Combinatorial Optimization
CS 491G
Shortest Path Problem
Babak Khorrami

Shortest Path problems are ubiquitous in real-world applications; both in their own right as well as in the modeling of certain optimization problems. There are a number of versions of the Shortest Path problem, viz. Single-Source, All-Pairs, etc. In this course, we shall focus on the Single Source Shortest Path (SSSP) problem only.

Digraph: A directed graph or digraph G consists of disjoint finite sets $V = V(G)$ of nodes and $E = E(G)$ of arcs and functions associating with each $e \in E$ a tail $t(e) \in V$ and a head $h(e) \in V$. In other words, each arc has two end nodes, and a direction from one to the other.

<table>
<thead>
<tr>
<th>Shortest Path Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A digraph G, a node $r \in V$, and a real cost vector $(c_e \in E)$.</td>
</tr>
<tr>
<td>Objective: To find, for each $v \in V$, a dipath from r to v of least cost (if one exists)</td>
</tr>
</tbody>
</table>

Although the problem specifies real costs $(c_e \in E)$, for practical purposes, we can assume that the costs are rational or even integral!

Consider the following example:

Example 1. Find the shortest path from source node r to a in the following network,
There is no shortest path from \(r \) to \(a \).

Reason: digraph depicted in Figure 1 contains negative cost cycle, the cycle between \(r \) and \(b \). Instead of going from \(r \) to \(a \) directly, one can travel to \(b \) and then come back to \(r \) and make the cost -4 plus 3 to go to \(a \). One can keep traveling from \(r \) to \(b \) and lowering the cost in each trip. Hence the shortest path problem is not defined in the presence of negative cost cycles.

Shortest Path Structure: The structure containing the shortest path from the source node \(r \) to every other node in the network is called the shortest path structure.

Observation: Shortest path structure should be a tree.

Reason: If there is a cycle in the shortest path structure between nodes \(a \) and \(b \), by definition, should have a positive cost (weight). One can remove that cycle and still reach \(b \) from \(a \), at cost which is at most the original cost!.

![Figure 2.](image)

Negative cost cycle can occur in a number of applications. One application is the *currency arbitrage problem*.

Statement of the problem:

We are given \(m \) currencies \(c_1, c_2, \ldots, c_m \) and the matrix \(R_{ij} \) of pairwise conversion rates, where \(r_{ij} \) represents the number of units of \(c_j \) that one can get from 1 unit of \(c_i \). The question that we face is the following: Can we start with \(k \) units of some currency, say \(c_i \), go through a series of conversions to other currencies and finally return to currency \(c_i \), having more than \(k \) units of \(c_i \)? The phenomenon which makes such a trip possible is called arbitrage. The following relationship holds for all currencies:

\[
r_{ik} = r_{ij} r_{jk}.
\]
We construct a complete directed graph, having nodes \(c_1, c_2, \ldots, c_m \) and weight \(-\log r_y\) on the edge between \(c_i \) and \(c_j \).

![Figure 3]

Claim: There exists arbitrage if and only if there exists a negative weight cycle in the above graph.

Proof: Exercise!

Feasible Potentials:

A vector \(\tilde{y} \) is given, \(\tilde{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \) and it estimates the shortest paths from \(r \) to every other vertex in the network. We call \(\tilde{y} \) a *feasible potential* if it satisfies the following conditions:

1. \(y_r = 0 \)
2. \(y_v + c_{vw} \geq y_w \), for all \(vw \in E \)

Obviously the shortest path from source \(r \) to itself is zero. The second condition is the basic idea behind all methods for solving the shortest path problems. Suppose there exists a dipath from \(r \) to \(v \) of cost \(y_v \) for each \(v \in V \) and we find an arc \(vw \in E \) satisfying
\(y_v + c_{vw} < y_w \). One can improve \(y_w \), by adding the \(vw \) to the dipath and going from \(r \) to \(w \) through \(v \) and the cost of the dipath from \(r \) to \(w \) would be \(y_v + c_{vw} = y_w \).
If an assignment \(y' \) is given in which \(y_r = \alpha \neq 0 \) and \(y_v + c_{vw} \geq y_w \), one can obtain the feasible potential by subtracting \(y_r \) from all \(y_v \)'s, \(v \in V \). \(y' = \begin{bmatrix} y_1 - y_r \\ y_2 - y_r \\ \vdots \\ y_n - y_r \end{bmatrix} \). Hence the important condition is \(y_v + c_{vw} \geq y_w \). The following figure shows the notion of appending arc \(vw \) to the dipath between \(r \) and \(w \) and improving the \(y_w \).

(a) \(y_v + c_{vw} < y_w \)

(b) \(y_v + c_{vw} = y_w \)

Figure 4.

Lemma 1:

Let \(y' \) be a feasible potential and let \(P \) be a dipath from \(r \) to \(v \). Then, \(c(P) \geq y_v \) (i.e. cost of path \(P \) \(\geq y_v \)).

Proof: Let \(v_0, e_1, v_1, e_2, \ldots, e_k, v_k \), where \(v_0 = r \) and \(v_k = v \) be the dipath \(P \). Then

\[
c(P) = \sum_{e_j \in P} c(e_j) \geq \sum_{i=1}^{k} (y_{v_i} - y_{v_{i-1}}) = y_{v_k} - y_{v_0} = y_v.
\]

Subpaths of shortest paths are shortest paths, for instance \(v \) is in the least cost dipath \(P \) from \(r \) to \(w \), then \(P \) splits into two dipaths, \(P_1 \) from \(r \) to \(v \) and \(P_2 \) from \(v \) to \(w \). Obviously if \(P_1 \) is not the least cost dipath from \(r \) to \(v \), one can replace it by a better dipath and at the same time obtain a better dipath from \(r \) to \(w \).

Ford's Procedure:
Lemma 1 provides a stopping condition for the shortest path problem. Suppose there exists a feasible potential y and for each $v \in V$ there is a y_v, which is the least cost path from r to v. If there exists a vertex w and an arc vw, which violate $y_v + c_{vw} \geq y_w$, we replace y_w with $y_v + c_{vw}$. This procedure can be initialized by allowing $y_r = 0$ and $(y_v = \infty)$ for $v \in V$ and $v \neq r$. The least cost dipath from r to w, which contains arc vw, will satisfy $y_v + c_{vw} = y_w$. This dipath contains the least cost dipath from r to v plus arc vw. So knowing the last arc information at each node allows us to trace the least cost dipath from r. To do this, we need to keep the predecessor, $p(w)$, of each node $w \in V$, and set $p(w)$ to v, whenever the least cost dipath to w, y_w is set to be $y_v + c_{vw} = y_w$.

An arc vw violating $y_v + c_{vw} \geq y_w$ is called incorrect. To correct vw, one needs to set $y_v + c_{vw} = y_w$ and $p(w) = v$.

To start Ford’s procedure one needs to initialize y, p, which means to set $y_r = 0$, $p(r) = 0$, $y_v = \infty$ and $p(v) = -1$ for $v \in V$ and $v \neq r$. $p(v) = -1$ means that the predecessor of v is still not defined.

Ford’s Procedure

```plaintext
Initialize y, p;
While y is not a feasible potential
    Find an incorrect arc vw and correct it.
```

Example: Consider the following network, apply the Ford’s Procedure and obtain the shortest paths to each node.
Initialize \(y, p ; \)

\[
y = \begin{bmatrix} y_r \\ y_a \\ y_b \\ y_c \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ \infty \\ \infty \end{bmatrix}, \quad p(r) = 0, \quad p(a) = p(b) = p(c) = -1.
\]

1) \(vw = ra, \quad y = \begin{bmatrix} y_r \\ y_a \\ y_b \\ y_c \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ \infty \\ \infty \end{bmatrix} \begin{bmatrix} p(r) \\ p(a) \\ p(b) \\ p(c) \end{bmatrix} = \begin{bmatrix} 0 \\ r \\ -1 \\ -1 \end{bmatrix} \]

2) \(vw = rb, \quad y = \begin{bmatrix} y_r \\ y_a \\ y_b \\ y_c \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ -3 \\ \infty \end{bmatrix} \begin{bmatrix} p(r) \\ p(a) \\ p(b) \\ p(c) \end{bmatrix} = \begin{bmatrix} 0 \\ r \\ r \\ -1 \end{bmatrix} \]
3) \(vw = ba, \ y = \begin{bmatrix} y_x \\ y_a \\ y_b \\ y_c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -3 \\ \infty \end{bmatrix}, \ \begin{bmatrix} p(r) \\ p(a) \\ p(b) \\ p(c) \end{bmatrix} = \begin{bmatrix} 0 \\ b \\ r \\ -1 \end{bmatrix} \)

4) \(vw = ac, \ y = \begin{bmatrix} y_x \\ y_a \\ y_b \\ y_c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -3 \\ -3 \end{bmatrix}, \ \begin{bmatrix} p(r) \\ p(a) \\ p(b) \\ p(c) \end{bmatrix} = \begin{bmatrix} 0 \\ b \\ r \\ a \end{bmatrix} \)

If we consider other arcs, \(cb, bc, ab, \) we will not find and incorrect arc so the shortest path structure is:
Lemma 2:

If \((G,c)\) has no negative-cost cycle, then at any stage of the execution of Ford’s Procedure, we have:

(i) If \(y_v \neq \infty\), then it is the cost of a simple dipath from \(r\) to \(v\).

(ii) If \(p(v) \neq -1\), then \(p\) defines a simple dipath from \(r\) to \(v\) of cost at most \(y_v\).

Proof:

Let \(y'_v\) be the value of \(y_v\), which is the cost of a dipath, at \(j\)th iteration of Ford’s procedure. Assume that the dipath is not simple, hence there is a sequence of nodes, \(v_0, v_1, v_2, \ldots, v_k = v_0\) and iteration numbers \(q_0 < q_1 < q_2 < \ldots < q_k\) such that:

\[
y_{v_{i-1}}^{q_{i-1}} + c(v_{i-1}, v_i) = y_{v_i}^{q_i}, \quad 1 \leq i \leq k.
\]
The cost of the resulting dicircuit is:
\[\sum c(v_{i-1}, v_i) = \sum (y_{v_i} - y_{v_{i-1}}) = y_{v_k} - y_{v_0}. \]
one should consider that the value of \(y_v \) at the last iteration, \(q_k \), has been lowered and
\[y_{v_i} - y_{v_0} < 0. \] The dipath has a negative cost which is a contradiction and (i) is proved.

To prove (ii), consider that \(p \) defines a closed path from \(r \) to \(v \). there is a sequence,
\(v_0, v_1, v_2, \ldots, v_k = v_0 \) and \(p(v_i) = v_{i-1} \). Since \(y_v - y_{p(v)} \geq c(p(v), v) \), the cost of the resulting
closed dipath is less than or equal to zero. And consider a case in which the predecessor
has been most recently assigned, which means the value of \(y_{p(v)} \) has been assigned and is
lowered. Then the cost is strictly less than zero, which is a contradiction, negative cost
cycle.

Consider the dipath \(P, v_0, e_1, v_1, e_2, v_2, \ldots, e_k, v_k = v, v_0 = r \) and \(p(v_i) = v_{i-1} \) for \(1 \leq i \leq k \).
The cost of this dipath: \(c(P) \leq \sum y_{v_i} - y_{v_{i-1}} = y_v - y_r \). The cost of this dipath is
at most \(y_v \) and that’s what we need.