</td>
<td>-10.100</td>
<td>5.120</td>
<td>5.40</td>
<td>1988</td>
<td>16.610</td>
<td>6.84</td>
<td>8.76</td>
</tr>
<tr>
<td>1968</td>
<td>11.000</td>
<td>2.250</td>
<td>6.02</td>
<td>1990</td>
<td>-3.100</td>
<td>7.74</td>
<td>7.31</td>
</tr>
<tr>
<td>1972</td>
<td>18.990</td>
<td>2.390</td>
<td>5.33</td>
<td>1994</td>
<td>1.320</td>
<td>-7.32</td>
<td>5.45</td>
</tr>
<tr>
<td>1974</td>
<td>-26.470</td>
<td>4.000</td>
<td>8.53</td>
<td>1996</td>
<td>22.960</td>
<td>0.13</td>
<td>5.29</td>
</tr>
<tr>
<td>1975</td>
<td>37.230</td>
<td>5.520</td>
<td>5.20</td>
<td>1997</td>
<td>33.360</td>
<td>12.02</td>
<td>5.50</td>
</tr>
<tr>
<td>1977</td>
<td>-7.160</td>
<td>0.380</td>
<td>6.56</td>
<td>1999</td>
<td>21.04</td>
<td>-7.51</td>
<td>5.30</td>
</tr>
<tr>
<td>1979</td>
<td>18.610</td>
<td>-1.260</td>
<td>13.78</td>
<td>2001</td>
<td>-11.89</td>
<td>5.51</td>
<td>1.82</td>
</tr>
<tr>
<td>1981</td>
<td>-4.920</td>
<td>4.040</td>
<td>12.37</td>
<td>2003</td>
<td>28.68</td>
<td>0.54</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

Table: Rates of return for stocks, bonds, and money market

<table>
<thead>
<tr>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
<th>Year</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>22.690</td>
<td>1.790</td>
<td>3.38</td>
<td>1985</td>
<td>31.170</td>
<td>32.270</td>
<td>8.27</td>
</tr>
<tr>
<td>1965</td>
<td>12.360</td>
<td>0.930</td>
<td>4.32</td>
<td>1987</td>
<td>5.250</td>
<td>-3.03</td>
<td>6.77</td>
</tr>
<tr>
<td>1966</td>
<td>-10.100</td>
<td>5.120</td>
<td>5.40</td>
<td>1988</td>
<td>16.610</td>
<td>6.84</td>
<td>8.76</td>
</tr>
<tr>
<td>1968</td>
<td>11.000</td>
<td>2.250</td>
<td>6.02</td>
<td>1990</td>
<td>-3.100</td>
<td>7.74</td>
<td>7.31</td>
</tr>
<tr>
<td>1972</td>
<td>18.990</td>
<td>2.390</td>
<td>5.33</td>
<td>1994</td>
<td>1.320</td>
<td>-7.32</td>
<td>5.45</td>
</tr>
<tr>
<td>1974</td>
<td>-26.470</td>
<td>4.000</td>
<td>8.53</td>
<td>1996</td>
<td>22.960</td>
<td>0.13</td>
<td>5.29</td>
</tr>
<tr>
<td>1975</td>
<td>37.230</td>
<td>5.520</td>
<td>5.20</td>
<td>1997</td>
<td>33.360</td>
<td>12.02</td>
<td>5.50</td>
</tr>
<tr>
<td>1977</td>
<td>-7.160</td>
<td>0.380</td>
<td>6.56</td>
<td>1999</td>
<td>21.04</td>
<td>-7.51</td>
<td>5.30</td>
</tr>
<tr>
<td>1979</td>
<td>18.610</td>
<td>1.260</td>
<td>13.78</td>
<td>2001</td>
<td>-11.89</td>
<td>5.51</td>
<td>1.82</td>
</tr>
<tr>
<td>1981</td>
<td>-4.920</td>
<td>4.040</td>
<td>12.37</td>
<td>2003</td>
<td>28.680</td>
<td>0.54</td>
<td>0.98</td>
</tr>
<tr>
<td>1982</td>
<td>21.550</td>
<td>44.280</td>
<td>8.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

Let R_i denote the random rate of return of asset i. From the historical data, we can compute the arithmetic mean rate of return for each asset:

$\bar{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_{it}$

This gives:

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.06%</td>
<td>7.85%</td>
<td>6.32%</td>
</tr>
</tbody>
</table>

Z. Donovan and M. Xu

Optimization Methods in Finance
Markowitz theory of mean-variance optimization

Arithmetic mean

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.06%</td>
<td>7.85%</td>
<td>6.32%</td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

Arithmetic mean

- Let R_i denote the random rate of return of asset i.

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.06%</td>
<td>7.85%</td>
<td>6.32%</td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

Arithmetic mean

- Let R_i denote the random rate of return of asset i.
- From the historical data, we can compute the arithmetic mean rate of return for each asset:
Markowitz theory of mean-variance optimization

Arithmetic mean

- Let R_i denote the random rate of return of asset i.
- From the historical data, we can compute the arithmetic mean rate of return for each asset:

\[
\bar{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_{it}
\]
Academic content here

Arithmetic mean

- Let R_i denote the random rate of return of asset i.
- From the historical data, we can compute the arithmetic mean rate of return for each asset:

$$\bar{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_{it}$$

- This gives:

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic mean \bar{r}_i</td>
<td>12.06%</td>
<td>7.85%</td>
<td>6.32%</td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

Geometric mean

Since the rates of return are multiplicative over time, we prefer to use the geometric mean instead of the arithmetic mean. The geometric mean is the constant yearly rate of return that needs to be applied in years $t = 0, \ldots, (T-1)$ in order to get the compounded total return I_T^T, starting from I_i. The formula for the geometric mean is:

$$\mu_i = \left(\prod_{t=1}^{T} (1 + r_{it}) \right)^{1/(T-1)}$$

We get the following results:

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
</tr>
</tbody>
</table>

Z. Donovan and M. Xu

Optimization Methods in Finance
Since the rates of return are multiplicative over time, we prefer to use the geometric mean instead of the arithmetic mean. The geometric mean is the constant yearly rate of return that needs to be applied in years $t_0, \cdots, (T-1)$ in order to get the compounded total return I_T, starting from I_0.

The formula for the geometric mean is:

$$\mu_i = \left(\prod_{t=1}^{T} (1 + r_{it}) \right)^{1/T} - 1$$

We get the following results:

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
</tr>
</tbody>
</table>

Markowitz theory of mean-variance optimization
Markowitz theory of mean-variance optimization

Geometric mean

- Since the rates of return are multiplicative over time, we prefer to use the geometric mean instead of the arithmetic mean.

The geometric mean is the constant yearly rate of return that needs to be applied in years \(t_0, \ldots, T-1 \) in order to get the compounded total return \(I_T \), starting from \(I_0 \).

The formula for the geometric mean is:

\[
\mu_i = \left(\prod_{t=1}^{T} (1 + r_{it}) \right)^{1/T} - 1
\]

We get the following results:

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
</tr>
</tbody>
</table>
Since the rates of return are multiplicative over time, we prefer to use the geometric mean instead of the arithmetic mean.

The geometric mean is the constant yearly rate of return that needs to be applied in years $t = 0, \cdots, (T - 1)$ in order to get the compounded total return I_T, starting from I_0.
Geometric mean

- Since the rates of return are multiplicative over time, we prefer to use the geometric mean instead of the arithmetic mean.
 - The geometric mean is the constant yearly rate of return that needs to be applied in years \(t = 0, \ldots, (T - 1) \) in order to get the compounded total return \(I_T \), starting from \(I_0 \).
 - The formula for the geometric mean is:

\[
\mu_i = \left(\prod_{t=1}^{T} (1 + r_{it}) \right)^{1/(T-1)}
\]
Markowitz theory of mean-variance optimization

Geometric mean

- Since the rates of return are multiplicative over time, we prefer to use the geometric mean instead of the arithmetic mean.
 - The *geometric mean* is the constant yearly rate of return that needs to be applied in years $t = 0, \cdots, (T - 1)$ in order to get the compounded total return I_{iT}, starting from I_{i0}.
 - The formula for the geometric mean is:

$$
\mu_i = \left(\prod_{t=1}^{T} (1 + r_{it}) \right)^{1/T} - 1
$$

Since the rates of return are multiplicative over time, we prefer to use the geometric mean instead of the arithmetic mean.

The geometric mean is the constant yearly rate of return that needs to be applied in years $t = 0, \cdots, (T - 1)$ in order to get the compounded total return I_{iT}, starting from I_{i0}.

The formula for the geometric mean is:

$$
\mu_i = \left(\prod_{t=1}^{T} (1 + r_{it}) \right)^{1/T} - 1
$$
Geometric mean

- Since the rates of return are multiplicative over time, we prefer to use the geometric mean instead of the arithmetic mean.

 - The geometric mean is the constant yearly rate of return that needs to be applied in years $t = 0, \cdots, (T - 1)$ in order to get the compounded total return l_{iT}, starting from l_{i0}.

 - The formula for the geometric mean is:

$$\mu_i = \left(\prod_{t=1}^{T} (1 + r_{it}) \right)^{1/T} - 1$$

- We get the following results:
Since the rates of return are multiplicative over time, we prefer to use the geometric mean instead of the arithmetic mean.

The geometric mean is the constant yearly rate of return that needs to be applied in years $t = 0, \cdots, (T - 1)$ in order to get the compounded total return I_{iT}, starting from I_{i0}.

The formula for the geometric mean is:

$$
\mu_i = \left(\prod_{t=1}^{T} (1 + r_{it}) \right) ^{1/T} - 1
$$

We get the following results:

<table>
<thead>
<tr>
<th>Geometric mean μ_i</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
<td></td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

We also compute the covariance matrix:

\[\text{cov}(R_i, R_j) = \sum_{t=1}^{T} \left(r_{it} - \bar{r}_i \right) \left(r_{jt} - \bar{r}_j \right) \]

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>0.02778</td>
<td>0.00387</td>
<td>0.00021</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.00387</td>
<td>0.01112</td>
<td>-0.00020</td>
</tr>
<tr>
<td>MM</td>
<td>0.00021</td>
<td>-0.00020</td>
<td>0.00115</td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

Covariance matrix

\[
\text{cov}(R_i, R_j) = \frac{1}{T} \sum_{i=1}^{T} (r_{it} - \bar{r}_i)(r_{jt} - \bar{r}_j)
\]

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>0.0278</td>
<td>0.0039</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.0039</td>
<td>0.0111</td>
</tr>
<tr>
<td>MM</td>
<td>0.0002</td>
<td>-0.0002</td>
</tr>
</tbody>
</table>

Z. Donovan and M. Xu

Optimization Methods in Finance
Markowitz theory of mean-variance optimization

Covariance matrix

- We also compute the covariance matrix:

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>0.02778</td>
<td>0.00387</td>
<td>0.00021</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.00387</td>
<td>0.01112</td>
<td>-0.00020</td>
</tr>
<tr>
<td>MM</td>
<td>0.00021</td>
<td>-0.00020</td>
<td>0.00115</td>
</tr>
</tbody>
</table>
Covariance matrix

We also compute the covariance matrix:

\[\text{cov}(R_i, R_j) = \frac{1}{T} \sum_{i=1}^{T} (r_{it} - \bar{r}_i)(r_{jt} - \bar{r}_j) \]
Markowitz theory of mean-variance optimization

We also compute the covariance matrix:

\[\text{cov}(R_i, R_j) = \frac{1}{T} \sum_{t=1}^{T} (r_{it} - \bar{r}_i)(r_{jt} - \bar{r}_j) \]

<table>
<thead>
<tr>
<th>Covariance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>0.02778</td>
<td>0.00387</td>
<td>0.00021</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.00387</td>
<td>0.01112</td>
<td>-0.00020</td>
</tr>
<tr>
<td>MM</td>
<td>0.00021</td>
<td>-0.00020</td>
<td>0.00115</td>
</tr>
</tbody>
</table>
Mean-Variance Optimization
Brief mention of other MVO models
Maximizing the Sharpe Ratio
More Topics not covered
References

Markowitz theory of mean-variance optimization

Volatility of the rate of return

The volatility (or standard deviation) of the rate of return on each asset is:

\[\sigma_i = \sqrt{\text{cov}(R_i, R_i)} \]

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.67%</td>
<td>10.55%</td>
<td>3.40%</td>
</tr>
</tbody>
</table>

Z. Donovan and M. Xu

Optimization Methods in Finance
Volatility of the rate of return

The volatility (or standard deviation) of the rate of return on each asset is:

\[\sigma_i = \sqrt{\text{cov}(R_i, R_i)} \]

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.67%</td>
<td>10.55%</td>
<td>3.40%</td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

Volatility of the rate of return

The volatility (or standard deviation) of the rate of return on each asset is:

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.67%</td>
<td>10.55%</td>
<td>3.40%</td>
</tr>
</tbody>
</table>
Volatility of the rate of return

- The volatility (or standard deviation) of the rate of return on each asset is:

\[\sigma_i = \sqrt{\text{cov}(R_i, R_i)} \]
The volatility (or standard deviation) of the rate of return on each asset is:

\[\sigma_i = \sqrt{\text{cov}(R_i, R_i)} \]

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility</td>
<td>16.67%</td>
<td>10.55%</td>
<td>3.40%</td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

Correlation Matrix

\[
\begin{array}{ccc}
\text{Correlation} & \text{Stocks} & \text{Bonds} & \text{MM} \\
\text{Stocks} & 1 & 0.2199 & 0.0366 \\
\text{Bonds} & 0.2199 & 1 & -0.0545 \\
\text{MM} & 0.0366 & -0.0545 & 1 \\
\end{array}
\]

\[\rho_{ij} = \frac{\text{cov}(R_i, R_j)}{\sigma_i \cdot \sigma_j}\]

This gives:

- Correlation between Stocks and Bonds: 0.2199
- Correlation between Stocks and MM: 0.0366
- Correlation between Bonds and MM: -0.0545
Markowitz theory of mean-variance optimization

Correlation matrix

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>1</td>
<td>0.2199</td>
<td>0.0366</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.2199</td>
<td>1</td>
<td>-0.0545</td>
</tr>
<tr>
<td>MM</td>
<td>0.0366</td>
<td>-0.0545</td>
<td>1</td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

Correlation matrix

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>1</td>
<td>0.2199</td>
<td>0.0366</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.2199</td>
<td>1</td>
<td>-0.0545</td>
</tr>
<tr>
<td>MM</td>
<td>0.0366</td>
<td>-0.0545</td>
<td>1</td>
</tr>
</tbody>
</table>

The correlation matrix is computed using:

\[
\rho_{ij} = \frac{\text{cov}(R_i, R_j)}{\sigma_i \cdot \sigma_j}
\]
The correlation matrix is computed using:

\[\rho_{ij} = \frac{\text{cov}(R_i, R_j)}{\sigma_i \cdot \sigma_j} \]
Correlation matrix

- The correlation matrix is computed using:

\[\rho_{ij} = \frac{\text{cov}(R_i, R_j)}{\sigma_i \cdot \sigma_j} \]

- This gives:

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>1</td>
<td>0.2199</td>
<td>0.0366</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.2199</td>
<td>1</td>
<td>-0.0545</td>
</tr>
<tr>
<td>MM</td>
<td>0.0366</td>
<td>-0.0545</td>
<td>1</td>
</tr>
</tbody>
</table>

Z. Donovan and M. Xu
Optimization Methods in Finance
Correlation matrix

- The correlation matrix is computed using:

\[\rho_{ij} = \frac{\text{cov}(R_i, R_j)}{\sigma_i \cdot \sigma_j} \]

- This gives:

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>1</td>
<td>0.2199</td>
<td>0.0366</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.2199</td>
<td>1</td>
<td>-0.0545</td>
</tr>
<tr>
<td>MM</td>
<td>0.0366</td>
<td>-0.0545</td>
<td>1</td>
</tr>
</tbody>
</table>
Mean-Variance Optimization
Brief mention of other MVO models
Maximizing the Sharpe Ratio
More Topics not covered
References

Markowitz theory of mean-variance optimization

The quadratic program for this problem is as follows:

\[
\begin{align*}
\min & \quad \frac{1}{2} x^T \Sigma x + \mu^T x \\
\text{s.t.} & \quad R x_S + x_B + x_M = 1 \\
& \quad x_S, x_B, x_M \geq 0
\end{align*}
\]

Solving for $R = 6.5\%$ to $R = 10.5\%$ with increments of 0.5%, gives us the optimal portfolios shown in the next table.

Z. Donovan and M. Xu
Optimization Methods in Finance
Markowitz theory of mean-variance optimization

The quadratic program for this problem is as follows:
The quadratic program for this problem is as follows:

\[
\min \quad \frac{1}{2} \cdot [0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M \\
+ 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2]
\]
The quadratic program for this problem is as follows:

\[
\begin{align*}
\text{min} & \quad \frac{1}{2} \cdot [0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M \\
& \quad + 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2] \\
& \quad 0.1073 \cdot x_S + 0.0737 \cdot x_B + 0.0627 \cdot x_M \geq R
\end{align*}
\]
The quadratic program for this problem is as follows:

\[
\begin{align*}
\text{min} \quad & \frac{1}{2} \cdot [0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M \\
& + 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2] \\
0.1073 \cdot x_S + 0.0737 \cdot x_B + 0.0627 \cdot x_M \geq R \\
x_S + x_B + x_M = 1
\end{align*}
\]
The quadratic program for this problem is as follows:

\[
\begin{align*}
\min \quad & \frac{1}{2} \cdot [0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M \\
& + 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2] \\
& 0.1073 \cdot x_S + 0.0737 \cdot x_B + 0.0627 \cdot x_M \geq R \\
& x_S + x_B + x_M = 1 \\
& x_S, x_B, x_M \geq 0
\end{align*}
\]
Markowitz theory of mean-variance optimization

The quadratic program for this problem is as follows:

\[
\begin{align*}
\min \quad & \frac{1}{2} \cdot [0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M \\
& + 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2] \\
& 0.1073 \cdot x_S + 0.0737 \cdot x_B + 0.0627 \cdot x_M \geq R \\
& x_S + x_B + x_M = 1 \\
& x_S, x_B, x_M \geq 0
\end{align*}
\]

Solving for \(R = 6.5\% \) to \(R = 10.5\% \) with increments of 0.5\%, gives us the optimal portfolios shown in the next table.
Markowitz theory of mean-variance optimization
Markowitz theory of mean-variance optimization

Table of efficient portfolios

<table>
<thead>
<tr>
<th>Rate of return R</th>
<th>Variance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.065</td>
<td>0.0010</td>
<td>0.03</td>
<td>0.10</td>
<td>0.87</td>
</tr>
<tr>
<td>0.070</td>
<td>0.0014</td>
<td>0.13</td>
<td>0.12</td>
<td>0.75</td>
</tr>
<tr>
<td>0.075</td>
<td>0.0026</td>
<td>0.24</td>
<td>0.14</td>
<td>0.62</td>
</tr>
<tr>
<td>0.080</td>
<td>0.0044</td>
<td>0.35</td>
<td>0.16</td>
<td>0.49</td>
</tr>
<tr>
<td>0.085</td>
<td>0.0070</td>
<td>0.45</td>
<td>0.18</td>
<td>0.37</td>
</tr>
<tr>
<td>0.090</td>
<td>0.0102</td>
<td>0.56</td>
<td>0.20</td>
<td>0.24</td>
</tr>
<tr>
<td>0.095</td>
<td>0.0142</td>
<td>0.67</td>
<td>0.22</td>
<td>0.11</td>
</tr>
<tr>
<td>0.100</td>
<td>0.0189</td>
<td>0.78</td>
<td>0.22</td>
<td>0.00</td>
</tr>
<tr>
<td>0.105</td>
<td>0.0246</td>
<td>0.93</td>
<td>0.07</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Markowitz theory of mean-variance optimization

<table>
<thead>
<tr>
<th>Rate of return R</th>
<th>Variance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.065</td>
<td>0.0010</td>
<td>0.03</td>
<td>0.10</td>
<td>0.87</td>
</tr>
<tr>
<td>0.070</td>
<td>0.0014</td>
<td>0.13</td>
<td>0.12</td>
<td>0.75</td>
</tr>
<tr>
<td>0.075</td>
<td>0.0026</td>
<td>0.24</td>
<td>0.14</td>
<td>0.62</td>
</tr>
<tr>
<td>0.080</td>
<td>0.0044</td>
<td>0.35</td>
<td>0.16</td>
<td>0.49</td>
</tr>
<tr>
<td>0.085</td>
<td>0.0070</td>
<td>0.45</td>
<td>0.18</td>
<td>0.37</td>
</tr>
<tr>
<td>0.090</td>
<td>0.0102</td>
<td>0.56</td>
<td>0.20</td>
<td>0.24</td>
</tr>
<tr>
<td>0.095</td>
<td>0.0142</td>
<td>0.67</td>
<td>0.22</td>
<td>0.11</td>
</tr>
<tr>
<td>0.100</td>
<td>0.0189</td>
<td>0.78</td>
<td>0.22</td>
<td>0.00</td>
</tr>
<tr>
<td>0.105</td>
<td>0.0246</td>
<td>0.93</td>
<td>0.07</td>
<td>0.00</td>
</tr>
</tbody>
</table>
We will consider practical issues that arise when the mean-variance model is used to construct a portfolio from a large underlying family of assets.

Example

Let us consider a portfolio of stocks constructed from a set of \(n \) stocks with known expected returns and covariance matrix, where \(n \) may be in the hundreds or thousands.
We will consider practical issues that arise when the mean-variance model is used to construct a portfolio from a large underlying family of assets.

Example

Let us consider a portfolio of stocks constructed from a set of n stocks with known expected returns and covariance matrix, where n may be in the hundreds or thousands.

Z. Donovan and M. Xu Optimization Methods in Finance
Large-scale portfolio optimization

Issues with large-scale portfolios

- We will consider practical issues that arise when the mean-variance model is used to construct a portfolio from a large underlying family of assets.
Large-scale portfolio optimization

Issues with large-scale portfolios

- We will consider practical issues that arise when the mean-variance model is used to construct a portfolio from a large underlying family of assets.

Example
Large-scale portfolio optimization

Issues with large-scale portfolios

- We will consider practical issues that arise when the mean-variance model is used to construct a portfolio from a large underlying family of assets.

Example

- Let us consider a portfolio of stocks constructed from a set of \(n \) stocks
Issues with large-scale portfolios

- We will consider practical issues that arise when the mean-variance model is used to construct a portfolio from a large underlying family of assets.

Example

- Let us consider a portfolio of stocks constructed from a set of n stocks with known expected returns and covariance matrix,
Large-scale portfolio optimization

Issues with large-scale portfolios

- We will consider practical issues that arise when the mean-variance model is used to construct a portfolio from a large underlying family of assets.

Example

- Let us consider a portfolio of stocks constructed from a set of n stocks with known expected returns and covariance matrix, where n may be in the hundreds or thousands.
In general, there is no reason to expect that solutions to the Markowitz model will be well diversified portfolios. This model tends to produce portfolios with unreasonably large weights in certain asset classes. This is often attributed to estimation errors. Estimates that may be slightly “off” may lead the optimizer to chase phantom low-risk high-return opportunities by taking large positions. Positions chosen by this quadratic program may be subject to idiosyncratic risk (i.e., risk specific to an asset or small group of assets having little or no correlation with market risk). Practitioners often use additional constraints on the x_i's to insulate themselves against estimation and model errors, and to ensure that the chosen portfolio is well diversified. For example, a limit m may be imposed on the size of each x_i, say $x_i \leq m$ for $i = 1, \ldots, n$.
In general, there is no reason to expect that solutions to the Markowitz model will be well diversified portfolios. This model tends to produce portfolios with unreasonably large weights in certain asset classes. This is often attributed to estimation errors. Estimates that may be slightly "off" may lead the optimizer to chase phantom low-risk high-return opportunities by taking large positions. Positions chosen by this quadratic program may be subject to idiosyncratic risk (i.e., risk specific to an asset or small group of assets having little or no correlation with market risk). Practitioners often use additional constraints on the x_i to insure themselves against estimation and model errors, and to ensure that the chosen portfolio is well diversified. For example, a limit m may be imposed on the size of each x_i, say $x_i \leq m$ for $i = 1, \cdots, n$.
In general, there is no reason to expect that solutions to the Markowitz model will be well diversified portfolios.
In general, there is no reason to expect that solutions to the Markowitz model will be well diversified portfolios.

\begin{itemize}
\item This model tends to produce portfolios with unreasonably large weights in certain asset classes.
\end{itemize}
In general, there is no reason to expect that solutions to the Markowitz model will be well diversified portfolios.

- This model tends to produce portfolios with unreasonably large weights in certain asset classes.
- This is often attributed to estimation errors.
In general, there is no reason to expect that solutions to the Markowitz model will be well diversified portfolios.

- This model tends to produce portfolios with unreasonably large weights in certain asset classes.
- This is often attributed to estimation errors.

- Estimates that may be slightly “off” may lead the optimizer to chase phantom low-risk high-return opportunities by taking large positions.
Diversification

- In general, there is no reason to expect that solutions to the Markowitz model will be well diversified portfolios.
 - This model tends to produce portfolios with unreasonably large weights in certain asset classes.
 - This is often attributed to estimation errors.
- Estimates that may be slightly “off” may lead the optimizer to chase phantom low-risk high-return opportunities by taking large positions.
- Positions chosen by this quadratic program may be subject to idiosyncratic risk.
In general, there is no reason to expect that solutions to the Markowitz model will be well diversified portfolios.

- This model tends to produce portfolios with unreasonably large weights in certain asset classes.
- This is often attributed to estimation errors.

Estimates that may be slightly “off” may lead the optimizer to chase phantom low-risk high-return opportunities by taking large positions.

Positions chosen by this quadratic program may be subject to idiosyncratic risk (i.e., risk specific to an asset or small group of assets having little or no correlation with market risk).
Diversification

- In general, there is no reason to expect that solutions to the Markowitz model will be well diversified portfolios.
 - This model tends to produce portfolios with unreasonably large weights in certain asset classes.
 - This is often attributed to estimation errors.
- Estimates that may be slightly “off” may lead the optimizer to chase phantom low-risk high-return opportunities by taking large positions.
- Positions chosen by this quadratic program may be subject to idiosyncratic risk (i.e., risk specific to an asset or small group of assets having little or no correlation with market risk).
- Practitioners often use additional constraints on the x_is to insure themselves against estimation and model errors,
In general, there is no reason to expect that solutions to the Markowitz model will be well diversified portfolios.

- This model tends to produce portfolios with unreasonably large weights in certain asset classes.
- This is often attributed to estimation errors.

Estimates that may be slightly “off” may lead the optimizer to chase phantom low-risk high-return opportunities by taking large positions.

Positions chosen by this quadratic program may be subject to idiosyncratic risk (i.e., risk specific to an asset or small group of assets having little or no correlation with market risk).

Practitioners often use additional constraints on the x_is to insure themselves against estimation and model errors, and to ensure that the chosen portfolio is well diversified.
In general, there is no reason to expect that solutions to the Markowitz model will be well diversified portfolios.

- This model tends to produce portfolios with unreasonably large weights in certain asset classes.
- This is often attributed to estimation errors.

Estimates that may be slightly “off” may lead the optimizer to chase phantom low-risk high-return opportunities by taking large positions.

Positions chosen by this quadratic program may be subject to idiosyncratic risk (i.e., risk specific to an asset or small group of assets having little or no correlation with market risk).

Practitioners often use additional constraints on the x_is to insure themselves against estimation and model errors, and to ensure that the chosen portfolio is well diversified.

- For example, a limit m may be imposed on the size of each x_i, say $x_i \leq m$ for $i = 1, \ldots, n$.
One can also reduce sector risk by grouping together investments in securities of a sector and setting a limit on the exposure of this sector. For example, if m_k is the maximum that can be invested in sector k, we add the constraint

$$\sum_{i \in \text{sector } k} x_i \leq m_k$$

Note that the more constraints one adds to a model, the more the objective value deteriorates. So, this approach to producing diversification can be quite costly.
One can also reduce sector risk by grouping together investments in securities of a sector and setting a limit on the exposure of this sector. For example, if m_k is the maximum that can be invested in sector k, we add the constraint:

$$\sum_{i \in \text{sector } k} x_i \leq m_k$$

Note that the more constraints one adds to a model, the more the objective value deteriorates. So, this approach to producing diversification can be quite costly.
Diversification

- One can also reduce sector risk by grouping together investments in securities of a sector and setting a limit on the exposure of this sector.
One can also reduce sector risk by grouping together investments in securities of a sector and setting a limit on the exposure of this sector.

For example, if m_k is the maximum that can be invested in sector k, we add the constraint

\[\sum_{i \text{ in sector } k} x_i \leq m_k \]
One can also reduce sector risk by grouping together investments in securities of a sector and setting a limit on the exposure of this sector.

For example, if m_k is the maximum that can be invested in sector k, we add the constraint

$$\sum_{i \text{ in sector } k} x_i \leq m_k$$
Large-scale portfolio optimization

Diversification

- One can also reduce sector risk by grouping together investments in securities of a sector and setting a limit on the exposure of this sector.

- For example, if m_k is the maximum that can be invested in sector k, we add the constraint

$$\sum_{i \text{ in sector } k} x_i \leq m_k$$

- Note that the more constraints one adds to a model, the more the objective value deteriorates.
Diversification

- One can also reduce sector risk by grouping together investments in securities of a sector and setting a limit on the exposure of this sector.

- For example, if m_k is the maximum that can be invested in sector k, we add the constraint

$$\sum_{i \text{ in sector } k} x_i \leq m_k$$

- Note that the more constraints one adds to a model, the more the objective value deteriorates.

- So, this approach to producing diversification can be quite costly.
Large-scale portfolio optimization
Large-scale portfolio optimization

Transaction costs

We can add a portfolio turnover constraint to ensure that the change between the current holdings x_0 and the desired portfolio x is bounded by h.

To avoid big changes when reoptimizing the portfolio, turnover constraints may be imposed.

Let y_i be the amount of asset i bought and z_i the amount sold.

We write

$$x_i - x_0 i \leq y_i, \quad y_i \geq 0$$

$$x_0 i - x_i \leq z_i, \quad z_i \geq 0$$

$$\sum_{i=1}^{n} (y_i + z_i) \leq h$$

Z. Donovan and M. Xu

Optimization Methods in Finance
We can add a portfolio turnover constraint to ensure that the change between the current holdings x^0 and the desired portfolio x is bounded by h.
Large-scale portfolio optimization

Transaction costs

- We can add a portfolio turnover constraint to ensure that the change between the current holdings x^0 and the desired portfolio x is bounded by h.
- To avoid big changes when reoptimizing the portfolio, turnover constraints may be imposed.
We can add a portfolio turnover constraint to ensure that the change between the current holdings x^0 and the desired portfolio x is bounded by h.

To avoid big changes when reoptimizing the portfolio, turnover constraints may be imposed.

Let y_i be the amount of asset i bought and z_i the amount sold.
We can add a portfolio turnover constraint to ensure that the change between the current holdings x^0 and the desired portfolio x is bounded by h.

To avoid big changes when reoptimizing the portfolio, turnover constraints may be imposed.

Let y_i be the amount of asset i bought and z_i the amount sold.

We write

$$x_i - x^0_i \leq y_i, \quad y_i \geq 0$$

$$x^0_i - x_i \leq z_i, \quad z_i \geq 0$$

$$\sum_{i=1}^{n} (y_i + z_i) \leq h$$
Transaction costs

- We can add a portfolio turnover constraint to ensure that the change between the current holdings x^0 and the desired portfolio x is bounded by h.
- To avoid big changes when reoptimizing the portfolio, turnover constraints may be imposed.
- Let y_i be the amount of asset i bought and z_i the amount sold.
- We write

$$ x_i - x_i^0 \leq y_i, \quad y_i \geq 0 $$
We can add a portfolio turnover constraint to ensure that the change between the current holdings x^0 and the desired portfolio x is bounded by h.

To avoid big changes when reoptimizing the portfolio, turnover constraints may be imposed.

Let y_i be the amount of asset i bought and z_i the amount sold.

We write

$$x_i - x_i^0 \leq y_i, \quad y_i \geq 0$$
$$x_i^0 - x_i \leq z_i, \quad z_i \geq 0$$
We can add a portfolio turnover constraint to ensure that the change between the current holdings x^0 and the desired portfolio x is bounded by h.

To avoid big changes when reoptimizing the portfolio, turnover constraints may be imposed.

Let y_i be the amount of asset i bought and z_i the amount sold.

We write

$$x_i - x_i^0 \leq y_i, \quad y_i \geq 0$$
$$x_i^0 - x_i \leq z_i, \quad z_i \geq 0$$

$$\sum_{i=1}^{n} (y_i + z_i) \leq h$$
Large-scale portfolio optimization

Transaction costs: We can also introduce transaction costs directly into the model. Suppose that there is a transaction cost t_i proportional to the amount of asset i bought, and a transaction cost t'_{i} proportional to the amount of asset i sold. Suppose that the portfolio is reoptimized once per period.
We can also introduce transaction costs directly into the model. Suppose that there is a transaction cost t_i proportional to the amount of asset i bought, and a transaction cost t_i' proportional to the amount of asset i sold. Suppose that the portfolio is reoptimized once per period.
We can also introduce transaction costs directly into the model.
We can also introduce transaction costs directly into the model.

Suppose that there is a transaction cost t_i proportional to the amount of asset i bought,
We can also introduce transaction costs directly into the model. Suppose that there is a transaction cost t_i proportional to the amount of asset i bought, and a transaction cost t'_i proportional to the amount of asset i sold.
We can also introduce transaction costs directly into the model. Suppose that there is a transaction cost t_i proportional to the amount of asset i bought, and a transaction cost t'_i proportional to the amount of asset i sold. Suppose that the portfolio is reoptimized once per period.
Large-scale portfolio optimization

\[\min \frac{1}{2} \sum_{i,j=1}^{n} \sigma_{ij} x_i x_j \]

subject to

\[\frac{1}{n} \sum_{i=1}^{n} (\mu_i x_i - t_i y_i - t'_i z_i) \geq R \]

\[x_i \leq y_i, \quad \text{for } i = 1, \ldots, n \]

\[x_i - x_0 i \leq z_i, \quad \text{for } i = 1, \ldots, n \]

\[y_i \geq 0, \quad \text{for } i = 1, \ldots, n \]

\[z_i \geq 0, \quad \text{for } i = 1, \ldots, n \]

\[x_i \text{ unrestricted for } i = 1, \ldots, n \]

Z. Donovan and M. Xu

Optimization Methods in Finance
Large-scale portfolio optimization

The reoptimized portfolio is obtained by solving the following QP problem:

\[
\text{min} \quad \frac{1}{2} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \cdot x_i \cdot x_j
\]
The reoptimized portfolio is obtained by solving the following QP problem:

$$\begin{align*}
&\min \quad \frac{1}{2} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \cdot x_i \cdot x_j \\
&\quad \sum_{i=1}^{n} (\mu_i \cdot x_i - t_i \cdot y_i - t_i' \cdot z_i) \geq R
\end{align*}$$
Large-scale portfolio optimization

The reoptimized portfolio is obtained by solving the following QP problem:

\[
\begin{align*}
\min & \quad \frac{1}{2} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \cdot x_i \cdot x_j \\
\sum_{i=1}^{n} (\mu_i \cdot x_i - t_i \cdot y_i - t_i' \cdot z_i) & \geq R \\
\sum_{i=1}^{n} x_i & = 1
\end{align*}
\]
The reoptimized portfolio is obtained by solving the following QP problem:

\[
\begin{align*}
\min & \quad \frac{1}{2} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \cdot x_i \cdot x_j \\
\sum_{i=1}^{n} \left(\mu_i \cdot x_i - t_i \cdot y_i - t_i' \cdot z_i \right) & \geq R \\
\sum_{i=1}^{n} x_i & = 1 \\
x_i - x_i^0 & \leq y_i, \quad \text{for } i = 1, \ldots, n
\end{align*}
\]

Z. Donovan and M. Xu
Optimization Methods in Finance
The reoptimized portfolio is obtained by solving the following QP problem:

\[
\begin{align*}
\min & \quad \frac{1}{2} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \cdot x_i \cdot x_j \\
\sum_{i=1}^{n} \left(\mu_i \cdot x_i - t_i \cdot y_i - t'_i \cdot z_i \right) & \geq R \\
\sum_{i=1}^{n} x_i & = 1 \\
x_i - x_i^0 & \leq y_i, \quad \text{for } i = 1, \ldots, n \\
x_i^0 - x_i & \leq z_i, \quad \text{for } i = 1, \ldots, n
\end{align*}
\]
Large-scale portfolio optimization

The reoptimized portfolio is obtained by solving the following QP problem:

\[
\begin{align*}
\min & \quad \frac{1}{2} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \cdot x_i \cdot x_j \\
\text{subject to} & \quad \sum_{i=1}^{n} \left(\mu_i \cdot x_i - t_i \cdot y_i - t_i' \cdot z_i \right) \geq R \\
& \quad \sum_{i=1}^{n} x_i = 1 \\
& \quad x_i - x_i^0 \leq y_i, \quad \text{for } i = 1, \ldots, n \\
& \quad x_i^0 - x_i \leq z_i, \quad \text{for } i = 1, \ldots, n \\
& \quad y_i \geq 0, \quad \text{for } i = 1, \ldots, n
\end{align*}
\]
Large-scale portfolio optimization

The reoptimized portfolio is obtained by solving the following QP problem:

\[
\begin{align*}
\min & \quad \frac{1}{2} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \cdot x_i \cdot x_j \\
\sum_{i=1}^{n} \left(\mu_i \cdot x_i - t_i \cdot y_i - t_i' \cdot z_i \right) & \geq R \\
\sum_{i=1}^{n} x_i & = 1 \\
x_i - x_i^0 & \leq y_i, \quad \text{for } i = 1, \ldots, n \\
x_i^0 - x_i & \leq z_i, \quad \text{for } i = 1, \ldots, n \\
y_i & \geq 0, \quad \text{for } i = 1, \ldots, n \\
z_i & \geq 0, \quad \text{for } i = 1, \ldots, n
\end{align*}
\]
Large-scale portfolio optimization

The reoptimized portfolio is obtained by solving the following QP problem:

\[
\text{min} \quad \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \cdot x_i \cdot x_j
\]

\[
\sum_{i=1}^{n} (\mu_i \cdot x_i - t_i \cdot y_i - t_i' \cdot z_i) \geq R
\]

\[
\sum_{i=1}^{n} x_i = 1
\]

\[
x_i - x_i^0 \leq y_i, \quad \text{for } i = 1, \ldots, n
\]

\[
x_i^0 - x_i \leq z_i, \quad \text{for } i = 1, \ldots, n
\]

\[
y_i \geq 0, \quad \text{for } i = 1, \ldots, n
\]

\[
z_i \geq 0, \quad \text{for } i = 1, \ldots, n
\]

\[
x_i \text{ unrestricted for } i = 1, \ldots, n
\]
The Markowitz model gives us an optimal portfolio assuming that we have perfect information on the μ_i and σ_{ij} for the assets that we are considering. Therefore, an important practical issue is the estimation of the μ_i and σ_{ij}.

A reasonable approach for estimating these data is the use of time series of past returns ($r_{it} = \text{return of asset } i \text{ from time } t-1 \text{ to time } t$, where $i = 1, \ldots, n, t = 1, \ldots, T$).

Unfortunately, it has been observed that small changes in the time series r_{it} lead to changes in the μ_i and σ_{ij}.

Such changes often lead to significant changes in the "optimal" portfolio. Markowitz recommends using βs (unknown regression parameters of the securities) to calculate the μ_i and σ_{ij}.

The βs can be calculated, but they can also be purchased from financial research groups and risk model providers.
The Markowitz model gives us an optimal portfolio assuming that we have perfect information on the μ_is and σ_{ij}s for the assets that we are considering. Therefore, an important practical issue is the estimation of the μ_is and σ_{ij}s. A reasonable approach for estimating these data is the use of time series of past returns ($r_{it} =$ return of asset i from time $t-1$ to time t, where $i = 1, \ldots, n$, $t = 1, \ldots, T$).

Unfortunately, it has been observed that small changes in the time series r_{it} lead to changes in the μ_is and σ_{ij}s. Such changes often lead to significant changes in the “optimal” portfolio. Markowitz recommends using βs (unknown regression parameters of the securities) to calculate the μ_is and σ_{ij}s. The βs can be calculated, but they can also be purchased from financial research groups and risk model providers.
The Markowitz model gives us an optimal portfolio assuming that we have perfect information on the μ_is and σ_{ij}s for the assets that we are considering.
Parameter estimation

- The Markowitz model gives us an optimal portfolio assuming that we have perfect information on the μ_is and σ_{ij}s for the assets that we are considering.
- Therefore, an important practical issue is the estimation of the μ_is and σ_{ij}s.
The Markowitz model gives us an optimal portfolio assuming that we have perfect information on the μ_is and σ_{ij}s for the assets that we are considering. Therefore, an important practical issue is the estimation of the μ_is and σ_{ij}s. A reasonable approach for estimating these data is the use time series of past returns.
The Markowitz model gives us an optimal portfolio assuming that we have perfect information on the μ_is and σ_{ij}s for the assets that we are considering.

Therefore, an important practical issue is the estimation of the μ_is and σ_{ij}s.

A reasonable approach for estimating these data is the use time series of past returns ($r_{it} = \text{return of asset } i \text{ from time } t - 1 \text{ to time } t$, where $i = 1, \ldots, n$, $t = 1, \ldots, T$).
The Markowitz model gives us an optimal portfolio assuming that we have perfect information on the μ_is and σ_{ij}s for the assets that we are considering.

Therefore, an important practical issue is the estimation of the μ_is and σ_{ij}s.

A reasonable approach for estimating these data is the use time series of past returns ($r_{it} =$ return of asset i from time $t - 1$ to time t, where $i = 1, \cdots, n$, $t = 1, \cdots, T$).

Unfortunately, it has been observed that small changes in the time series r_{it} lead to changes in the μ_is and σ_{ij}s.
Parameter estimation

- The Markowitz model gives us an optimal portfolio assuming that we have perfect information on the μ_is and σ_{ij}s for the assets that we are considering.
 - Therefore, an important practical issue is the estimation of the μ_is and σ_{ij}s.

- A reasonable approach for estimating these data is the use time series of past returns ($r_{it} = \text{return of asset } i \text{ from time } t - 1 \text{ to time } t$, where $i = 1, \ldots, n$, $t = 1, \ldots, T$).

- Unfortunately, it has been observed that small changes in the time series r_{it} lead to changes in the μ_is and σ_{ij}s.
 - Such changes often lead to significant changes in the “optimal” portfolio.

- Markowitz recommends using βs.
The Markowitz model gives us an optimal portfolio assuming that we have perfect information on the μ_is and σ_{ij}s for the assets that we are considering. Therefore, an important practical issue is the estimation of the μ_is and σ_{ij}s.

A reasonable approach for estimating these data is the use time series of past returns ($r_{it} =$ return of asset i from time $t - 1$ to time t, where $i = 1, \cdots, n$, $t = 1, \cdots, T$).

Unfortunately, it has been observed that small changes in the time series r_{it} lead to changes in the μ_is and σ_{ij}s.

Such changes often lead to significant changes in the “optimal” portfolio.

Markowitz recommends using βs (unknown regression parameters of the securities)
The Markowitz model gives us an optimal portfolio assuming that we have perfect information on the μ_is and σ_{ij}s for the assets that we are considering.

Therefore, an important practical issue is the estimation of the μ_is and σ_{ij}s.

A reasonable approach for estimating these data is the use time series of past returns ($r_{it} =$ return of asset i from time $t - 1$ to time t, where $i = 1, \ldots, n$, $t = 1, \ldots, T$).

Unfortunately, it has been observed that small changes in the time series r_{it} lead to changes in the μ_is and σ_{ij}s.

Such changes often lead to significant changes in the “optimal” portfolio.

Markowitz recommends using βs (unknown regression parameters of the securities) to calculate the μ_is and σ_{ij}s.

The βs can be calculated, but they can also be purchased from financial research groups and risk model providers.
The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_i and σ_{ij} are computed. The solution is extremely sensitive to small changes in the data. Only one small change in μ_i may produce a totally different portfolio x.

So, what can be done in practice to overcome this problem, or at least reduce it? Michaud recommends resampling returns from historical data to generate alternative μ and σ estimates, solving the MVO problem repeatedly with inputs generated this way, and then combining the optimal portfolios obtained in this manner. Robust optimization approaches provide an alternative strategy to mitigate the input sensitivity in MVO models. Another interesting approach is the Black-Litterman model, which allows investors to combine their unique views regarding the performance of various assets with the market equilibrium in a manner that results in intuitive, diversified portfolios.
The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_i s and σ_{ij} s are computed. The solution is extremely sensitive to small changes in the data. Only one small change in μ_i may produce a totally different portfolio x.

So, what can be done in practice to overcome this problem, or at least reduce it? Michaud recommends resampling returns from historical data to generate alternative μ and σ estimates, solving the MVO problem repeatedly with inputs generated this way, and then combining the optimal portfolios obtained in this manner. Robust optimization approaches provide an alternative strategy to mitigate the input sensitivity in MVO models. Another interesting approach is the Black-Litterman model, which allows investors to combine their unique views regarding the performance of various assets with the market equilibrium in a manner that results in intuitive, diversified portfolios.
The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_is and σ_{ij}s are computed.
The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_is and σ_{ij}s are computed. The solution is extremely sensitive to small changes in the data.
The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_is and σ_{ij}s are computed.

The solution is extremely sensitive to small changes in the data.

Only one small change in one μ_i may produce a totally different portfolio x.
The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_is and σ_{ij}s are computed.

The solution is extremely sensitive to small changes in the data.

Only one small change is one μ_i may produce a totally different portfolio \mathbf{x}.

So, what can be done in practice to overcome this problem, or at least reduce it?
Large-scale portfolio optimization

Parameter estimation

- The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_i's and σ_{ij}'s are computed.
- The solution is extremely sensitive to small changes in the data.
- Only one small change is one μ_i may produce a totally different portfolio \mathbf{x}.
- So, what can be done in practice to overcome this problem, or at least reduce it?
 - Michaud recommends resampling returns from historical data to generate alternative μ and σ estimates,
Large-scale portfolio optimization

Parameter estimation

- The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_is and σ_{ij}s are computed.
- The solution is extremely sensitive to small changes in the data.
- Only one small change is one μ_i may produce a totally different portfolio x.
- So, what can be done in practice to overcome this problem, or at least reduce it?
 - Michaud recommends resampling returns from historical data to generate alternative μ and σ estimates, solving the MVO problem repeatedly with inputs generated this way,
The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_is and σ_{ij}s are computed.

The solution is extremely sensitive to small changes in the data.

Only one small change is one μ_i may produce a totally different portfolio x.

So, what can be done in practice to overcome this problem, or at least reduce it?

Michaud recommends resampling returns from historical data to generate alternative μ and σ estimates, solving the MVO problem repeatedly with inputs generated this way, and then combining the optimal portfolios obtained in this manner.
The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_is and σ_{ij}s are computed.

The solution is extremely sensitive to small changes in the data.

Only one small change is one μ_i may produce a totally different portfolio \mathbf{x}.

So, what can be done in practice to overcome this problem, or at least reduce it?

- Michaud recommends resampling returns from historical data to generate alternative μ and σ estimates, solving the MVO problem repeatedly with inputs generated this way, and then combining the optimal portfolios obtained in this manner.

- Robust optimization approaches provide an alternative strategy to mitigate the input sensitivity in MVO models.
The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_is and σ_{ij}s are computed.

The solution is extremely sensitive to small changes in the data.

Only one small change is one μ_i may produce a totally different portfolio \mathbf{x}.

So, what can be done in practice to overcome this problem, or at least reduce it?

- Michaud recommends resampling returns from historical data to generate alternative μ and σ estimates, solving the MVO problem repeatedly with inputs generated this way, and then combining the optimal portfolios obtained in this manner.

- Robust optimization approaches provide an alternative strategy to mitigate the input sensitivity in MVO models.

- Another interesting approach is the Black-Litterman model,
The fundamental weakness of the Markowitz model remains, no matter how cleverly the \(\mu_i \)'s and \(\sigma_{ij} \)'s are computed.

The solution is extremely sensitive to small changes in the data.

Only one small change is one \(\mu_i \) may produce a totally different portfolio \(\mathbf{x} \).

So, what can be done in practice to overcome this problem, or at least reduce it?

- Michaud recommends resampling returns from historical data to generate alternative \(\mu \) and \(\sigma \) estimates, solving the MVO problem repeatedly with inputs generated this way, and then combining the optimal portfolios obtained in this manner.

- Robust optimization approaches provide an alternative strategy to mitigate the input sensitivity in MVO models.

- Another interesting approach is the Black-Litterman model, which allows investors to combine their unique views regarding the performance of various assets.
The fundamental weakness of the Markowitz model remains, no matter how cleverly the μ_is and σ_{ij}s are computed.

The solution is extremely sensitive to small changes in the data.

Only one small change is one μ_i may produce a totally different portfolio x.

So, what can be done in practice to overcome this problem, or at least reduce it?

- Michaud recommends resampling returns from historical data to generate alternative μ and σ estimates, solving the MVO problem repeatedly with inputs generated this way, and then combining the optimal portfolios obtained in this manner.

- Robust optimization approaches provide an alternative strategy to mitigate the input sensitivity in MVO models.

- Another interesting approach is the Black-Litterman model, which allows investors to combine their unique views regarding the performance of various assets with the market equilibrium in a manner that results in intuitive, diversified portfolios.
The Black-Litterman Model

The expected return vector μ is assumed to have a probability distribution that is the product of two multivariate normal distributions. The first distribution represents the returns at market equilibrium, with mean π and covariance matrix $\tau \cdot \Sigma$, where τ is a small constant and $\Sigma = (\sigma_{ij})$ denotes the covariance matrix of asset returns.

Note that the factor τ should be small since the variance $\tau \cdot \sigma^2_i$ of the random variable μ_i is typically much smaller than the variance σ^2_i of the underlying asset returns.

Z. Donovan and M. Xu

Optimization Methods in Finance
The Black-Litterman Model

Combine investor's view with the market equilibrium as follows:

The expected return vector μ is assumed to have a probability distribution that is the product of two multivariate normal distributions. The first distribution represents the returns at market equilibrium, with mean π and covariance matrix $\tau \cdot \Sigma$, where τ is a small constant and $\Sigma = (\sigma_{ij})$ denotes the covariance matrix of asset returns. Note that the factor τ should be small since the variance $\tau \cdot \sigma_i^2$ of the random variable μ_i is typically much smaller than the variance σ_i^2 of the underlying asset returns.
The Black-Litterman Model

Combine investor’s view with the market equilibrium as follows:

- The expected return vector μ is assumed to have a probability distribution that is the product of two multivariate normal distributions.
The Black-Litterman Model

Combine investor’s view with the market equilibrium as follows:

- The expected return vector μ is assumed to have a probability distribution that is the product of two multivariate normal distributions.
- The first distribution represents the returns at market equilibrium,
The Black-Litterman Model

Combine investor’s view with the market equilibrium as follows:

- The expected return vector μ is assumed to have a probability distribution that is the product of two multivariate normal distributions.
- The first distribution represents the returns at market equilibrium, with mean π and covariance matrix $\tau \cdot \Sigma$,

where \(\tau \) is a small constant and \(\Sigma = (\sigma_{ij}) \) denotes the covariance matrix of asset returns. Note that the factor \(\tau \) should be small since the variance \(\tau \cdot \sigma_{ii}^2 \) of the random variable μ_i is typically much smaller than the variance σ_{ii}^2 of the underlying asset returns.
The Black-Litterman Model

Combine investor’s view with the market equilibrium as follows:

- The expected return vector μ is assumed to have a probability distribution that is the product of two multivariate normal distributions.

- The first distribution represents the returns at market equilibrium, with mean π and covariance matrix $\tau \cdot \Sigma$, where τ is a small constant and $\Sigma = (\sigma_{ij})$ denotes the covariance matrix of asset returns.
The Black-Litterman Model

Combine investor’s view with the market equilibrium as follows:

- The expected return vector μ is assumed to have a probability distribution that is the product of two multivariate normal distributions.

- The first distribution represents the returns at market equilibrium, with mean π and covariance matrix $\tau \cdot \Sigma$, where τ is a small constant and $\Sigma = (\sigma_{ij})$ denotes the covariance matrix of asset returns.

 - Note that the factor τ should be small since the variance $\tau \cdot \sigma_i^2$ of the random variable μ_i is typically much smaller than the variance σ_i^2 of the underlying asset returns.
The Black-Litterman Model

The second distribution represents the investor's view about the μ_is. These views are expressed as $P \cdot \mu = q + \epsilon$, where P is a $k \times n$ matrix, q is a k-dimensional vector provided by the investor, ϵ is a normally distributed random vector with mean 0.

Z. Donovan and M. Xu
Optimization Methods in Finance
The Black-Litterman Model

Second distribution

The second distribution represents the investor's view about the μ_is. These views are expressed as $P \cdot \mu = q + \epsilon$, where P is a $k \times n$ matrix, q is a k-dimensional vector provided by the investor, ϵ is a normally distributed random vector with mean 0.
The Black-Litterman Model

Second distribution

- The second distribution represents the investor’s view about the μ_is.
The Black-Litterman Model

Second distribution

- The second distribution represents the investor’s view about the \(\mu \)'s.
- These views are expressed as
The Black-Litterman Model

Second distribution

- The second distribution represents the investor’s view about the μ_i's.
- These views are expressed as

$$P \cdot \mu = q + \epsilon,$$
The Black-Litterman Model

Second distribution

- The second distribution represents the investor’s view about the μ_is.
- These views are expressed as

$$\mathbf{P} \cdot \mathbf{\mu} = \mathbf{q} + \mathbf{\epsilon},$$

where \mathbf{P} is a $k \times n$ matrix,
The Black-Litterman Model

Second distribution

- The second distribution represents the investor’s view about the μ_is.
- These views are expressed as

$$P \cdot \mu = q + \epsilon,$$

where P is a $k \times n$ matrix, q is a k-dimensional vector provided by the investor,
The Black-Litterman Model

Second distribution

- The second distribution represents the investor’s view about the μ_is.
- These views are expressed as

$$P \cdot \mu = q + \epsilon,$$

where P is a $k \times n$ matrix, q is a k-dimensional vector provided by the investor, ϵ is a normally distributed random vector with mean 0.

Z. Donovan and M. Xu
Optimization Methods in Finance
The Black-Litterman Model

Black and Litterman use \(\bar{\mu} \) as the vector of expected returns in the Markowitz model. \(\Omega \) is the diagonal covariance matrix. The stronger the investor's view, the smaller the corresponding \(\omega_i = \Omega_{ii} \).
The Black-Litterman Model

The resulting distribution for μ is a multivariate normal distribution with mean $\bar{\mu} = \left[(\tau \cdot \Sigma)^{-1} + P^T \cdot \Omega^{-1} \cdot P \right]^{-1} \cdot \left[(\tau \cdot \Sigma)^{-1} \cdot \pi + P^T \cdot \Omega^{-1} \cdot q \right]$.

Black and Litterman use $\bar{\mu}$ as the vector of expected returns in the Markowitz model. Ω is the diagonal covariance matrix. The stronger the investor's view, the smaller the corresponding $\omega_i = \Omega_{ii}$.

Z. Donovan and M. Xu

Optimization Methods in Finance
The Black-Litterman Model

- The resulting distribution for μ is a multivariate normal distribution with mean

$$\bar{\mu} = (\tau \cdot \Sigma)^{-1} + P^T \cdot \Omega^{-1} \cdot P - \Omega^{-1} \cdot (\tau \cdot \Sigma)^{-1} \cdot \pi + \Omega^{-1} .$$

Black and Litterman use $\bar{\mu}$ as the vector of expected returns in the Markowitz model. Ω is the diagonal covariance matrix. The stronger the investor's view, the smaller the corresponding $\omega_i = \Omega_{ii}$.

Z. Donovan and M. Xu
Optimization Methods in Finance
The Black-Litterman Model

Second distribution

- The resulting distribution for μ is a multivariate normal distribution with mean

$$\bar{\mu} = \left[(\tau \cdot \Sigma)^{-1} + P^T \cdot \Omega^{-1} \cdot P \right]^{-1} \cdot \left[(\tau \cdot \Sigma)^{-1} \cdot \pi + P^T \cdot \Omega^{-1} \cdot q \right].$$
The resulting distribution for \(\mu \) is a multivariate normal distribution with mean

\[
\bar{\mu} = \left[(\tau \cdot \Sigma)^{-1} + \mathbf{P}^T \cdot \Omega^{-1} \cdot \mathbf{P} \right]^{-1} \cdot \left[(\tau \cdot \Sigma)^{-1} \cdot \pi + \mathbf{P}^T \cdot \Omega^{-1} \cdot \mathbf{q} \right].
\]

Black and Litterman use \(\bar{\mu} \) as the vector of expected returns in the Markowitz model.
The Black-Litterman Model

Second distribution

- The resulting distribution for μ is a multivariate normal distribution with mean

$$\bar{\mu} = \left((\tau \cdot \Sigma)^{-1} + P^T \cdot \Omega^{-1} \cdot P \right)^{-1} \cdot \left((\tau \cdot \Sigma)^{-1} \cdot \pi + P^T \cdot \Omega^{-1} \cdot q \right)$$.

- Black and Litterman use $\bar{\mu}$ as the vector of expected returns in the Markowitz model.
- Ω is the diagonal covariance matrix.
The Black-Litterman Model

Second distribution

- The resulting distribution for μ is a multivariate normal distribution with mean

$$\bar{\mu} = \left[\tau \cdot \Sigma^{-1} + P^T \cdot \Omega^{-1} \cdot P\right]^{-1} \cdot \left[\tau \cdot \Sigma^{-1} \cdot \pi + P^T \cdot \Omega^{-1} \cdot q\right].$$

- Black and Litterman use $\bar{\mu}$ as the vector of expected returns in the Markowitz model.
- Ω is the diagonal covariance matrix.
 - The stronger the investor’s view, the smaller the corresponding $\omega_i = \Omega_{ii}$.

Z. Donovan and M. Xu
Optimization Methods in Finance
The Black-Litterman Model

Example (Illustrating the Black-Litterman approach)

Using our previous MVO example, the expected returns on Stocks, Bonds, and Money Market were computed to be

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market rate of return</td>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
</tr>
</tbody>
</table>

This is what we use for the vector π representing market equilibrium.
Example (Illustrating the Black-Litterman approach)

Using our previous MVO example, the expected returns on Stocks, Bonds, and Money Market were computed to be

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market rate of return</td>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
</tr>
</tbody>
</table>

This is what we use for the vector \(\pi \) representing market equilibrium.
The Black-Litterman Model

Example (Illustrating the Black-Litterman approach)

- Using our previous MVO example, the expected returns on Stocks, Bonds, and Money Market were computed to be

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
</tr>
</tbody>
</table>

This is what we use for the vector π representing market equilibrium.
Example (Illustrating the Black-Litterman approach)

Using our previous MVO example, the expected returns on Stocks, Bonds, and Money Market were computed to be

<table>
<thead>
<tr>
<th>Market rate of return</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
</tr>
</tbody>
</table>
Example (Illustrating the Black-Litterman approach)

- Using our previous MVO example, the expected returns on Stocks, Bonds, and Money Market were computed to be

<table>
<thead>
<tr>
<th>Market rate of return</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
<td></td>
</tr>
</tbody>
</table>

- This is what we use for the vector π representing market equilibrium.
The Black-Litterman Model

We need to choose the value of the small constant τ. So, take $\tau = 0.1$.

We have two views that we would like to incorporate into the model. First, we hold a strong view that the Money Market rate will be 2% next year. Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by 5%, but we are not as confident about this view.

These two views can be expressed as follows:

- $\mu^M = 0.02$ (strong view):
 - $\omega_1 = 0.00001$

- $\mu_{S - B} = 0.05$ (weaker view):
 - $\omega_2 = 0.001$

Thus, $P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$, $q = \begin{pmatrix} 0.02 \\ 0.05 \end{pmatrix}$ and $\Omega = \begin{pmatrix} 0.00001 & 0 \\ 0 & 0.001 \end{pmatrix}$.

Z. Donovan and M. Xu
Optimization Methods in Finance
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

We need to choose the value of the small constant τ. So, take $\tau = 0.1$.

We have two views that we would like to incorporate into the model. First, we hold a strong view that the Money Market rate will be 2% next year. Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by 5%, but we are not as confident about this view.

These two views can be expressed as follows:

$\mu_M = 0.02$ strong view: $\omega_1 = 0.00001$,

$\mu_S - \mu_B = 0.05$ weaker view: $\omega_2 = 0.001$.

Thus, $P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$, $q = \begin{pmatrix} 0.02 \\ 0.05 \end{pmatrix}$ and $\Omega = \begin{pmatrix} 0.00001 & 0 \\ 0 & 0.001 \end{pmatrix}$.
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- We need to choose the value of the small constant τ. So, take $\tau = 0.1$.

$$
\begin{align*}
\mu_M &= 0.02, \\
\omega_1 &= 0.00001, \\
\mu_{S-P} - \mu_B &= 0.05, \\
\omega_2 &= 0.001.
\end{align*}
$$

$$
\begin{align*}
\mathbf{P} &= \begin{pmatrix} 0 & 0.1 \\ 1 & -1 \end{pmatrix}, \\
\mathbf{q} &= \begin{pmatrix} 0.02 \\ 0.05 \end{pmatrix}, \\
\Omega &= \begin{pmatrix} 0.00001 & 0 \\ 0 & 0.001 \end{pmatrix}.
\end{align*}
$$
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- We need to choose the value of the small constant τ. So, take $\tau = 0.1$.
- We have two views that we would like to incorporate into the model.
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- We need to choose the value of the small constant τ. So, take $\tau = 0.1$.
- We have two views that we would like to incorporate into the model.
 - First, we hold a strong view that the Money Market rate will be 2% next year.
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- We need to choose the value of the small constant τ. So, take $\tau = 0.1$.
- We have two views that we would like to incorporate into the model.
 - First, we hold a strong view that the Money Market rate will be 2% next year.
 - Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by 5%,
We need to choose the value of the small constant τ. So, take $\tau = 0.1$.

We have two views that we would like to incorporate into the model.

- First, we hold a strong view that the Money Market rate will be 2% next year.
- Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by 5%, but we are not as confident about this view.
Example (to illustrate the Black-Litterman approach)

- We need to choose the value of the small constant τ. So, take $\tau = 0.1$.
- We have two views that we would like to incorporate into the model.
 - First, we hold a strong view that the Money Market rate will be 2% next year.
 - Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by 5%, but we are not as confident about this view.
- These two views can be expressed as follows:
Example (to illustrate the Black-Litterman approach)

- We need to choose the value of the small constant τ. So, take $\tau = 0.1$.
- We have two views that we would like to incorporate into the model.
 - First, we hold a strong view that the Money Market rate will be 2% next year.
 - Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by 5%, but we are not as confident about this view.
- These two views can be expressed as follows:

\[
\mu_M = 0.02 \quad \text{strong view: } \omega_1 = 0.00001,
\]
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- We need to choose the value of the small constant τ. So, take $\tau = 0.1$.
- We have two views that we would like to incorporate into the model.
 - First, we hold a strong view that the Money Market rate will be 2% next year.
 - Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by 5%, but we are not as confident about this view.
- These two views can be expressed as follows:

 $\mu_M = 0.02$ \hspace{1cm} \textit{strong view:} $\omega_1 = 0.00001$,

 $\mu_S - \mu_B = 0.05$ \hspace{1cm} \textit{weaker view:} $\omega_2 = 0.001$.
Example (to illustrate the Black-Litterman approach)

- We need to choose the value of the small constant τ. So, take $\tau = 0.1$.
- We have two views that we would like to incorporate into the model.
 - First, we hold a strong view that the Money Market rate will be 2% next year.
 - Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by 5%, but we are not as confident about this view.
- These two views can be expressed as follows:

\[
\mu_M = 0.02 \quad \text{strong view: } \omega_1 = 0.00001,
\]

\[
\mu_S - \mu_B = 0.05 \quad \text{weaker view: } \omega_2 = 0.001.
\]

- Thus,
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- We need to choose the value of the small constant τ. So, take $\tau = 0.1$.
- We have two views that we would like to incorporate into the model.
 - First, we hold a strong view that the Money Market rate will be 2% next year.
 - Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by 5%, but we are not as confident about this view.
- These two views can be expressed as follows:

 \[\mu_M = 0.02 \quad \text{strong view: } \omega_1 = 0.00001, \]

 \[\mu_S - \mu_B = 0.05 \quad \text{weaker view: } \omega_2 = 0.001. \]

- Thus, $P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$,
Example (to illustrate the Black-Litterman approach)

- We need to choose the value of the small constant \(\tau \). So, take \(\tau = 0.1 \).
- We have two views that we would like to incorporate into the model.
 - First, we hold a strong view that the Money Market rate will be 2% next year.
 - Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by 5%, but we are not as confident about this view.
- These two views can be expressed as follows:

 \[
 \mu_M = 0.02 \quad \text{strong view: } \omega_1 = 0.00001, \\
 \mu_S - \mu_B = 0.05 \quad \text{weaker view: } \omega_2 = 0.001.
 \]

- Thus, \(P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \), \(q = \begin{pmatrix} 0.02 \\ 0.05 \end{pmatrix} \) and
Mean-Variance Optimization
Brief mention of other MVO models
Maximizing the Sharpe Ratio
More Topics not covered
References

The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- We need to choose the value of the small constant τ. So, take $\tau = 0.1$.
- We have two views that we would like to incorporate into the model.
 - First, we hold a strong view that the Money Market rate will be 2% next year.
 - Second, we also hold the view that S&P 500 will outperform 10-year Treasury Bonds by 5%, but we are not as confident about this view.

- These two views can be expressed as follows:

 $\mu_M = 0.02 \quad \text{strong view: } \omega_1 = 0.00001,$

 $\mu_S - \mu_B = 0.05 \quad \text{weaker view: } \omega_2 = 0.001.$

- Thus, $P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$, $q = \begin{pmatrix} 0.02 \\ 0.05 \end{pmatrix}$ and $\Omega = \begin{pmatrix} 0.00001 & 0 \\ 0 & 0.001 \end{pmatrix}$.
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

We solve the same QP expect for the modified expected return constraint:

\[
\begin{align*}
\min 1 & \cdot \mathbf{x}^T \Sigma \mathbf{x} + 2 & \cdot \mathbf{0.02778} \cdot \mathbf{x}^T \mathbf{S} + 2 & \cdot \mathbf{0.00387} \cdot \mathbf{x}^T \mathbf{B} + \mathbf{0.00021} \cdot \mathbf{x}^T \mathbf{M} + \mathbf{0.01112} \\
& \geq R \cdot (\mathbf{x}_S + \mathbf{x}_B + \mathbf{x}_M) = 1 \\
& \mathbf{x}_S, \mathbf{x}_B, \mathbf{x}_M \geq 0
\end{align*}
\]
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)
Example (to illustrate the Black-Litterman approach)

- Applying our formula to compute $\bar{\mu}$ gives:

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market rate of return $\bar{\mu}$</td>
<td>11.77%</td>
<td>7.51%</td>
<td>2.34%</td>
</tr>
</tbody>
</table>
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- Applying our formula to compute $\bar{\mu}$ gives:

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market rate of return $\bar{\mu}$</td>
<td>11.77%</td>
<td>7.51%</td>
<td>2.34%</td>
</tr>
</tbody>
</table>

- We solve the same QP except for the modified expected return constraint:
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- Applying our formula to compute $\bar{\mu}$ gives:

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market rate of return $\bar{\mu}$</td>
<td>11.77%</td>
<td>7.51%</td>
<td>2.34%</td>
</tr>
</tbody>
</table>

- We solve the same QP expect for the modified expected return constraint:

\[
\min \frac{1}{2} \left[0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M \\
+ 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2 \right]
\]
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- Applying our formula to compute $\bar{\mu}$ gives:

<table>
<thead>
<tr>
<th>Market rate of return $\bar{\mu}$</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.77%</td>
<td>7.51%</td>
<td>2.34%</td>
</tr>
</tbody>
</table>

- We solve the same QP except for the modified expected return constraint:

$$\min \quad \frac{1}{2} \cdot \left[0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M \\
+ 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2 \right]$$

$$\quad 0.1177 \cdot x_S + 0.0751 \cdot x_B + 0.0234 \cdot x_M \geq R$$
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- Applying our formula to compute $\bar{\mu}$ gives:

<table>
<thead>
<tr>
<th>Market rate of return $\bar{\mu}$</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.77%</td>
<td>7.51%</td>
<td>2.34%</td>
<td></td>
</tr>
</tbody>
</table>

- We solve the same QP except for the modified expected return constraint:

$$\min \frac{1}{2} \cdot [0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M \\
+ 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2]$$

$$0.1177 \cdot x_S + 0.0751 \cdot x_B + 0.0234 \cdot x_M \geq R$$

$$x_S + x_B + x_M = 1$$
The Black-Litterman Model

Example (to illustrate the Black-Litterman approach)

- Applying our formula to compute $\bar{\mu}$ gives:

<table>
<thead>
<tr>
<th>Market rate of return $\bar{\mu}$</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.77%</td>
<td>7.51%</td>
<td>2.34%</td>
</tr>
</tbody>
</table>

- We solve the same QP expect for the modified expected return constraint:

$$\min \frac{1}{2} \cdot [0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M$$

$$+ 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2]$$

$$0.1177 \cdot x_S + 0.0751 \cdot x_B + 0.0234 \cdot x_M \geq R$$

$$x_S + x_B + x_M = 1$$

$$x_S, x_B, x_M \geq 0$$
The Black-Litterman Model

The Black-Litterman Model is a method for portfolio optimization that incorporates market views and subjective beliefs about expected returns into the mean-variance framework. It is an extension of the traditional mean-variance optimization (MVO) model, which was developed by Harry Markowitz.

The Black-Litterman model addresses some of the limitations of the traditional MVO model, such as the sensitivity to input errors and the difficulty in incorporating views from market participants into the optimization process.

Solving this QP for $R = 4\%$ to $R = 11.5\%$ with increments of 0.5% results in the optimal portfolios shown in the table below.

<table>
<thead>
<tr>
<th>Rate of return R</th>
<th>Variance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.040</td>
<td>0.0012</td>
<td>0.08</td>
<td>0.17</td>
<td>0.75</td>
</tr>
<tr>
<td>0.045</td>
<td>0.0015</td>
<td>0.11</td>
<td>0.21</td>
<td>0.68</td>
</tr>
<tr>
<td>0.050</td>
<td>0.0020</td>
<td>0.15</td>
<td>0.24</td>
<td>0.61</td>
</tr>
<tr>
<td>0.055</td>
<td>0.0025</td>
<td>0.18</td>
<td>0.28</td>
<td>0.54</td>
</tr>
<tr>
<td>0.060</td>
<td>0.0032</td>
<td>0.22</td>
<td>0.31</td>
<td>0.47</td>
</tr>
<tr>
<td>0.065</td>
<td>0.0039</td>
<td>0.25</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>0.070</td>
<td>0.0048</td>
<td>0.28</td>
<td>0.39</td>
<td>0.33</td>
</tr>
<tr>
<td>0.075</td>
<td>0.0059</td>
<td>0.32</td>
<td>0.42</td>
<td>0.26</td>
</tr>
<tr>
<td>0.080</td>
<td>0.0070</td>
<td>0.35</td>
<td>0.46</td>
<td>0.19</td>
</tr>
<tr>
<td>0.085</td>
<td>0.0083</td>
<td>0.38</td>
<td>0.49</td>
<td>0.13</td>
</tr>
<tr>
<td>0.090</td>
<td>0.0096</td>
<td>0.42</td>
<td>0.53</td>
<td>0.05</td>
</tr>
<tr>
<td>0.095</td>
<td>0.0111</td>
<td>0.47</td>
<td>0.53</td>
<td>0.00</td>
</tr>
<tr>
<td>0.100</td>
<td>0.0133</td>
<td>0.58</td>
<td>0.42</td>
<td>0.00</td>
</tr>
<tr>
<td>0.105</td>
<td>0.0163</td>
<td>0.70</td>
<td>0.30</td>
<td>0.00</td>
</tr>
<tr>
<td>0.110</td>
<td>0.0202</td>
<td>0.82</td>
<td>0.18</td>
<td>0.00</td>
</tr>
<tr>
<td>0.115</td>
<td>0.0249</td>
<td>0.94</td>
<td>0.06</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Z. Donovan and M. Xu

Optimization Methods in Finance
The Black-Litterman Model

<table>
<thead>
<tr>
<th>Rate of return R</th>
<th>Variance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.040</td>
<td>0.0012</td>
<td>0.08</td>
<td>0.17</td>
<td>0.75</td>
</tr>
<tr>
<td>0.045</td>
<td>0.0015</td>
<td>0.11</td>
<td>0.21</td>
<td>0.68</td>
</tr>
<tr>
<td>0.050</td>
<td>0.0020</td>
<td>0.15</td>
<td>0.24</td>
<td>0.61</td>
</tr>
<tr>
<td>0.055</td>
<td>0.0025</td>
<td>0.18</td>
<td>0.28</td>
<td>0.54</td>
</tr>
<tr>
<td>0.060</td>
<td>0.0032</td>
<td>0.22</td>
<td>0.31</td>
<td>0.47</td>
</tr>
<tr>
<td>0.065</td>
<td>0.0039</td>
<td>0.25</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>0.070</td>
<td>0.0048</td>
<td>0.28</td>
<td>0.39</td>
<td>0.33</td>
</tr>
<tr>
<td>0.075</td>
<td>0.0059</td>
<td>0.32</td>
<td>0.42</td>
<td>0.26</td>
</tr>
<tr>
<td>0.080</td>
<td>0.0070</td>
<td>0.35</td>
<td>0.46</td>
<td>0.19</td>
</tr>
<tr>
<td>0.085</td>
<td>0.0083</td>
<td>0.38</td>
<td>0.49</td>
<td>0.13</td>
</tr>
<tr>
<td>0.090</td>
<td>0.0096</td>
<td>0.42</td>
<td>0.53</td>
<td>0.05</td>
</tr>
<tr>
<td>0.095</td>
<td>0.0111</td>
<td>0.47</td>
<td>0.53</td>
<td>0.00</td>
</tr>
<tr>
<td>0.100</td>
<td>0.0133</td>
<td>0.58</td>
<td>0.42</td>
<td>0.00</td>
</tr>
<tr>
<td>0.105</td>
<td>0.0163</td>
<td>0.70</td>
<td>0.30</td>
<td>0.00</td>
</tr>
<tr>
<td>0.110</td>
<td>0.0202</td>
<td>0.82</td>
<td>0.18</td>
<td>0.00</td>
</tr>
<tr>
<td>0.115</td>
<td>0.0249</td>
<td>0.94</td>
<td>0.06</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Black-Litterman efficient portfolios

- Solving this QP for $R = 4\%$ to $R = 11.5\%$ with increments of 0.5\% results in the optimal portfolios shown in the table below.

<table>
<thead>
<tr>
<th>Rate of return R</th>
<th>Variance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.040</td>
<td>0.0012</td>
<td>0.08</td>
<td>0.17</td>
<td>0.75</td>
</tr>
<tr>
<td>0.045</td>
<td>0.0015</td>
<td>0.11</td>
<td>0.21</td>
<td>0.68</td>
</tr>
<tr>
<td>0.050</td>
<td>0.0020</td>
<td>0.15</td>
<td>0.24</td>
<td>0.61</td>
</tr>
<tr>
<td>0.055</td>
<td>0.0025</td>
<td>0.18</td>
<td>0.28</td>
<td>0.54</td>
</tr>
<tr>
<td>0.060</td>
<td>0.0032</td>
<td>0.22</td>
<td>0.31</td>
<td>0.47</td>
</tr>
<tr>
<td>0.065</td>
<td>0.0039</td>
<td>0.25</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>0.070</td>
<td>0.0048</td>
<td>0.28</td>
<td>0.39</td>
<td>0.33</td>
</tr>
<tr>
<td>0.075</td>
<td>0.0059</td>
<td>0.32</td>
<td>0.42</td>
<td>0.26</td>
</tr>
<tr>
<td>0.080</td>
<td>0.0070</td>
<td>0.35</td>
<td>0.46</td>
<td>0.19</td>
</tr>
<tr>
<td>0.085</td>
<td>0.0083</td>
<td>0.38</td>
<td>0.49</td>
<td>0.13</td>
</tr>
<tr>
<td>0.090</td>
<td>0.0096</td>
<td>0.42</td>
<td>0.53</td>
<td>0.05</td>
</tr>
<tr>
<td>0.095</td>
<td>0.0111</td>
<td>0.47</td>
<td>0.53</td>
<td>0.00</td>
</tr>
<tr>
<td>0.100</td>
<td>0.0133</td>
<td>0.58</td>
<td>0.42</td>
<td>0.00</td>
</tr>
<tr>
<td>0.105</td>
<td>0.0163</td>
<td>0.70</td>
<td>0.30</td>
<td>0.00</td>
</tr>
<tr>
<td>0.110</td>
<td>0.0202</td>
<td>0.82</td>
<td>0.18</td>
<td>0.00</td>
</tr>
<tr>
<td>0.115</td>
<td>0.0249</td>
<td>0.94</td>
<td>0.06</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Solving this QP for $R = 4\%$ to $R = 11.5\%$ with increments of 0.5\% results in the optimal portfolios shown in the table below.

<table>
<thead>
<tr>
<th>Rate of return R</th>
<th>Variance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.040</td>
<td>0.0012</td>
<td>0.08</td>
<td>0.17</td>
<td>0.75</td>
</tr>
<tr>
<td>0.045</td>
<td>0.0015</td>
<td>0.11</td>
<td>0.21</td>
<td>0.68</td>
</tr>
<tr>
<td>0.050</td>
<td>0.0020</td>
<td>0.15</td>
<td>0.24</td>
<td>0.61</td>
</tr>
<tr>
<td>0.055</td>
<td>0.0025</td>
<td>0.18</td>
<td>0.28</td>
<td>0.54</td>
</tr>
<tr>
<td>0.060</td>
<td>0.0032</td>
<td>0.22</td>
<td>0.31</td>
<td>0.47</td>
</tr>
<tr>
<td>0.065</td>
<td>0.0039</td>
<td>0.25</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>0.070</td>
<td>0.0048</td>
<td>0.28</td>
<td>0.39</td>
<td>0.33</td>
</tr>
<tr>
<td>0.075</td>
<td>0.0059</td>
<td>0.32</td>
<td>0.42</td>
<td>0.26</td>
</tr>
<tr>
<td>0.080</td>
<td>0.0070</td>
<td>0.35</td>
<td>0.46</td>
<td>0.19</td>
</tr>
<tr>
<td>0.085</td>
<td>0.0083</td>
<td>0.38</td>
<td>0.49</td>
<td>0.13</td>
</tr>
<tr>
<td>0.090</td>
<td>0.0096</td>
<td>0.42</td>
<td>0.53</td>
<td>0.05</td>
</tr>
<tr>
<td>0.095</td>
<td>0.0111</td>
<td>0.47</td>
<td>0.53</td>
<td>0.00</td>
</tr>
<tr>
<td>0.100</td>
<td>0.0133</td>
<td>0.58</td>
<td>0.42</td>
<td>0.00</td>
</tr>
<tr>
<td>0.105</td>
<td>0.0163</td>
<td>0.70</td>
<td>0.30</td>
<td>0.00</td>
</tr>
<tr>
<td>0.110</td>
<td>0.0202</td>
<td>0.82</td>
<td>0.18</td>
<td>0.00</td>
</tr>
<tr>
<td>0.115</td>
<td>0.0249</td>
<td>0.94</td>
<td>0.06</td>
<td>0.00</td>
</tr>
</tbody>
</table>
The Sharpe Ratio

The Sharpe Ratio is a measure for calculating risk-adjusted return and this ratio has become the industry standard for such calculations. The Sharpe Ratio (reward-to-volatility ratio) is the average return earned in excess of the risk-free rate per unit of volatility or total risk. It was firstly introduced by Nobel Laureate William F. Sharpe to measure the performance of mutual funds in 1966. Subtracting the risk-free rate from the mean return, the performance associated with risk-taking activities can be isolated. One intuition of this calculation is that a portfolio engaging in “zero risk” investment, such as the purchase of U.S. Treasury bills (for which the expected return is the risk-free rate), has a Sharpe ratio of exactly zero. Generally, the greater the value of the Sharpe ratio, the more attractive the risk-adjusted return.
The Sharpe Ratio

Definition of ‘Sharpe Ratio’

The Sharpe Ratio is a measure for calculating risk-adjusted return and this ratio has become the industry standard for such calculations. The Sharpe Ratio (reward-to-volatility ratio) is the average return earned in excess of the risk-free rate per unit of volatility or total risk. It was firstly introduced by Nobel Laureate William F. Sharpe to measure the performance of mutual funds in 1966. Subtracting the risk-free rate from the mean return, the performance associated with risk-taking activities can be isolated. One intuition of this calculation is that a portfolio engaging in “zero risk” investment, such as the purchase of U.S. Treasury bills (for which the expected return is the risk-free rate), has a Sharpe ratio of exactly zero. Generally, the greater the value of the Sharpe ratio, the more attractive the risk-adjusted return.
The Sharpe Ratio

Definition of ‘Sharpe Ratio’

- The Sharpe Ratio is a measure for calculating risk-adjusted return and this ratio has become the industry standard for such calculations.
The Sharpe Ratio

Definition of ‘Sharpe Ratio’

- The Sharpe Ratio is a measure for calculating risk-adjusted return and this ratio has become the industry standard for such calculations.
- The Sharpe Ratio (*reward-to-volatility ratio*) is the average return earned in excess of the risk-free rate per unit of volatility or total risk.
The Sharpe Ratio

Definition of ‘Sharpe Ratio’

- The Sharpe Ratio is a measure for calculating risk-adjusted return and this ratio has become the industry standard for such calculations.

- The Sharpe Ratio (*reward-to-volatility ratio*) is the average return earned in excess of the risk-free rate per unit of volatility or total risk.

- It was firstly introduced by Nobel Laureate William F. Sharpe to measure the performance of mutual funds in 1966.
The Sharpe Ratio

Definition of ‘Sharpe Ratio’

- The Sharpe Ratio is a measure for calculating risk-adjusted return and this ratio has become the industry standard for such calculations.

- The Sharpe Ratio (*reward-to-volatility ratio*) is the average return earned in excess of the risk-free rate per unit of volatility or total risk.

- It was firstly introduced by Nobel Laureate William F. Sharpe to measure the performance of mutual funds in 1966.

- Subtracting the risk-free rate from the mean return, the performance associated with risk-taking activities can be isolated.
The Sharpe Ratio

Definition of ‘Sharpe Ratio’

- The Sharpe Ratio is a measure for calculating risk-adjusted return and this ratio has become the industry standard for such calculations.
- The Sharpe Ratio *(reward-to-volatility ratio)* is the average return earned in excess of the risk-free rate per unit of volatility or total risk.
- It was firstly introduced by Nobel Laureate William F. Sharpe to measure the performance of mutual funds in 1966.
- Subtracting the risk-free rate from the mean return, the performance associated with risk-taking activities can be isolated.
- One intuition of this calculation is that a portfolio engaging in “zero risk” investment,
The Sharpe Ratio

Definition of ‘Sharpe Ratio’

- The Sharpe Ratio is a measure for calculating risk-adjusted return and this ratio has become the industry standard for such calculations.

- The Sharpe Ratio \((\text{reward-to-volatility ratio})\) is the average return earned in excess of the risk-free rate per unit of volatility or total risk.

- It was firstly introduced by Nobel Laureate William F. Sharpe to measure the performance of mutual funds in 1966.

- Subtracting the risk-free rate from the mean return, the performance associated with risk-taking activities can be isolated.

- One intuition of this calculation is that a portfolio engaging in “zero risk” investment, such as the purchase of U.S. Treasury bills (for which the expected return is the risk-free rate),
The Sharpe Ratio

Definition of ‘Sharpe Ratio’

- The Sharpe Ratio is a measure for calculating risk-adjusted return and this ratio has become the industry standard for such calculations.

- The Sharpe Ratio (reward-to-volatility ratio) is the average return earned in excess of the risk-free rate per unit of volatility or total risk.

- It was firstly introduced by Nobel Laureate William F. Sharpe to measure the performance of mutual funds in 1966.

- Subtracting the risk-free rate from the mean return, the performance associated with risk-taking activities can be isolated.

- One intuition of this calculation is that a portfolio engaging in “zero risk” investment, such as the purchase of U.S. Treasury bills (for which the expected return is the risk-free rate), has a Sharpe ratio of exactly zero.
The Sharpe Ratio

Definition of ‘Sharpe Ratio’

- The Sharpe Ratio is a measure for calculating risk-adjusted return and this ratio has become the industry standard for such calculations.

- The Sharpe Ratio (reward-to-volatility ratio) is the average return earned in excess of the risk-free rate per unit of volatility or total risk.

- It was firstly introduced by Nobel Laureate William F. Sharpe to measure the performance of mutual funds in 1966.

- Subtracting the risk-free rate from the mean return, the performance associated with risk-taking activities can be isolated.

- One intuition of this calculation is that a portfolio engaging in “zero risk” investment, such as the purchase of U.S. Treasury bills (for which the expected return is the risk-free rate), has a Sharpe ratio of exactly zero.

- Generally, the greater the value of the Sharpe ratio, the more attractive the risk adjusted return.
Capital Allocation Line (CAL)
Capital Allocation Line (CAL)

Notation

\(r_f \) = rate of return on the risk-free asset

\(r_p \) = rate of return on the risky portfolio

\(r_C \) = rate of return on the complete portfolio (including both the risk-free asset and the risky portfolio)

\(y \) = proportion of the investment budget to be placed in the risky portfolio

\(\sigma_p \) = standard deviation of the return on the risky portfolio

\(\sigma_C \) = standard deviation of the return on the complete portfolio

Z. Donovan and M. Xu

Optimization Methods in Finance
Capital Allocation Line (CAL)

Notation

- $r_f = \text{rate of return on the risk-free asset}$
Capital Allocation Line (CAL)

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_f)</td>
<td>rate of return on the risk-free asset</td>
</tr>
<tr>
<td>(r_p)</td>
<td>rate of return on the risky portfolio</td>
</tr>
<tr>
<td>(r_C)</td>
<td>rate of return on the complete portfolio</td>
</tr>
<tr>
<td>(y)</td>
<td>proportion of the investment budget to be placed in the risky portfolio</td>
</tr>
</tbody>
</table>
Capital Allocation Line (CAL)

Notation

- $r_f =$ rate of return on the risk-free asset
- $r_p =$ rate of return on the risky portfolio
- $r_C =$ rate of return on the complete portfolio (including both the risk-free asset and the risky portfolio)
Capital Allocation Line (CAL)

Notation

- $r_f =$ rate of return on the risk-free asset
- $r_p =$ rate of return on the risky portfolio
- $r_C =$ rate of return on the complete portfolio (including both the risk-free asset and the risky portfolio)
- $y =$ proportion of the investment budget to be placed in the risky portfolio
Capital Allocation Line (CAL)

Notation

- $r_f =$ rate of return on the risk-free asset
- $r_p =$ rate of return on the risky portfolio
- $r_C =$ rate of return on the complete portfolio (including both the risk-free asset and the risky portfolio)
- $y =$ proportion of the investment budget to be placed in the risky portfolio
- $\sigma_p =$ standard deviation of the return on the risky portfolio
Capital Allocation Line (CAL)

Notation

- $r_f =$ rate of return on the risk-free asset
- $r_p =$ rate of return on the risky portfolio
- $r_C =$ rate of return on the complete portfolio (including both the risk-free asset and the risky portfolio)
- $y =$ proportion of the investment budget to be placed in the risky portfolio
- $\sigma_p =$ standard deviation of the return on the risky portfolio
- $\sigma_C =$ standard deviation of the return on the complete portfolio
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio

Rate of return $r_C = y \cdot r_p + (1 - y) \cdot r_f$

Expected rate of return $E(r_C) = y \cdot E(r_p) + (1 - y) \cdot r_f$

Variance $\sigma_C^2 = y^2 \cdot \sigma_p^2 + (1 - y)^2 \cdot \sigma_f^2 + 2 \cdot y \cdot (1 - y) \cdot \text{cov}(r_p, r_f)$

Standard deviation $\sigma_C = \sqrt{y^2 \cdot \sigma_p^2 + (1 - y)^2 \cdot \sigma_f^2 + 2 \cdot y \cdot (1 - y) \cdot \text{cov}(r_p, r_f)}$

More Topics not covered

References

Z. Donovan and M. Xu

Optimization Methods in Finance
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio

- Rate of return
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio

- Rate of return
 \[r_C = y \cdot r_p + (1 - y) \cdot r_f \]
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio

- Rate of return
 \[r_C = y \cdot r_p + (1 - y) \cdot r_f \]
- Expected rate of return

\[\text{Expected rate of return} = y \cdot E(r_p) + (1 - y) \cdot r_f \]

\[\text{Variance} \sigma_C^2 = y^2 \cdot \sigma_p^2 + (1 - y)^2 \cdot 0 + 2 \cdot y \cdot (1 - y) \cdot \text{cov}(r_p, r_f) \]

\[\text{Standard deviation} \sigma_C = y \cdot \sigma_p \]
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio

- Rate of return
 \[r_C = y \cdot r_p + (1 - y) \cdot r_f \]

- Expected rate of return
 \[E(r_C) = y \cdot E(r_p) + (1 - y) \cdot E(r_f) \]
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio

- Rate of return
 \[r_C = y \cdot r_p + (1 - y) \cdot r_f \]

- Expected rate of return
 \[E(r_C) = y \cdot E(r_p) + (1 - y) \cdot E(r_f) = y \cdot E(r_p) + (1 - y) \cdot r_f \]
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio

- Rate of return
 \[r_C = y \cdot r_p + (1 - y) \cdot r_f \]

- Expected rate of return
 \[E(r_C) = y \cdot E(r_p) + (1 - y) \cdot E(r_f) = y \cdot E(r_p) + (1 - y) \cdot r_f \]
 \[= r_f + y \cdot [E(r_p) - r_f] \]
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio

- Rate of return
 \[r_C = y \cdot r_p + (1 - y) \cdot r_f \]

- Expected rate of return
 \[E(r_C) = y \cdot E(r_p) + (1 - y) \cdot E(r_f) = y \cdot E(r_p) + (1 - y) \cdot r_f \]
 \[= r_f + y \cdot [E(r_p) - r_f] \]

- Variance
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio

- **Rate of return**
 \[r_C = y \cdot r_p + (1 - y) \cdot r_f \]

- **Expected rate of return**
 \[
 E(r_C) = y \cdot E(r_p) + (1 - y) \cdot E(r_f) \\
 = r_f + y \cdot [E(r_p) - r_f]
 \]

- **Variance**
 \[
 \sigma_C^2 = y^2 \cdot \sigma_p^2 + (1 - y)^2 \cdot 0 + 2 \cdot y \cdot (1 - y) \cdot \text{cov}(r_p, r_f)
 \]
Characterization of the Complete Portfolio

- **Rate of return**
 \[
 r_C = y \cdot r_p + (1 - y) \cdot r_f
 \]

- **Expected rate of return**
 \[
 E(r_C) = y \cdot E(r_p) + (1 - y) \cdot E(r_f) = y \cdot E(r_p) + (1 - y) \cdot r_f
 \]
 \[
 = r_f + y \cdot [E(r_p) - r_f]
 \]

- **Variance**
 \[
 \sigma_C^2 = y^2 \cdot \sigma_p^2 + (1 - y)^2 \cdot 0 + 2 \cdot y \cdot (1 - y) \cdot \text{cov}(r_p, r_f)
 \]
 \[
 = y^2 \cdot \sigma_p^2
 \]
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio

- Rate of return
 \[r_C = y \cdot r_p + (1 - y) \cdot r_f \]

- Expected rate of return
 \[E(r_C) = y \cdot E(r_p) + (1 - y) \cdot E(r_f) = y \cdot E(r_p) + (1 - y) \cdot r_f \]
 \[= r_f + y \cdot [E(r_p) - r_f] \]

- Variance
 \[\sigma_C^2 = y^2 \cdot \sigma_p^2 + (1 - y)^2 \cdot 0 + 2 \cdot y \cdot (1 - y) \cdot \text{cov}(r_p, r_f) \]
 \[= y^2 \cdot \sigma_p^2 \]

- Standard deviation
Capital Allocation Line (CAL)

Characterization of the Complete Portfolio

- Rate of return
 \[r_C = y \cdot r_p + (1 - y) \cdot r_f \]

- Expected rate of return
 \[E(r_C) = y \cdot E(r_p) + (1 - y) \cdot E(r_f) = y \cdot E(r_p) + (1 - y) \cdot r_f \]
 \[= r_f + y \cdot [E(r_p) - r_f] \]

- Variance
 \[\sigma_C^2 = y^2 \cdot \sigma_p^2 + (1 - y)^2 \cdot 0 + 2 \cdot y \cdot (1 - y) \cdot \text{cov}(r_p, r_f) \]
 \[= y^2 \cdot \sigma_p^2 \]

- Standard deviation
 \[\sigma_C = y \cdot \sigma_p \]
Capital Allocation Line (CAL)

Available Complete Portfolios

Solve for y

$y = \sigma_C / \sigma_p$

Replace in the equation for the expected rate of return $E(r_C) = r_f + \sigma_C \cdot \left[E(r_p) - r_f \right]$

This defines a line in the mean-variance space – the capital allocation line (CAL)

Slope of CAL (Sharpe Ratio):

$\left[E(r_p) - r_f \right] / \sigma_p$

or

$\left[\mu_T \cdot x - r_f \right] / \left(x^T \cdot \Sigma \cdot x \right)^{1/2}$

Z. Donovan and M. Xu

Optimization Methods in Finance
Capital Allocation Line (CAL)

Available Complete Portfolios
Capital Allocation Line (CAL)

Available Complete Portfolios

- Solve for y

This defines a line in the mean-variance space – the capital allocation line (CAL).

Slope of CAL (Sharpe Ratio):

$$\frac{E(r_p) - r_f}{\sigma_p}$$

or

$$\frac{\mu^T \cdot x - r_f}{(x^T \cdot \Sigma \cdot x)^{1/2}}$$
Capital Allocation Line (CAL)

Available Complete Portfolios

- Solve for y

 $$y = \frac{\sigma_C}{\sigma_p}$$
Capital Allocation Line (CAL)

Available Complete Portfolios

- Solve for \(y \)
 \[
 y = \frac{\sigma_C}{\sigma_p}
 \]
- Replace in the equation for the expected rate of return
Capital Allocation Line (CAL)

Available Complete Portfolios

- Solve for y
 \[y = \frac{\sigma_C}{\sigma_P} \]
- Replace in the equation for the expected rate of return
 \[E(r_C) = r_f + \frac{\sigma_C}{\sigma_P} \cdot [E(r_p) - r_f] \]
Capital Allocation Line (CAL)

Available Complete Portfolios

- Solve for y

 $$y = \frac{\sigma_C}{\sigma_p}$$

- Replace in the equation for the expected rate of return

 $$E(r_C) = r_f + \frac{\sigma_C}{\sigma_p} \cdot [E(r_p) - r_f] = r_f + \sigma_C \cdot \frac{[E(r_p) - r_f]}{\sigma_p}$$
Capital Allocation Line (CAL)

<table>
<thead>
<tr>
<th>Available Complete Portfolios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve for y</td>
</tr>
<tr>
<td>$y = \frac{\sigma_C}{\sigma_p}$</td>
</tr>
<tr>
<td>Replace in the equation for the expected rate of return</td>
</tr>
</tbody>
</table>

$$E(r_C) = r_f + \frac{\sigma_C}{\sigma_p} \cdot [E(r_p) - r_f] = r_f + \sigma_C \cdot \frac{[E(r_p) - r_f]}{\sigma_p}$$

- This defines a line in the mean-variance space – the capital allocation line (CAL)
Capital Allocation Line (CAL)

Available Complete Portfolios

- Solve for y

 $$y = \frac{\sigma_C}{\sigma_p}$$

- Replace in the equation for the expected rate of return

 $$E(r_C) = r_f + \frac{\sigma_C}{\sigma_p} \cdot [E(r_p) - r_f] = r_f + \sigma_C \cdot \frac{[E(r_p) - r_f]}{\sigma_p}$$

- This defines a line in the mean-variance space – the capital allocation line (CAL)

- Slope of CAL (Sharpe Ratio): $[E(r_p) - r_f]/\sigma_p$
Capital Allocation Line (CAL)

Available Complete Portfolios

- Solve for y
 $$y = \frac{\sigma_C}{\sigma_p}$$

- Replace in the equation for the expected rate of return
 $$E(r_C) = r_f + \frac{\sigma_C}{\sigma_p} \cdot [E(r_p) - r_f] = r_f + \sigma_C \cdot \frac{[E(r_p) - r_f]}{\sigma_p}$$

- This defines a line in the mean-variance space – the capital allocation line (CAL)

- Slope of CAL (Sharpe Ratio): $[E(r_p) - r_f]/\sigma_p$ or $[\mu^T \cdot x - r_f]/(x^T \cdot \Sigma \cdot x)^{1/2}$
Capital Allocation Line (CAL)
Capital Allocation Line (CAL)

Capital Allocation Line

\[
\text{E}(r) - \sigma_f
\]

\[
P \text{E}(r_p) - \sigma_p
\]
Capital Allocation Line (CAL)

Capital Allocation Line

\[E(r) \]

\[\sigma \]
Capital Allocation Line (CAL)

Capital Allocation Line

\[E(r) \]

\[r_f \]

\[\sigma \]
Capital Allocation Line (CAL)

\[E(r) \]

\[\sigma \]

\[r_f \]

\[\sigma_p \]

\[P \]

\[E \]

\[r_f \]

\[r_f \]

\[\sigma \]

Z. Donovan and M. Xu

Optimization Methods in Finance
Capital Allocation Line (CAL)

\[E(r) \]

\[rf \]

\[\sigma \]

\[P \]
Capital Allocation Line (CAL)

\[E(r) \]

\[E(r_p) \]

\[r_f \]

\[\sigma_p \]

\[\sigma \]

\[P \]

\[\sigma_p \]

\[\sigma \]

\[\sigma_p \]

\[\sigma \]

\[\sigma_p \]

\[\sigma \]
Capital Allocation Line (CAL)

\[r_f = 7\% \]
\[E(r_p) = 15\% \]
\[\sigma_p = 22\% \]
\[y = 0.75 \]
\[E(r_C) = 0.75 \cdot 15\% + 0.25 \cdot 7\% = 13\% \]
\[\sigma_C = y \cdot \sigma_p = 0.75 \cdot 22\% = 16.5\% \]

Slope of CAL:
\[\frac{E(r_p) - r_f}{\sigma_p} = \frac{8\%}{22\%} = 0.36 \]

Z. Donovan and M. Xu
Optimization Methods in Finance
Capital Allocation Line (CAL)

Example

\[r_f = 7\% \]

\[E(r_p) = 15\% \]

\[\sigma_p = 22\% \]

\[y = 0.75 \]

\[E(r_C) = 0.75 \times 15\% + 0.25 \times 7\% = 13\% \]

\[\sigma_C = y \times \sigma_p = 0.75 \times 22\% = 16.5\% \]

Slope of CAL

\[\frac{E(r_p) - r_f}{\sigma_p} = \frac{8\%}{22\%} = 0.36 \]
Capital Allocation Line (CAL)

Example

\[r_f = 7\% \]
Example

- \(r_f = 7\% \)
- \(E(r_p) = 15\% \)
Capital Allocation Line (CAL)

Example

- $r_f = 7\%$
- $E(r_p) = 15\%$
- $\sigma_p = 22\%$
Capital Allocation Line (CAL)

Example

- \(r_f = 7\% \)
- \(E(r_p) = 15\% \)
- \(\sigma_p = 22\% \)
- \(y = 0.75 \)
Capital Allocation Line (CAL)

Example

- \(r_f = 7\% \)
- \(E(r_p) = 15\% \)
- \(\sigma_p = 22\% \)
- \(y = 0.75 \)
- \(E(r_C) = 0.75 \cdot 15\% + 0.25 \cdot 7\% \)
Capital Allocation Line (CAL)

Example

- $r_f = 7\%$
- $E(r_p) = 15\%$
- $\sigma_p = 22\%$
- $y = 0.75$
- $E(r_C) = 0.75 \cdot 15\% + 0.25 \cdot 7\% = 13\%$
Example

- \(r_f = 7\% \)
- \(E(r_p) = 15\% \)
- \(\sigma_p = 22\% \)
- \(y = 0.75 \)
- \(E(r_C) = 0.75 \cdot 15\% + 0.25 \cdot 7\% = 13\% \)
- \(\sigma_C = y \cdot \sigma_p \)
Capital Allocation Line (CAL)

Example

- $r_f = 7\%$
- $E(r_p) = 15\%$
- $\sigma_p = 22\%$
- $y = 0.75$
- $E(r_C) = 0.75 \cdot 15\% + 0.25 \cdot 7\% = 13\%$
- $\sigma_C = y \cdot \sigma_p = 0.75 \cdot 22\%$
Capital Allocation Line (CAL)

Example

- \(r_f = 7\% \)
- \(E(r_p) = 15\% \)
- \(\sigma_p = 22\% \)
- \(y = 0.75 \)
- \(E(r_C) = 0.75 \cdot 15\% + 0.25 \cdot 7\% = 13\% \)
- \(\sigma_C = y \cdot \sigma_p = 0.75 \cdot 22\% = 16.5\% \)
Capital Allocation Line (CAL)

Example

- $r_f = 7\%$
- $E(r_p) = 15\%$
- $\sigma_p = 22\%$
- $y = 0.75$
- $E(r_C) = 0.75 \cdot 15\% + 0.25 \cdot 7\% = 13\%$
- $\sigma_C = y \cdot \sigma_p = 0.75 \cdot 22\% = 16.5\%$
- Slope of CAL = $\frac{E(r_p) - r_f}{\sigma_p}$

Example
Capital Allocation Line (CAL)

Example

- $r_f = 7\%$
- $E(r_p) = 15\%$
- $\sigma_p = 22\%$
- $y = 0.75$
- $E(r_C) = 0.75 \cdot 15\% + 0.25 \cdot 7\% = 13\%$
- $\sigma_C = y \cdot \sigma_p = 0.75 \cdot 22\% = 16.5\%$
- Slope of CAL = $[E(r_p) - r_f] / \sigma_p = 8\% / 22\%$
Capital Allocation Line (CAL)

Example

- \(r_f = 7\% \)
- \(E(r_p) = 15\% \)
- \(\sigma_p = 22\% \)
- \(y = 0.75 \)
- \(E(r_C) = 0.75 \cdot 15\% + 0.25 \cdot 7\% = 13\% \)
- \(\sigma_C = y \cdot \sigma_p = 0.75 \cdot 22\% = 16.5\% \)
- Slope of CAL = \(\frac{E(r_p) - r_f}{\sigma_p} = \frac{8\%}{22\%} = 0.36 \)
Recall that the Markowitz Efficient Frontier is the set of all portfolios of which expected returns reach the maximum given a certain level of risk. We denote with R_{\min} and R_{\max} the minimum and maximum expected returns for efficient portfolios.

Define the function

$$\sigma(R) : [R_{\min}, R_{\max}] \rightarrow \mathbb{R}, \sigma(R) := (x^T \cdot \Sigma \cdot x)^{1/2},$$

where x_R denotes the unique solution of the MVO problem. Since we assumed that Σ is positive definite, it is easy to show that the function $\sigma(R)$ is strictly convex in its domain.

We will assume that $r_f < R_{\min}$, which is natural since the portfolio x_{\min} has a positive risk associated with it while the risk-free asset does not.
Efficient Frontier

Recall that the Markowitz Efficient Frontier is the set of all portfolios from which expected returns reach the maximum given a certain level of risk. We denote with R_{min} and R_{max} the minimum and maximum expected returns for efficient portfolios.

Define the function $\sigma(R) : [R_{\text{min}}, R_{\text{max}}] \rightarrow \mathbb{R}$, $\sigma(R) := \sqrt{x^T \cdot \Sigma \cdot x}$, where x_R denotes the unique solution of MVO problem.

Since we assumed that Σ is positive definite, it is easy to show that the function $\sigma(R)$ is strictly convex in its domain.

We will assume that $r_f < R_{\text{min}}$, which is natural since the portfolio x_{min} has a positive risk associated with it while the risk-free asset does not.
Recall that Markowitz Efficient Frontier is the set of all portfolios of which expected returns reach the maximum given a certain level of risk.
Efficient Frontier

Recall that Markowitz Efficient Frontier is the set of all portfolios of which expected returns reach the maximum given a certain level of risk.

We denote with R_{min} and R_{max} the minimum and maximum expected returns for efficient portfolios.
Efficient Frontier

- Recall that *Markowitz Efficient Frontier* is the set of all portfolios of which expected returns reach the maximum given a certain level of risk.
- We denote with R_{min} and R_{max} the minimum and maximum expected returns for efficient portfolios.
- Define the function $\sigma(R) : [R_{\text{min}}, R_{\text{max}}] \rightarrow R$, $\sigma(R) := \left(x R^T \cdot \Sigma \cdot x R \right)^{1/2}$, where $x R$ denotes the unique solution of MVO problem.

Since we assumed that Σ is positive definite, it is easy to show that the function $\sigma(R)$ is strictly convex in its domain.

We will assume that $r_f < R_{\text{min}}$, which is natural since the portfolio x_{min} has a positive risk associated with it while the risk-free asset does not.
recal that Markowitz Efficient Frontier is the set of all portfolios of which expected returns reach the maximum given a certain level of risk.

We denote with R_{min} and R_{max} the minimum and maximum expected returns for efficient portfolios.

Define the function

$$\sigma(R) : [R_{min}, R_{max}] \rightarrow \mathbb{R}, \sigma(R) := (x_R^T \cdot \Sigma \cdot x_R)^{1/2},$$

where x_R denotes the unique solution of MVO problem. Since we assumed that Σ is positive definite, it is easy to show that the function $\sigma(R)$ is strictly convex in its domain.

We will assume that $r_f < R_{min}$, which is natural since the portfolio x_{min} has a positive risk associated with it while the risk-free asset does not.
Recall that **Markowitz Efficient Frontier** is the set of all portfolios of which expected returns reach the maximum given a certain level of risk.

We denote with R_{min} and R_{max} the minimum and maximum expected returns for efficient portfolios.

Define the function

$$\sigma(R) : [R_{\text{min}}, R_{\text{max}}] \to \mathbb{R}, \sigma(R) := (x_R^T \cdot \Sigma \cdot x_R)^{1/2},$$

where x_R denotes the unique solution of MVO problem.
Recall that Markowitz Efficient Frontier is the set of all portfolios of which expected returns reach the maximum given a certain level of risk.

We denote with R_{min} and R_{max} the minimum and maximum expected returns for efficient portfolios.

Define the function

$$\sigma(R) : [R_{\text{min}}, R_{\text{max}}] \to \mathbb{R}, \sigma(R) := (x_{\mathbf{R}}^T \cdot \Sigma \cdot x_{\mathbf{R}})^{1/2},$$

where $x_{\mathbf{R}}$ denotes the unique solution of MVO problem.

Since we assumed that Σ is positive definite, it is easy to show that the function $\sigma(R)$ is strictly convex in its domain.
Recall that Markowitz Efficient Frontier is the set of all portfolios of which expected returns reach the maximum given a certain level of risk.

We denote with R_{min} and R_{max} the minimum and maximum expected returns for efficient portfolios.

Define the function

$$\sigma(R) : [R_{\text{min}}, R_{\text{max}}] \to \mathbb{R}, \sigma(R) := (x_R^T \cdot \Sigma \cdot x_R)^{1/2},$$

where x_R denotes the unique solution of MVO problem.

Since we assumed that Σ is positive definite, it is easy to show that the function $\sigma(R)$ is strictly convex in its domain.

We will assume that $r_f < R_{\text{min}}$, which is natural since the portfolio x_{min} has a positive risk associated with it while the risk-free asset does not.
Maximize the Sharpe Ratio

Remark

Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.

Maximizing the Sharpe Ratio

$E(r) - \sigma$

Efficient frontier

x_{min}

x_{max}

Feasible point

r_f

CAL

Optimal CAL

Optimal risky portfolio
Maximize the Sharpe Ratio

Remark

Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.
Maximize the Sharpe Ratio

Remark

- Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.
Maximize the Sharpe Ratio

Remark

- Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.
Maximize the Sharpe Ratio

Remark

- Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.

Maximizing the Sharpe Ratio

\[E(r) \]

\[\sigma \]
Remark

- Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.

Maximizing the Sharpe Ratio

\[E(r) \] vs. \[\sigma \]
Remark

Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.
Maximize the Sharpe Ratio

Remark

- Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.
Maximize the Sharpe Ratio

Remark

- Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.

Maximizing the Sharpe Ratio

\[E(r) \]

\[\sigma \]

Efficient frontier

\[x_{\text{min}} \]

\[x_{\text{max}} \]
Remark

- Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.
Remark

- Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.

Maximizing the Sharpe Ratio

\[E(r) \]

\[\sigma \]

Efficient frontier

\[x_{\text{max}} \]

Feasible point

\[x_{\text{min}} \]

\[r_f \]
Maximize the Sharpe Ratio

Remark
- Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.

Maximizing the Sharpe Ratio

\[
E(r) \quad \sigma
\]

Efficient frontier

CAL

\(x_{\text{min}}\)

\(x_{\text{max}}\)

Feasible point

\(r_f\)

Optimal risky portfolio

Z. Donovan and M. Xu

Optimization Methods in Finance
Maximize the Sharpe Ratio

Remark

- Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.

Maximizing the Sharpe Ratio

\[E(r) \]

\[\sigma \]

Efficient frontier

CAL

\(x_{\text{max}} \)

Feasible point

\(r_f \)

\(x_{\text{min}} \)
Maximize the Sharpe Ratio

Remark

Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.
Maximize the Sharpe Ratio

Remark

Since CAL goes through a feasible point, the optimal CAL goes through a point on the efficient frontier and never goes above a point on the efficient frontier.
The Optimal Risky Portfolio

The portfolio that maximizes the Sharpe ratio is found by solving the following problem:

$$\max_x \mu^T x - r_f \left(x^T \Sigma x \right)^{1/2}$$

subject to:

$$A \cdot x = b$$
$$C \cdot x \geq d$$

Remark

Although it has a nice polyhedral feasible region, its objective function is somewhat complicated and possibly non-concave. So it is not a convex optimization problem.
The Optimal Risky Portfolio

Optimal Risky Portfolio

The portfolio that maximizes the Sharpe ratio is found by solving the following problem:

\[
\max_x \mu^T x - \frac{1}{2} A x = b \\
C x \geq d
\]

Remark

Although it has a nice polyhedral feasible region, its objective function is somewhat complicated and possibly non-concave. So it is not a convex optimization problem.
The Optimal Risky Portfolio

The portfolio that maximizes the Sharpe ratio is found by solving the following problem:

\[
\begin{align*}
\max & \quad \mu^T x - r_f \left(x^T \Sigma x \right)^{1/2} \\
\text{subject to} & \quad A x = b \\
& \quad C x \geq d
\end{align*}
\]

Remark

Although it has a nice polyhedral feasible region, its objective function is somewhat complicated and possibly non-concave. So it is not a convex optimization problem.
The Optimal Risky Portfolio

The portfolio that maximizes the Sharpe ratio is found by solving the following problem:

$$\max_x \frac{\mu^T \cdot x - r_f}{(x^T \cdot \Sigma \cdot x)^{1/2}}$$
The Optimal Risky Portfolio

The portfolio that maximizes the Sharpe ratio is found by solving the following problem:

$$\max_x \frac{\mu^T \cdot x - r_f}{(x^T \cdot \Sigma \cdot x)^{1/2}}$$

$$A \cdot x = b$$
The optimal risky portfolio is found by solving the following problem:

\[
\max_x \quad \frac{\mu^T \cdot x - r_f}{(x^T \cdot \Sigma \cdot x)^{1/2}}
\]

subject to:

\[
A \cdot x = b
\]

\[
C \cdot x \geq d
\]
The optimal risky portfolio is found by solving the following problem:

\[
\max_x \quad \frac{\mu^T \cdot x - r_f}{(x^T \cdot \Sigma \cdot x)^{1/2}}
\]

subject to:

\[
A \cdot x = b
\]

\[
C \cdot x \geq d
\]

Remark

Although it has a nice polyhedral feasible region, its objective function is somewhat complicated and possibly non-concave. So it is not a convex optimization problem.
The Optimal Risky Portfolio

The portfolio that maximizes the Sharpe ratio is found by solving the following problem:

\[
\max_x \quad \frac{\mu^T \cdot x - r_f}{(x^T \cdot \Sigma \cdot x)^{1/2}}
\]

\[A \cdot x = b\]

\[C \cdot x \geq d\]

Remark

- Although it has a nice polyhedral feasible region, its objective function is somewhat complicated and possibly non-concave.
The Optimal Risky Portfolio

The portfolio that maximizes the Sharpe ratio is found by solving the following problem:

\[
\max_x \quad \frac{\mu^T \cdot x - r_f}{(x^T \cdot \Sigma \cdot x)^{1/2}} \\
A \cdot x = b \\
C \cdot x \geq d
\]

Remark

- Although it has a nice polyhedral feasible region, its objective function is somewhat complicated and possibly non-concave.
- So it is not a convex optimization problem.

Z. Donovan and M. Xu
Optimization Methods in Finance
The Optimal Risky Portfolio

Equivalent Quadratic Programming

We describe a direct method to obtain the optimal risky portfolio by constructing an equivalent convex quadratic programming problem.

Assumptions

1. We assume that $\sum_{i} x_i = 1$ for any feasible portfolio x. This is a natural assumption since the x_i's are the proportions of the portfolio in different asset classes.

2. We assume that there exists a feasible portfolio \hat{x} with $\mu^T \cdot \hat{x} > r_f$. If all feasible portfolios have expected return bounded by the risk-free rate, there is no need to optimize, the risk-free investment dominates all others.
The Optimal Risky Portfolio

Equivalent Quadratic Programming

We describe a direct method to obtain the optimal risky portfolio by constructing an equivalent convex quadratic programming problem.

Assumptions

1. We assume that \(\sum_{i=1}^{n} x_i = 1 \) for any feasible portfolio \(x \).
 This is a natural assumption since the \(x_i \)s are the proportions of the portfolio in different asset classes.

2. We assume that there exists a feasible portfolio \(\hat{x} \) with \(\mu^T \cdot \hat{x} > r_f \).
 If all feasible portfolios have expected return bounded by the risk-free rate, there is no need to optimize, the risk-free investment dominates all others.

Z. Donovan and M. Xu

Optimization Methods in Finance
The Optimal Risky Portfolio

Equivalent Quadratic Programming

We describe a direct method to obtain the optimal risky portfolio by constructing an equivalent convex quadratic programming problem.

Assumptions

1. We assume that $\sum x_i = 1$ for any feasible portfolio x_i. This is a natural assumption since the x_i's are the proportions of the portfolio in different asset classes.

2. We assume that there exists a feasible portfolio \hat{x} with $\mu^T \cdot \hat{x} > r_f$. If all feasible portfolios have expected return bounded by the risk-free rate, there is no need to optimize, the risk-free investment dominates all others.
The Optimal Risky Portfolio

Equivalent Quadratic Programming

We describe a direct method to obtain the optimal risky portfolio by constructing an equivalent convex quadratic programming problem.

Assumptions
The Optimal Risky Portfolio

Equivalent Quadratic Programming

We describe a direct method to obtain the optimal risky portfolio by constructing an equivalent convex quadratic programming problem.

Assumptions

1. We assume that $\sum_{i=1}^{n} x_i = 1$ for any feasible portfolio x.

Assumptions

Z. Donovan and M. Xu

Optimization Methods in Finance
The Optimal Risky Portfolio

Equivalent Quadratic Programming

We describe a direct method to obtain the optimal risky portfolio by constructing an equivalent convex quadratic programming problem.

Assumptions

1. We assume that $\sum_{i=1}^{n} x_i = 1$ for any feasible portfolio x. This is a natural assumption since the x_is are the proportions of the portfolio in different asset classes.
The Optimal Risky Portfolio

Equivalent Quadratic Programming

We describe a direct method to obtain the optimal risky portfolio by constructing an equivalent convex quadratic programming problem.

Assumptions

1. We assume that $\sum_{i=1}^{n} x_i = 1$ for any feasible portfolio x. This is a natural assumption since the x_is are the proportions of the portfolio in different asset classes.

2. We assume that there exists a feasible portfolio \hat{x} with $\mu^T \cdot \hat{x} > r_f$.

References

Z. Donovan and M. Xu
Optimization Methods in Finance
Equivalent Quadratic Programming

We describe a direct method to obtain the optimal risky portfolio by constructing an equivalent convex quadratic programming problem.

Assumptions

1. We assume that $\sum_{i=1}^{n} x_i = 1$ for any feasible portfolio x. This is a natural assumption since the x_is are the proportions of the portfolio in different asset classes.

2. We assume that there exists a feasible portfolio \hat{x} with $\mu^T \cdot \hat{x} > r_f$. If all feasible portfolios have expected return bounded by the risk-free rate,
The Optimal Risky Portfolio

Equivalent Quadratic Programming

We describe a direct method to obtain the optimal risky portfolio by constructing an equivalent convex quadratic programming problem.

Assumptions

1. We assume that $\sum_{i=1}^{n} x_i = 1$ for any feasible portfolio x. This is a natural assumption since the x_is are the proportions of the portfolio in different asset classes.

2. We assume that there exists a feasible portfolio \hat{x} with $\mu^T \cdot \hat{x} > r_f$. If all feasible portfolios have expected return bounded by the risk-free rate, there is no need to optimize, the risk-free investment dominates all others.
The Optimal Risky Portfolio

Proposition

Given a set \(X \) of feasible portfolios with the properties that \(e^T \cdot x = 1, \forall x \in X \) and \(\exists \hat{x} \in X \) such that \(\mu^T \cdot \hat{x} > r_f \), the portfolio \(x^* \) with the maximum Sharpe ratio in this set can be found by solving the following problem

\[
\min_{y, \kappa} y^T \cdot \Sigma \cdot y \quad s.t. \quad (y, \kappa) \in X^+, \quad (\mu - r_f \cdot e)^T \cdot y = 1,
\]

where \(X^+ : = \{ x \in \mathbb{R}^n, \kappa \in \mathbb{R} | \kappa > 0, x\kappa \in X} \cup (0, 0) \).

If \((y, \kappa)\) is the solution of this problem, then \(x^* = y\kappa \).

Remark

This is a quadratic program and can be solved by IPMs.
The Optimal Risky Portfolio

Proposition

Given a set X of feasible portfolios with the properties that $e^T \cdot x = 1, \forall x \in X$ and $\exists \hat{x} \in X$ such that $\mu^T \cdot \hat{x} > r_f$, the portfolio x^* with the maximum Sharpe ratio in this set can be found by solving the following problem

$$\min_{y, \kappa} y^T \cdot \Sigma \cdot y \text{ s.t. } (y, \kappa) \in X^+, (\mu - r_f \cdot e)^T \cdot y = 1,$$

where $X^+ := \{x \in \mathbb{R}^n, \kappa \in \mathbb{R} | \kappa > 0, x \kappa \in X\} \cup (0, 0)$.

If (y, κ) is the solution of this problem, then $x^* = y \kappa$.

Remark

This is a quadratic program and can be solved by IPMs.
Proposition

Given a set \mathcal{X} of feasible portfolios with the properties that $\mathbf{e}^T \cdot \mathbf{x} = 1$, $\forall \mathbf{x} \in \mathcal{X}$ and $\exists \hat{\mathbf{x}} \in \mathcal{X}$ such that $\mathbf{\mu}^T \cdot \hat{\mathbf{x}} > r_f$, the portfolio \mathbf{x}^* with the maximum Sharpe ratio in this set can be found by solving the following problem:

$$\min_{y, \kappa} y^T \cdot \Sigma \cdot y \quad s.t. \quad (y, \kappa) \in \mathcal{X}^+, \quad (\mathbf{\mu} - r_f \cdot \mathbf{e})^T \cdot y = 1,$$

where $\mathcal{X}^+ := \{ \mathbf{x} \in \mathbb{R}^n, \kappa \in \mathbb{R} | \kappa > 0, \mathbf{x} \kappa \in \mathcal{X} \} \cup (0, 0)$.

If (y, κ) is the solution of this problem, then $\mathbf{x}^* = y \kappa$.

Remark

This is a quadratic program and can be solved by IPMs.
The Optimal Risky Portfolio

Proposition

Given a set \(\mathcal{X} \) of feasible portfolios with the properties that \(\mathbf{e}^T \cdot \mathbf{x} = 1, \forall \mathbf{x} \in \mathcal{X} \) and \(\exists \hat{\mathbf{x}} \in \mathcal{X} \) such that \(\mathbf{\mu}^T \cdot \hat{\mathbf{x}} > r_f \), the portfolio \(\mathbf{x}^* \) with the maximum Sharpe ratio in this set can be found by solving the following problem:

\[
\min_{(\mathbf{y}, \kappa)} y^T \cdot \Sigma \cdot y \quad s.t. (\mathbf{y}, \kappa) \in \mathcal{X}^+, (\mathbf{\mu} - r_f \cdot \mathbf{e})^T \cdot \mathbf{y} = 1,
\]

where \(\mathcal{X}^+ = \{ \mathbf{x} \in \mathbb{R}^n, \kappa \in \mathbb{R} | \kappa > 0, \mathbf{x} \kappa \in \mathcal{X} \} \cup (0, 0) \).

Remark

This is a quadratic program and can be solved by IPMs.
Proposition

Given a set \mathcal{X} of feasible portfolios with the properties that $e^T \cdot x = 1, \forall x \in \mathcal{X}$ and $\exists \hat{x} \in \mathcal{X}$ such that $\mu^T \cdot \hat{x} > r_f$, the portfolio x^* with the maximum Sharpe ratio in this set can be found by solving the following problem:

$$\min y^T \cdot \Sigma \cdot y \text{ s.t. } (y, \kappa) \in \mathcal{X}^+, (\mu - r_f \cdot e)^T \cdot y = 1,$$

where $\mathcal{X}^+ = \{ x \in \mathbb{R}^n, \kappa \in \mathbb{R} | \kappa > 0, x \kappa \in \mathcal{X} \} \cup (0, 0)$.

Remark

This is a quadratic program and can be solved by IPMs.
The Optimal Risky Portfolio

Proposition

Given a set \mathcal{X} of feasible portfolios with the properties that $\mathbf{e}^T \cdot \mathbf{x} = 1$, $\forall \mathbf{x} \in \mathcal{X}$ and $\exists \hat{\mathbf{x}} \in \mathcal{X}$ such that $\mu^T \cdot \hat{\mathbf{x}} > r_f$, the portfolio \mathbf{x}^* with the maximum Sharpe ratio in this set can be found by solving the following problem

$$
\min \mathbf{y}^T \cdot \mathbf{\Sigma} \cdot \mathbf{y} \text{ s.t. } (\mathbf{y}, \kappa) \in \mathcal{X}^+, (\mu - r_f \cdot \mathbf{e})^T \cdot \mathbf{y} = 1,
$$

where

...
The Optimal Risky Portfolio

Proposition

Given a set \mathcal{X} of feasible portfolios with the properties that $\mathbf{e}^T \cdot \mathbf{x} = 1$, $\forall \mathbf{x} \in \mathcal{X}$ and $\exists \hat{x} \in \mathcal{X}$ such that $\mu^T \cdot \hat{x} > r_f$, the portfolio \mathbf{x}^* with the maximum Sharpe ratio in this set can be found by solving the following problem

$$
\min \ y^T \cdot \Sigma \cdot y \ \text{s.t.} \ (y, \kappa) \in \mathcal{X}^+, \ (\mu - r_f \cdot \mathbf{e})^T \cdot y = 1,
$$

where

$$
\mathcal{X}^+ := \{ \mathbf{x} \in \mathbb{R}^n, \kappa \in \mathbb{R} \mid \kappa > 0, \frac{x}{\kappa} \in \mathcal{X} \} \cup (0,0).
$$
The Optimal Risky Portfolio

Proposition

Given a set \mathcal{X} of feasible portfolios with the properties that $e^T \cdot x = 1$, $\forall x \in \mathcal{X}$ and $\exists \hat{x} \in \mathcal{X}$ such that $\mu^T \cdot \hat{x} > r_f$, the portfolio x^* with the maximum Sharpe ratio in this set can be found by solving the following problem

$$\min_y y^T \cdot \Sigma \cdot y \text{ s.t. } (y, \kappa) \in \mathcal{X}^+, (\mu - r_f \cdot e)^T \cdot y = 1,$$

where

$$\mathcal{X}^+ := \{x \in \mathbb{R}^n, \kappa \in \mathbb{R} \mid \kappa > 0, \frac{x}{\kappa} \in \mathcal{X}\} \cup (0, 0).$$

If (y, κ) is the solution of this problem, then $x^* = \frac{y}{\kappa}$.

Remark

This is a quadratic program and can be solved by IPMs.
The Optimal Risky Portfolio

Proposition

Given a set \(\mathcal{X} \) of feasible portfolios with the properties that \(\mathbf{e}^T \cdot \mathbf{x} = 1 \), \(\forall \mathbf{x} \in \mathcal{X} \) and \(\exists \hat{\mathbf{x}} \in \mathcal{X} \) such that \(\mu^T \cdot \hat{\mathbf{x}} > r_f \), the portfolio \(\mathbf{x}^* \) with the maximum Sharpe ratio in this set can be found by solving the following problem

\[
\min \ y^T \cdot \Sigma \cdot y \quad s.t. \ (y, \kappa) \in \mathcal{X}^+, \ (\mu - r_f \cdot \mathbf{e})^T \cdot y = 1,
\]

where

\[
\mathcal{X}^+ := \{ \mathbf{x} \in \mathbb{R}^n, \kappa \in \mathbb{R} \mid \kappa > 0, \frac{\mathbf{x}}{\kappa} \in \mathcal{X} \} \cup (0, 0).
\]

If \((y, \kappa) \) is the solution of this problem, then \(\mathbf{x}^* = \frac{y}{\kappa} \).

Remark

This is a quadratic program and can be solved by IPMs.
The Optimal Risky Portfolio

Proposition

Given a set \mathcal{X} of feasible portfolios with the properties that $\mathbf{e}^T \cdot \mathbf{x} = 1$, $\forall \mathbf{x} \in \mathcal{X}$ and $\exists \hat{\mathbf{x}} \in \mathcal{X}$ such that $\mathbf{\mu}^T \cdot \hat{\mathbf{x}} > r_f$, the portfolio \mathbf{x}^* with the maximum Sharpe ratio in this set can be found by solving the following problem

$$\min \mathbf{y}^T \cdot \mathbf{\Sigma} \cdot \mathbf{y} \text{ s.t. } (\mathbf{y}, \kappa) \in \mathcal{X}^+, (\mathbf{\mu} - r_f \cdot \mathbf{e})^T \cdot \mathbf{y} = 1,$$

where

$$\mathcal{X}^+ := \{\mathbf{x} \in \mathbb{R}^n, \kappa \in \mathbb{R} | \kappa > 0, \frac{\mathbf{x}}{\kappa} \in \mathcal{X}\} \cup (0, 0).$$

If (\mathbf{y}, κ) is the solution of this problem, then $\mathbf{x}^* = \frac{\mathbf{y}}{\kappa}$.

Remark

- This is a quadratic program and can be solved by IPMs.
Proof of Proposition

By our second assumption, it suffices to consider only those x for which $(\mu - r_f \cdot e)^T x > 0$.

Let us make the following change of variables:

$$\kappa = \frac{1}{(\mu - r_f \cdot e)^T x}$$

$$y = \kappa \cdot x$$

Then,

$$\sqrt{x^T \Sigma x} = \kappa \cdot \sqrt{y^T \Sigma y}$$

and the objective function can be written as

$$\frac{1}{\sqrt{y^T \Sigma y}}$$

in terms of the new variables.
The Optimal Risky Portfolio

Proof of Proposition

By our second assumption, it suffices to consider only those x for which $(\mu - r_f \cdot e)^T x > 0$.

Let us make the following change of variables:

$\kappa = \frac{1}{(\mu - r_f \cdot e)^T x}$

$y = \kappa \cdot x$

Then, $\sqrt{x^T \Sigma x} = \kappa \cdot \sqrt{y^T \Sigma y}$ and the objective function can be written as $\frac{1}{\sqrt{y^T \Sigma y}}$ in terms of the new variables.
Proof of Proposition

By our second assumption, it suffices to consider only those \mathbf{x} for which

$$(\mu - r_f \cdot \mathbf{e})^T \cdot \mathbf{x} > 0.$$
The Optimal Risky Portfolio

Proof of Proposition

By our second assumption, it suffices to consider only those x for which $(\mu - r_f \cdot e)^T \cdot x > 0$. Let us make the following change of variables:
Proof of Proposition

By our second assumption, it suffices to consider only those \(x \) for which
\[
(\mu - r_f \cdot e)^T \cdot x > 0.
\]
Let us make the following change of variables:

\[
\kappa = \frac{1}{(\mu - r_f \cdot e)^T \cdot x}
\]
The Optimal Risky Portfolio

Proof of Proposition

By our second assumption, it suffices to consider only those \mathbf{x} for which $(\mu - r_f \cdot \mathbf{e})^T \cdot \mathbf{x} > 0$. Let us make the following change of variables:

$$
\kappa = \frac{1}{(\mu - r_f \cdot \mathbf{e})^T \cdot \mathbf{x}}
$$

$$
\mathbf{y} = \kappa \cdot \mathbf{x}
$$
The Optimal Risky Portfolio

Proof of Proposition

By our second assumption, it suffices to consider only those x for which $(\mu - r_f \cdot e)^T \cdot x > 0$. Let us make the following change of variables:

$$\kappa = \frac{1}{(\mu - r_f \cdot e)^T \cdot x}$$

$$y = \kappa \cdot x$$

Then, $\sqrt{x^T \cdot \Sigma \cdot x} = \frac{1}{\kappa} \cdot \sqrt{y^T \cdot \Sigma \cdot y}$ and the objective function can be written as $1/\sqrt{y^T \cdot \Sigma \cdot y}$ in terms of the new variables.
Mean-Variance Optimization
Brief mention of other MVO models
Maximizing the Sharpe Ratio
More Topics not covered
References

The Optimal Risky Portfolio

Proof of Proposition (cont'd.)

Note also that \((\mu - rf \cdot e)^T x > 0, x \in X \iff \kappa > 0, y \kappa \in X, \kappa = 1(\mu - rf \cdot e)^T x \iff (\mu - rf \cdot e)^T y = 1\).

Since \((\mu - rf \cdot e) y = 1\) rules out \((0, 0)\) as a solution, replacing \((\kappa > 0, y, \kappa) \in X\) with \((y, \kappa) \in X^+\) does not affect the solutions – it just makes the feasible set a closed set.
The Optimal Risky Portfolio

Proof of Proposition (cont’d.)

Note also that \((\mu - r_f \cdot e)^T \cdot x > 0, x \in X\) \(\iff\) \(\kappa > 0, y \kappa \in X\), and \(\kappa = 1 \cdot (\mu - r_f \cdot e)^T \cdot x \iff (\mu - r_f \cdot e)^T \cdot y = 1\). Since \((\mu - r_f \cdot e)^T \cdot y = 1\) rules out \((0, 0)\) as a solution, replacing \((y, \kappa) \in X\) with \((y, \kappa) \in X^+\) does not affect the solutions – it just makes the feasible set a closed set.
Proof of Proposition (cont’d.)

Note also that

\[
(\mu - r_f \cdot e) \cdot x > 0, \quad x \in X \iff \kappa > 0, \quad (y, \kappa) \in X
\]

and

\[
(\mu - r_f \cdot e) \cdot x \iff (\mu - r_f \cdot e) \cdot y = \frac{1}{\kappa}.
\]

Since

\[
(\mu - r_f \cdot e) \cdot y = 1
\]
rules out

\[
(0, 0)
\]
as a solution, replacing

\[
(\kappa > 0, \quad (y, \kappa)) \in X
\]

with

\[
(y, \kappa)
\]

\[\in X^+
\]
does not affect the solutions – it just makes the feasible set a closed set.
Proof of Proposition (cont’d.)

Note also that

\[(\mu - r_f \cdot e)^T \cdot x > 0, \; x \in \mathcal{X} \iff \kappa > 0, \; \frac{y}{\kappa} \in \mathcal{X},\]
Proof of Proposition (cont’d.)

Note also that

\[(\mu - r_f \cdot e)^T \cdot x > 0, \ x \in \mathcal{X} \iff \kappa > 0, \ \frac{y}{\kappa} \in \mathcal{X},\]

and
Proof of Proposition (cont’d.)

Note also that

\[(\mu - r_f \cdot e)^T \cdot x > 0, \ x \in \mathcal{X} \iff \kappa > 0, \ \frac{y}{\kappa} \in \mathcal{X},\]

and

\[
\kappa = \frac{1}{(\mu - r_f \cdot e)^T \cdot x} \iff (\mu - r_f \cdot e)^T \cdot y = 1.
\]
The Optimal Risky Portfolio

Proof of Proposition (cont’d.)

Note also that

\[(\mu - r_f \cdot e)^T \cdot x > 0, \quad x \in \mathcal{X} \iff \kappa > 0, \quad \frac{y}{\kappa} \in \mathcal{X},\]

and

\[\kappa = \frac{1}{(\mu - r_f \cdot e)^T \cdot x} \iff (\mu - r_f \cdot e)^T \cdot y = 1.\]

Since \((\mu - r_f \cdot e)^T \cdot y = 1\) rules out \((0, 0)\) as a solution, replacing \(\kappa > 0, \quad (y, \kappa) \in \mathcal{X}\) with \((y, \kappa) \in \mathcal{X}^+\) does not affect the solutions.
The Optimal Risky Portfolio

Proof of Proposition (cont’d.)

Note also that

$$(\mu - r_f \cdot e)^T \cdot x > 0, \ x \in \mathcal{X} \iff \kappa > 0, \ \frac{y}{\kappa} \in \mathcal{X},$$

and

$$\kappa = \frac{1}{(\mu - r_f \cdot e)^T \cdot x} \iff (\mu - r_f \cdot e)^T \cdot y = 1.$$

Since $(\mu - r_f \cdot e)^T \cdot y = 1$ rules out $(0, 0)$ as a solution, replacing $\kappa > 0, (y, \kappa) \in \mathcal{X}$ with $(y, \kappa) \in \mathcal{X}^+$ does not affect the solutions – it just makes the feasible set a closed set.
The Optimal Risky Portfolio

Exercise

If $X = \{ x | A \cdot x \geq b, C \cdot x = d \}$, show that $X^+ = \{ (x, \kappa) | A \cdot x - b \cdot \kappa \geq 0, C \cdot x - d \cdot \kappa = 0, \kappa \geq 0 \}$.

Z. Donovan and M. Xu

Optimization Methods in Finance
The Optimal Risky Portfolio

Exercise

If $X = \{x \mid A \cdot x \geq b, C \cdot x = d\}$, show that $X^+ = \{(x, \kappa) \mid A \cdot x - b \cdot \kappa \geq 0, C \cdot x - d \cdot \kappa = 0, \kappa \geq 0\}$.

Z. Donovan and M. Xu
Optimization Methods in Finance
Exercise

If \(\mathcal{X} = \{ x \mid A \cdot x \geq b, C \cdot x = d \} \), show that
Exercise

If \(\mathcal{X} = \{ \mathbf{x} \mid \mathbf{A} \cdot \mathbf{x} \geq \mathbf{b}, \mathbf{C} \cdot \mathbf{x} = \mathbf{d} \} \), show that

\[
\mathcal{X}^+ = \{ (\mathbf{x}, \kappa) \mid \mathbf{A} \cdot \mathbf{x} - \mathbf{b} \cdot \kappa \geq 0, \mathbf{C} \cdot \mathbf{x} - \mathbf{d} \cdot \kappa = 0, \kappa \geq 0 \}.
\]
The Optimal Risky Portfolio

Exercise

Consider the previous MVO example. The covariance matrix is given as

\[
\text{Covariance} \\
\begin{array}{ccc}
\text{Stocks} & \text{Bonds} & \text{MM} \\
\text{Stocks} & 0.02778 & 0.00387 & 0.00021 \\
\text{Bonds} & 0.00387 & 0.01112 & -0.00020 \\
\text{MM} & 0.00021 & -0.00020 & 0.00115 \\
\end{array}
\]

And the geometric mean is given as

\[
\text{Geometric mean} \\
\begin{array}{c}
\mu_i \\
10.73\% & 7.37\% & 6.27\% \\
\end{array}
\]

Also, the matrix

\[
A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}
\]

and

\[
b = 1.
\]

Assume that the risk-free return rate is 3\%.

Find the program of optimal risky portfolio and the equivalent quadratic programming problem.
The Optimal Risky Portfolio

Exercise

Consider the previous MVO example.
The covariance matrix is given as

\[
\begin{bmatrix}
0.02778 & 0.00387 & 0.00021 \\
0.00387 & 0.01112 & -0.00020 \\
0.00021 & -0.00020 & 0.00115 \\
\end{bmatrix}
\]

And the geometric mean is given as

\[
\begin{bmatrix}
10.73\% & 7.37\% & 6.27\% \\
\end{bmatrix}
\]

Also, the matrix

\[A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}\]

and

\[b = 1.\]

Assume that the risk-free return rate is 3\%.

Find the program of optimal risky portfolio and the equivalent quadratic programming problem.
Consider the previous MVO example.

The covariance matrix is given as:

\[
\begin{bmatrix}
0.02778 & 0.00387 & 0.00021 \\
0.00387 & 0.01112 & -0.00020 \\
0.00021 & -0.00020 & 0.00115
\end{bmatrix}
\]

And the geometric mean is given as:

\[
\begin{array}{c|c|c|}
\text{Stocks} & \text{Bonds} & \text{MM} \\
\hline
\mu_i & 10.73\% & 7.37\% & 6.27\%
\end{array}
\]

Also, the matrix
\[
A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}
\]
and
\[
b = 1.
\]

Assume that the risk-free return rate is 3\%.

Find the program of optimal risky portfolio and the equivalent quadratic programming problem.
The Optimal Risky Portfolio

Exercise

Consider the previous MVO example. The covariance matrix is given as

\[
\begin{bmatrix}
0.02778 & 0.00387 & 0.00021 \\
0.00387 & 0.01112 & -0.00020 \\
0.00021 & -0.00020 & 0.00115 \\
\end{bmatrix}
\]

Also, the matrix

\[
A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}
\]

and

\[
b = 1.
\]

Assume that the risk-free return rate is 3\%.

Find the program of optimal risky portfolio and the equivalent quadratic programming problem.
The Optimal Risky Portfolio

Exercise

Consider the previous MVO example. The covariance matrix is given as

<table>
<thead>
<tr>
<th>Covariance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>0.02778</td>
<td>0.00387</td>
<td>0.00021</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.00387</td>
<td>0.01112</td>
<td>-0.00020</td>
</tr>
<tr>
<td>MM</td>
<td>0.00021</td>
<td>-0.00020</td>
<td>0.00115</td>
</tr>
</tbody>
</table>
Exercise

Consider the previous MVO example. The covariance matrix is given as

<table>
<thead>
<tr>
<th>Covariance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>0.02778</td>
<td>0.00387</td>
<td>0.00021</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.00387</td>
<td>0.01112</td>
<td>-0.00020</td>
</tr>
<tr>
<td>MM</td>
<td>0.00021</td>
<td>-0.00020</td>
<td>0.00115</td>
</tr>
</tbody>
</table>

And the geometric mean is given as
Exercise

Consider the previous MVO example. The covariance matrix is given as

<table>
<thead>
<tr>
<th>Covariance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>0.02778</td>
<td>0.00387</td>
<td>0.00021</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.00387</td>
<td>0.01112</td>
<td>-0.00020</td>
</tr>
<tr>
<td>MM</td>
<td>0.00021</td>
<td>-0.00020</td>
<td>0.00115</td>
</tr>
</tbody>
</table>

And the geometric mean is given as

<table>
<thead>
<tr>
<th>Geometric mean μ_i</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
<td></td>
</tr>
</tbody>
</table>
The Optimal Risky Portfolio

Exercise

Consider the previous MVO example. The covariance matrix is given as

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>0.02778</td>
<td>0.00387</td>
<td>0.00021</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.00387</td>
<td>0.01112</td>
<td>-0.00020</td>
</tr>
<tr>
<td>MM</td>
<td>0.00021</td>
<td>-0.00020</td>
<td>0.00115</td>
</tr>
</tbody>
</table>

And the geometric mean is given as

<table>
<thead>
<tr>
<th></th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric mean μ_i</td>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
</tr>
</tbody>
</table>

Also, the matrix $A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ and $b = 1$.
Consider the previous MVO example. The covariance matrix is given as

<table>
<thead>
<tr>
<th>Covariance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>0.02778</td>
<td>0.00387</td>
<td>0.00021</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.00387</td>
<td>0.01112</td>
<td>-0.00020</td>
</tr>
<tr>
<td>MM</td>
<td>0.00021</td>
<td>-0.00020</td>
<td>0.00115</td>
</tr>
</tbody>
</table>

And the geometric mean is given as

<table>
<thead>
<tr>
<th>Geometric mean μ_i</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
<td></td>
</tr>
</tbody>
</table>

Also, the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ and $b = 1$. Assume that the risk-free return rate is 3%.
Exercise

Consider the previous MVO example. The covariance matrix is given as

<table>
<thead>
<tr>
<th>Covariance</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocks</td>
<td>0.02778</td>
<td>0.00387</td>
<td>0.00021</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.00387</td>
<td>0.01112</td>
<td>-0.00020</td>
</tr>
<tr>
<td>MM</td>
<td>0.00021</td>
<td>-0.00020</td>
<td>0.00115</td>
</tr>
</tbody>
</table>

And the geometric mean is given as

<table>
<thead>
<tr>
<th>Geometric mean μ_i</th>
<th>Stocks</th>
<th>Bonds</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.73%</td>
<td>7.37%</td>
<td>6.27%</td>
<td></td>
</tr>
</tbody>
</table>

Also, the matrix $A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ and $b = 1$.

Assume that the risk-free return rate is 3%. Find the program of optimal risky portfolio and the equivalent quadratic programming problem.
The Optimal Risky Portfolio

\[\Sigma = \begin{bmatrix} 0 & 0.02778 & 0.00387 & 0.00021 \\ 0.02778 & 0.00387 & 0.01112 & -0.00020 \\ 0.00387 & 0.01112 & 0.00115 & 0.00021 \\ 0.00021 & -0.00020 & 0.00115 & 0.00021 \end{bmatrix} \]

\[\mu = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} \]

So the program of optimal risky portfolio is

\[\max 0.1073 \cdot x_S + 0.0737 \cdot x_B + 0.0627 \cdot x_M - 0.03 (0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M + 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2) ^{1/2} \]
The Optimal Risky Portfolio

Solution

\[
\begin{bmatrix}
0.02778 & 0 \\
0.00387 & 0.00021 \\
-0.00020 & -0.00020
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.1073 \\
0.0737 \\
0.0627
\end{bmatrix}
\]

So the program of optimal risky portfolio is

\[
\max 0.1073 \cdot x_S + 0.0737 \cdot x_B + 0.0627 \cdot x_M - 0.03 (0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M + 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2)
\]

\[
\frac{1}{2} x_S + x_B + x_M = 1
\]
The Optimal Risky Portfolio

Solution

\[\Sigma = \begin{bmatrix} 0.02778 & 0.00387 & 0.00021 \\ 0.00387 & 0.01112 & -0.00020 \\ 0.00021 & -0.00020 & 0.00115 \end{bmatrix} \]

\[\mu = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} \]
The Optimal Risky Portfolio

Solution

\[\Sigma = \begin{bmatrix} 0.02778 & 0.00387 & 0.00021 \\ 0.00387 & 0.01112 & -0.00020 \\ 0.00021 & -0.00020 & 0.00115 \end{bmatrix} \]

\[\mu = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} \]
The Optimal Risky Portfolio

Solution

\[\Sigma = \begin{bmatrix} 0.02778 & 0.00387 & 0.00021 \\ 0.00387 & 0.01112 & -0.00020 \\ 0.00021 & -0.00020 & 0.00115 \end{bmatrix} \]

\[\mu = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} \]

So the program of optimal risky portfolio is
The Optimal Risky Portfolio

Solution

\[\Sigma = \begin{bmatrix} 0.02778 & 0.00387 & 0.00021 \\ 0.00387 & 0.01112 & -0.00020 \\ 0.00021 & -0.00020 & 0.00115 \end{bmatrix} \]

\[\mu = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} \]

So the program of optimal risky portfolio is

\[
\begin{align*}
\text{max} & \quad 0.1073 \cdot x_S + 0.0737 \cdot x_B + 0.0627 \cdot x_M - 0.03 \\
& \frac{0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M + 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2}{1/2}
\end{align*}
\]
The Optimal Risky Portfolio

Solution

\[\Sigma = \begin{bmatrix}
0.02778 & 0.00387 & 0.00021 \\
0.00387 & 0.01112 & -0.00020 \\
0.00021 & -0.00020 & 0.00115 \\
\end{bmatrix} \]

\[\mu = \begin{bmatrix}
0.1073 \\
0.0737 \\
0.0627 \\
\end{bmatrix} \]

So the program of optimal risky portfolio is

\[
\max \quad \frac{0.1073 \cdot x_S + 0.0737 \cdot x_B + 0.0627 \cdot x_M - 0.03}{\left(0.02778 \cdot x_S^2 + 2 \cdot 0.00387 \cdot x_S \cdot x_B + 2 \cdot 0.00021 \cdot x_S \cdot x_M + 0.01112 \cdot x_B^2 - 2 \cdot 0.00020 \cdot x_B \cdot x_M + 0.00115 \cdot x_M^2 \right)^{1/2}} \\
x_S + x_B + x_M = 1.
\]
The Optimal Risky Portfolio

\[
\mu - r_f \cdot e = \begin{pmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{pmatrix} - \begin{pmatrix} 0.03 \\ 0.03 \\ 0.03 \end{pmatrix} = \begin{pmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{pmatrix}
\]

We can find \(\kappa \) and \(y \) as below.

\[
\kappa = 1 \begin{pmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{pmatrix} \cdot \begin{pmatrix} x_S \\ x_B \\ x_M \end{pmatrix} = 1 \cdot 0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M
\]

\[
y = \begin{pmatrix} y_S \\ y_B \\ y_M \end{pmatrix} = \begin{pmatrix} x_S \\ 0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M \end{pmatrix}
\]
The Optimal Risky Portfolio

Solution

\[\mu - r_f \cdot e = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} - \begin{bmatrix} 0.03 \\ 0.03 \\ 0.03 \end{bmatrix} = \begin{bmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{bmatrix} \]

We can find \(\kappa \) and \(y \) as below.

\[
\kappa = 1 \left(\begin{bmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{bmatrix} \right) \cdot \begin{bmatrix} x_S \\ x_B \\ x_M \end{bmatrix} = 1 \cdot 0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M
\]

\[
y = \begin{bmatrix} y_S \\ y_B \\ y_M \end{bmatrix} = \begin{bmatrix} 0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M \\ 0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M \\ 0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M \end{bmatrix}
\]
The Optimal Risky Portfolio

Solution

\[
\mu - r_f \cdot e = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} - \begin{bmatrix} 0.03 \\ 0.03 \\ 0.03 \end{bmatrix}
\]
The Optimal Risky Portfolio

Solution

\[\mu - r_f \cdot e = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} - \begin{bmatrix} 0.03 \\ 0.03 \\ 0.03 \end{bmatrix} = \begin{bmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{bmatrix} \]
The Optimal Risky Portfolio

Solution

\[
\mu - r_f \cdot e = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} - \begin{bmatrix} 0.03 \\ 0.03 \\ 0.03 \end{bmatrix} = \begin{bmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{bmatrix}
\]

We can find \(\kappa \) and \(y \) as below.
The Optimal Risky Portfolio

Solution

\[
\mu - r_f \cdot e = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} - \begin{bmatrix} 0.03 \\ 0.03 \end{bmatrix} = \begin{bmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{bmatrix}
\]

We can find \(\kappa \) and \(y \) as below.

\[
\kappa = \frac{1}{\left(\begin{bmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{bmatrix} \right)^T \begin{bmatrix} x_S \\ x_B \\ x_M \end{bmatrix}}
\]
The Optimal Risky Portfolio

Solution

\[
\mu - r_f \cdot e = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} - \begin{bmatrix} 0.03 \\ 0.03 \\ 0.03 \end{bmatrix} = \begin{bmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{bmatrix}
\]

We can find \(\kappa \) and \(y \) as below.

\[
\kappa = \frac{1}{\begin{bmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{bmatrix}^T \begin{bmatrix} x_S \\ x_B \\ x_M \end{bmatrix}} = \frac{1}{0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M}
\]
The Optimal Risky Portfolio

Solution

\[
\mu - r_f \cdot e = \begin{bmatrix} 0.1073 \\ 0.0737 \\ 0.0627 \end{bmatrix} - \begin{bmatrix} 0.03 \\ 0.03 \\ 0.03 \end{bmatrix} = \begin{bmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{bmatrix}
\]

We can find \(\kappa \) and \(y \) as below.

\[
\kappa = \frac{1}{\begin{bmatrix} 0.0773 \\ 0.0437 \\ 0.0327 \end{bmatrix}^T \begin{bmatrix} x_S \\ x_B \\ x_M \end{bmatrix}^*} = \frac{1}{0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M}
\]

\[
y = \begin{bmatrix} y_S \\ y_B \\ y_M \end{bmatrix}
\]
The Optimal Risky Portfolio

Solution

\[
\begin{align*}
\mu - r_f \cdot e & =
\begin{bmatrix}
0.1073 \\
0.0737 \\
0.0627
\end{bmatrix}
-
\begin{bmatrix}
0.03 \\
0.03 \\
0.03
\end{bmatrix}
=
\begin{bmatrix}
0.0773 \\
0.0437 \\
0.0327
\end{bmatrix}
\end{align*}
\]

We can find \(\kappa \) and \(y \) as below.

\[
\kappa = \frac{1}{\begin{bmatrix}
0.0773 \\
0.0437 \\
0.0327
\end{bmatrix}^T \cdot \begin{bmatrix}
x_S \\
x_B \\
x_M
\end{bmatrix}} = \frac{1}{0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M}
\]

\[
y = \begin{bmatrix}
y_S \\
y_B \\
y_M
\end{bmatrix}
= \begin{bmatrix}
x_S \\
x_B \\
x_M
\end{bmatrix}
\begin{bmatrix}
x_S \\
x_B \\
x_M
\end{bmatrix}
=
\begin{bmatrix}
\frac{x_S}{0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M} \\
\frac{x_B}{0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M} \\
\frac{x_M}{0.0773 \cdot x_S + 0.0437 \cdot x_B + 0.0327 \cdot x_M}
\end{bmatrix}
\]
Mean-Variance Optimization
Brief mention of other MVO models
Maximizing the Sharpe Ratio
More Topics not covered
References

The Optimal Risky Portfolio

And the equivalent quadratic programming problem is

$$\begin{align*}
\text{min } & \quad 0.02778 \cdot y^2_S + 2 \cdot 0.00387 \cdot y_S \cdot y_B + 2 \cdot 0.00021 \cdot y_S \cdot y_M + 0.01112 \cdot y^2_B - 2 \cdot 0.00020 \cdot y_B \cdot y_M + 0.00115 \cdot y^2_M - 0.0773 \cdot y_S + 0.0437 \cdot y_B + 0.0327 \cdot y_M - 1
\end{align*}$$

$$y_S + y_B + y_M - \kappa = 0$$

(Z. Donovan and M. Xu)
The Optimal Risky Portfolio

Solution

And the equivalent quadratic programming problem is

\[
\begin{align*}
 \text{min} & \quad 0.02778 \cdot y^2_S + 2 \cdot 0.00387 \cdot y_S \cdot y_B + 2 \cdot 0.00021 \cdot y_S \cdot y_M + 0.01112 \cdot y_B^2 \\
 & - 2 \cdot 0.00020 \cdot y_B \cdot y_M + 0.00115 \cdot y_M^2 \\
 & - y_S \kappa - y_B \kappa - y_M \kappa = 0.0773 \cdot y_S + 0.0437 \cdot y_B + 0.0327 \cdot y_M = 1 \quad (or y_S + y_B + y_M - \kappa = 0) \\
\end{align*}
\]
Solution
And the equivalent quadratic programming problem is
The Optimal Risky Portfolio

Solution

And the equivalent quadratic programming problem is

\[
\min \quad 0.02778 \cdot y_S^2 + 2 \cdot 0.00387 \cdot y_S \cdot y_B + 2 \cdot 0.00021 \cdot y_S \cdot y_M \\
+ 0.01112 \cdot y_B^2 - 2 \cdot 0.00020 \cdot y_B \cdot y_M + 0.00115 \cdot y_M^2
\]
The Optimal Risky Portfolio

Solution

And the equivalent quadratic programming problem is

\[
\begin{align*}
\text{min} & \quad 0.02778 \cdot y_S^2 + 2 \cdot 0.00387 \cdot y_S \cdot y_B + 2 \cdot 0.00021 \cdot y_S \cdot y_M \\
& \quad + 0.01112 \cdot y_B^2 - 2 \cdot 0.00020 \cdot y_B \cdot y_M + 0.00115 \cdot y_M^2 \\
\frac{y_S}{\kappa} + \frac{y_B}{\kappa} + \frac{y_M}{\kappa} & = 1 \quad (\text{or} \ y_S + y_B + y_M - \kappa = 0)
\end{align*}
\]
The Optimal Risky Portfolio

Solution

And the equivalent quadratic programming problem is

\[
\begin{align*}
\min & \quad 0.02778 \cdot y_S^2 + 2 \cdot 0.00387 \cdot y_S \cdot y_B + 2 \cdot 0.00021 \cdot y_S \cdot y_M \\
& \quad + 0.01112 \cdot y_B^2 - 2 \cdot 0.00020 \cdot y_B \cdot y_M + 0.00115 \cdot y_M^2 \\
& \quad \frac{y_S}{\kappa} + \frac{y_B}{\kappa} + \frac{y_M}{\kappa} = 1 \quad (\text{or } y_S + y_B + y_M - \kappa = 0) \\
& \quad 0.0773 \cdot y_S + 0.0437 \cdot y_B + 0.0327 \cdot y_M = 1
\end{align*}
\]
The Optimal Risky Portfolio

Solution

And the equivalent quadratic programming problem is

\[
\begin{align*}
\min & \quad 0.02778 \cdot y_S^2 + 2 \cdot 0.00387 \cdot y_S \cdot y_B + 2 \cdot 0.00021 \cdot y_S \cdot y_M \\
& \quad + 0.01112 \cdot y_B^2 - 2 \cdot 0.00020 \cdot y_B \cdot y_M + 0.00115 \cdot y_M^2 \\
\frac{y_S}{\kappa} + \frac{y_B}{\kappa} + \frac{y_M}{\kappa} &= 1 \quad \text{(or } y_S + y_B + y_M - \kappa = 0) \\
0.0773 \cdot y_S + 0.0437 \cdot y_B + 0.0327 \cdot y_M &= 1 \\
y, \kappa &\geq 0
\end{align*}
\]
Topics not covered

- Returns-Based Style Analysis
Topics not covered

- Returns-Based Style Analysis
- Recovering Risk-Neutral Probabilities from Options Prices
References

References

Z. Donovan and M. Xu, Optimization Methods in Finance
References

References

2. Website: http://www.investopedia.com/terms/s/sharperatio.asp
References

2. Website: http://www.investopedia.com/terms/s/sharperatio.asp

3. Website: http://mirceatrandafir.com/teaching/econ435/
References

