A Distributed Dispatching Scheme for Parametric Schedulers

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV

ksmani@csee.wvu.edu

Abstract

The problem of determining the parametric schedulability of a set of jobs has received quite a bit of atten-
tion. Parametric dispatching is the functional counterpart of the schedulability problem i.e. the dispatching
problem is concerned with the determination of the actual start times of tasks on the time line. Existing
approaches to this problem have been along sequential lines, through the use of stored function lists. Sequen-
tial approaches through function lists suffer from three major drawbacks viz. extra space requirements, O(n)
dispatching time and the Loss of Dispatchability phenomenon. In this paper, we present a novel distributed
scheme that achieves parametric dispatching in O(1) time, under reasonable assumptions. The scheme obviates
the necessity for storing function lists and simultaneously eliminates Loss of Dispatchability.

1 Introduction

Real-Time systems are confronted by two major issues, that are not addressed by traditional scheduling models,
viz. Parameter variability and the presence of complex relationships constraining the execution of jobs. Parametric
scheduling of jobs in the context of hard real-time systems is a well-studied problem [GPS95, Cho97, Cho00, SA00a,
Sub00a]. This scheduling paradigm is applicable in situations, where static scheduling techniques result in an
unacceptable Loss of Schedulability [GPS95].

In [GPS95] and [Cho00], dispatching schemes based on function evaluation were presented. These schemes
could result in the phenomenon known as Loss of Dispatchability (§3). Our contributions in this paper are
twofold:

(a) Providing a Distributed scheme for parametric dispatching; our scheme eliminates Loss of Dispatchability,
under reasonable assumptions, while simultaneously extending existing schemes to distributed environments;

(b) Decreasing the connectivity requirements of the scheme in (a), at a small loss in efficiency.
Our scheme can be interpreted in the following two ways:
1. Tt is the first such scheme for Distributed Parametric systems,

2. It provides a genuine tradeoff between time and resources i.e. if meeting the imposed constraints is
paramount and should be achieved even at the expense of increased resource requirements (in our case,
processors), then our scheme permits this. This happens to be case in many practical real-time systems

[SR88, SP92, SSRBIS].

The rest of this paper is organized as follows: Section §2 states the Parametric Dispatching problem, while
Section §3 describes the motivation for our work. Related approaches to this problem are detailed in Section §4.
We propose our architecture in Section §5 and provide an algorithm for distributed dispatching in §6. A parallel
implementation of our distributed dispatching scheme is provided in §8. We summarize our contributions in §9,
providing pointers for future research.

2 Statement of Problem
2.1 Job Model

Assume an infinite time-axis divided into windows of length L, starting at time ¢ = 0. These windows are called
periods or scheduling windows. There is a set of non-preemptive, ordered jobs, J = {Ji, Ja, ..., J,} that execute
in each scheduling window.

2.2 Constraint Model
The constraints on the jobs are described by System (1):

A5, <b, €€k, (1)
where,
e A is an m X 2.n rational matrix,
e E is an arbitrary convex set;

wy

= [s1, S2, ..., Sn) 18 the start time vector of the jobs, and

oL

e €= [e1,ea,...,¢,] € E is the execution time vector of the jobs

We assume that A is a network unimodular matriz. Consequently, the constraint system can be represented as
a network graph. The dual graph representation of the constraint system is given in Appendix §A. A similar
construction for constraint networks is also given in [DMP91], however our construction is different in that the
edges have non-constant weights. We also remark that the Parametric Scheduling problem is not related in any
way to the problem of Parametric Shortest Paths discussed in [Car84, YT091] or the parameterized mathematical
programming techniques discussed in [Jen90, Wil67]. In both cases, the cost vector is parameterized by a single
variable; in our case, the edge-weights could be of the form ey — es, i.e. a function of more than one variable.

2.3 Query Model

Suppose that job J, has to be dispatched. We assume that the dispatcher has access to the start times
{51, 52,...,54—1} and execution times {e1, €2,...,e4_1} of the jobs {J1, Ja, ..., Jo—1}-

Since the actual execution times of the previously executed jobs are required, the execution time domain must
perforce be an axis-parallel hyper-rectangle (aph). For the rest of this paper, we assume that the domain E in
System (1) is an aph represented by:

Y = [ll,ul] X [lz,Ug] X [ln,un] (2)

Definition: 2.1 A parametric schedule of an ordered set of jobs, in a scheduling window, is a vector § =
[$1,82,.-.,8n], where s1 is a rational number and each s;,i # 1 is a function of the start time and execution
time variables of jobs sequenced prior to job J;, i.e. {s1,e1,82,€2,...,8i_1,€;_1}. Further, this vector should
satisfy the constraint system (1) for all execution time vectors € € Y.

The combination of the Job-model, Constraint model and the Query model constitute a schedulability speci-
fication for a real-time scheduling problem within the E-T-C scheduling framework [Sub00a].
The discussion above directs us to the following formulation of the parametric schedulability query:

351 Veq € [, u1] 35y Vey € [ly.ug), .. .35, Ve, € [, un] A5, €]<b ? (3)

In this paper, we are concerned with the dispatching problem i.e. How to compute the online dispatch times
of jobs assuming that query (3) has been decided in the affirmative. Note that this problem is the functional
counterpart of the schedulability query. (Also see [Pap94]).

2.4 Representation of Input and Output

In the E-T-C scheduling framework, we assume that all numerical values are represented using © bits; © is called
the resolution level of the framework. Thus the numerical values are represented by an integer model, in that
they are ordered and every value (except the smallest and largest) has a definite successor and predecessor. For
the rest of this paper, the term rational number is used to mean the integer representation of that number using
at most O bits.

3 Motivation

The motivation for parametric scheduling techniques has been provided at depth in [Sub00a, GPS95].
Ezample (1): Consider the two job system J = {Jy, Ja}, with start times {s1, s2}, execution times in the set
{(e1 €)[2,4] x (e2 €)[4, 5]} and the following set of constraints:

e Job Ji must finish before job Jy commences; i.e. s1+ €1 < sa;
o Job Jy must commence within 1 unit of J1 finishing; i.e. so <s1+e1+1;

The above constraint system has no static schedule i.e. there is no pair of rational numbers that can be assigned
to [s1, s2] to guarantee the inviolability of the constraint system. (To see this, observe that the static polytope
generated by the constraint system is empty [SA00b].)

In [GPS95] it is shown that the schedulability query for an instance of <aphl|stan|param> can be decided in
O(n?) time. (In the E-T-C Scheduling framework, an instance of a scheduling problem is described by < «|3]y >
triplet, where

1. « is the execution time domain, in this case, an axis-parallel hyper-rectangle,
2. (3 represents the nature of constraints, in this case, network, unimodular, and
3. 7 represents the nature of the schedulability query, in this case, parametric.

For details on the E-T-C scheduling framework, refer [Sub00a].)

[GPS95] and [Cho97] provide dispatching schemes for this problem that perform parametric function evaluation
online. The problem with online evaluation is that it could take as much as O(n) time in the worst-case.
A dispatching scheme with a high evaluation overhead may cause constraint violation, even if the job set is
parametrically schedulable.

Consider an instance of <aph|stan|param> which has been declared parametrically schedulable by the schedul-
ing algorithm in [Sak94]. Let J, (@ > 9) be a job in the job-set, with execution time e, (€ [l4, #4]). Assume that
the parametric dispatch functions in Example (2) constrain the execution of J,.

Ezample (2):

max(23,s1+e1 + 8,52+ 7,53 + e3) < s <min(41,s1 + 32,57+ 7,59 — 3) (4)

Suppose that at the time of dispatch of J,, all the variables in System (4) are known and that [23,25] is
the interval in which J, can execute safely. This interval is called the safety interval for J,. However, if job
Ja—1 completes at time ¢ = 22 and the time taken to evaluate the functions in System (4) exceeds 3 units, then
J, cannot be dispatched. This phenomenon in which a job cannot be dispatched, although it is parametrically
schedulable, is termed as Loss of dispatchability.

A second motivating factor is the existence of Distributed Applications [Lyn96, TSK92, Mul90]. If the jobs
comprising the Job Model in §2.1 are part of a distributed application in that each of them executes on a different
processor, then existing sequential dispatching schemes are no longer applicable. In fact, the theory underlying
sequential schemes requires that all jobs be executed on the same processor. In Section §8, we discuss a parallel
implementation of our distributed scheme that succeeds in achieving essentially the same performance as the
distributed version.

A third factor is the fault-tolerance provided by distributed schemes. Fault-tolerance is an important aspect of
real-time system design [Bur, KV90]. While analyzing fault-tolerance or failure models is not the basic thrust of
this paper, we note that our distributed scheme enhances dependability by increased resource redundancy. Using
the definitions provided in [KV90], we observe that the redundancy provided by our scheme is active in that
computations can be interleaved even when all processors are operational (See Section §5).

4 Related Work

Parametric Scheduling was introduced in [Sak94] as a technique to alleviate the inflexibility of Static Scheduling
in hard, real-time tasks. In [GPS95], a sequential parametric dispatching scheme was proposed for the determin-
ing the start times of tasks online. Their scheme results in polynomial time dispatching algorithms when the
constraints are “standard” i.e. network, unimodular [SA00a]. Their scheme is strictly sequential and consists of
storing function lists of dispatch functions. These dispatch functions are then evaluated online and the dispatch
interval for the current task is determined. Thus, in the worst-case, the system may suffer from the Loss of
Dispatchability phenomenon discussed in §3. [Cho97] and [Cho00] extend the scheme in [GPS95] to include tasks
with inter-period constraints. Their algorithms are once again sequential and unrealistic assumptions are made
regarding the time required to compute dispatch times.

In [Sub00c], we showed that the determining the schedulability of arbitrary constraint sets is in PSPACE, while
in [Sub00b], it is shown that the dispatching problem is Turing reducible to the schedulability problem.

This paper represents the first attempt to approach the dispatching problem for standard constraints from a
distributed system perspective. We establish that the dispatching problem can be solved in O(1) time with O(n)
processors. In fact, all that we really need are adders and comparators and thus the processor cost is not really

high.

5 Proposed Architecture

Centr al
Controller C
//1 \\\d rectional |inks
O @) O @) O @) o -0
G G G

Satellite Controllers

Each satellite controller is connected to
every other satellite controller through
addi tional bidirectional Iinks.

Figure 1: The Distributed Architecture for Parametric Scheduling

Figure (1) indicates the proposed architecture. There is a central controller C' on which all the jobs in the
job-set J in Section §2.1 execute. Bi-directional links are used to connect the central controller to a number of
satellite controllers {C1, Cy, ..., Ch}. The job of the satellite controller C; is to compute the correct interval in
which job J; can execute. The C;,i = 1,2,...,n are themselves connected together as a complete graph, through
the use of bidirectional links.

The graph representation of the constraint system is stored in each of the satellite controllers, so that each
controller is aware of the exact dependencies on the other jobs.

Definition: 5.1 Communication cost - The time taken to transmit © bits of information across a link in one
direction.

We assume a communication cost ¢; between the links i.e. the time taken to transmit © bits of information
in one direction is ¢;. Using the nomenclature in [Lyn96], our architecture is an asynchronous network model,
without any shared memory.

6 Distributed Dispatching Algorithm and Analysis

In the discussion below, the term processor is used to describe a satellite controller. We first consider the case in
which the individual jobs are themselves executed on the central controller. We provide a distributed dispatching
scheme, with one processor per job, that performs dispatching in O(1) time. Assuming that the safety interval of
every job is larger than the time required to make a constant number of comparisons, our scheme eliminates the
Loss of dispatchability problem.

We assign one processor to each job; each processor is charged with the task of dispatching the job assigned
to it. The goal is to determine the dispatch time of the current job (J,), assuming that all jobs sequenced prior
to it have been executed.

Let us study the execution of the Scheduling algorithm in [GPS95] on this problem instance at the juncture,
when e, has been eliminated. At this point, the constraints imposed on the execution of J, by the jobs sequenced
ahead of it have been resolved either into absolute constraints on s,, or into redundant edges which are eliminated
from the graph. The absolute constraints on s, provide us with a tentative safety interval during which J, can
execute and this interval is stored in the processor responsible for the dispatching of .J,.

When a job sequenced before J,, say Jy (b < a), completes, its execution time e, and start time s, are
immediately propagated to task .J, along the appropriate forward edges. This propagation is carried out as a
broadcast from the central controller to all satellite controllers. The time spent in the broadcast is clearly 2.¢;,
since 2.0 bits are transmitted across the links to the satellite controllers. Consequently the relative constraints
between .J, and .J, are transformed into absolute constraints on s,. For instance, suppose that s = 0 and e, = 2;
accordingly the relative constraint s, + e, + 4 < s4, becomes the absolute constraint s, > 6.

Each resultant absolute constraint is then compared with the safety interval of J,; the comparison results either
in a narrowing of the interval (if the new constraint is non-redundant), or in the interval remaining unaltered (
if the new constraint is redundant).

The above discussion is formalized as Algorithm (6.1).

Function ONLINE-DISPATCHER-FOR-J, (G =<V, E >)
1: Let [i1, 2], (11 < i2) denote the current safety interval of J,.
2: for (j=1toa—1) in parallel do
3: When J; finishes execution, use the value of e; to relax the edge(s) s; ~ s, into absolute constraints on
Sa-

4: Compare each absolute constraint with the existing safety interval for J,
5. if (new constraint is non-redundant) then

6: Update Safety Interval

7. else

8: Leave the Safety Interval unchanged

9: end if

10: end for

Algorithm 6.1: Online Dispatcher for <aph|stan|param>

Since there are at most 4 forward edges from any vertex s;(j < a), to s,, Algorithm (6.1) takes at most O(1)
time, for each job sequenced before it. We now calculate the total time required to compute the dispatch interval of
job J,. Note that only the time taken after Job J,_1 has executed is relevant, since the other steps are carried out
in parallel. Accordingly, relaxing 4 edges takes at most 4 additions and comparisons, i.e. 4(Ty44 + Teomp), Where
Tyqa and Teomp are the times taken to perform an addition and a comparision respectively. In addition, there is

the cost of broadcasting (sq—1,€q—1) which is 2.¢;. Thus the total time taken is Tior = 2.¢; + 4.(Tadd + Teomp)-
Assuming that the time taken to process the edges, i.e. T;,; is small, compared to the safety interval of a job, it
is clear that Loss of Dispatchability is eliminated.

Definition: 6.1 A dispatching scheme D is said to be optimal under the following conditions:
1. If an arbitrary scheme can dispatch the given set of jobs, then D can dispatch the same set of jobs,

2. If D cannot dispatch a set of jobs, then no dispatching scheme can dispatch the said set.
Lemma: 6.1 The dispatching scheme represented by Algorithm (6.1) is optimal to within a constant factor.

Proof: Clearly, we cannot hope to do better than O(1) in dispatching. Our bounds are derived in terms of
generic constants ¢, Taqq and Toomp. The exact values of these constants are dependent upon the type of machine
chosen to perform the dispatching. The Lemma follows. O

Algorithm (6.1) and the accompanying analysis are valid when all jobs have to execute on the same processor
(i.e. the central controller.) In this case, only the bidirectional links shown in Figure (1) are required; the
complete graph links are not required.

Let us now consider the case, where the jobs are distributed i.e. they are required to execute on different
processors. In this case the satellite controllers are no longer simple adder/comparator units, but full-fledged
processors. However, the difference lies only in the communication of the start and execution times. Now, each
satellite controller has to perform the broadcast of the (sq,€4) pair to all other satellite controllers. Once again
the time taken is Tior = 2.¢; + 4.(Tadd + Teomp)-

Observation: 6.1 The requirements for the existence of links between each pair of satellite controllers can be
obviated by the following technique: Instead of broadcasting the (s;,e; to every other satellite controller, each
controller broadcasts its data to the central controller, which in turn broadcasts the data to every other controller.
Consequently, the update time for job J, is now 2.c; + 4.(Tadd + Teomp) + 2.¢1 i.e. there is a slight decrease in
efficiency.

7 Two axes of time

A useful way of looking at the distributed dispatching scheme is through Figure (2).

Conput ation that can
be carried out in
parall el

Real - Tine as process executes on -
Central Controller

Figure 2: Interleaving Computations

Constraints on the job-set J are specified in real-time; when a decision algorithm (such as the one in [Sub00a]
or [GPSY95]) decides that a given constraint system is parametrically schedulable, it does so without taking into
consideration the time involved in actually determining the dispatch interval for the individual jobs. Consequently,
it is possible, depending upon the nature of constraints, for a system to be parametrically schedulable, but not
have a valid dispatch schedule. Our distributed scheme exploits the fact that of all the jobs whose start time is
parameterized by the execution time of the current job, only the job immediately following it, needs to perform
the computation in real-time. All other jobs can perform the appropriate computations (i.e. updating safety
intervals) in parallel, which is indicated by the y—axis in Figure (2).

8 A Parallel Implementation

In this section, we formalize the discussion in §7 into a shared-memory parallel implementation of the distributed
scheme in Section §5. The parallel scheme uses the PRAM model, discussed in [Ja’92].

G G G G,

A

Shared Menory

The (e;,s;) are the shared vari abl es

Figure 3: A Shared Memory Implementation

As in the distributed scheme, there are n processors, one for each job. However, the processors themselves
communicate through the shared memory block as indicated in Figure (3). The variables (s;,¢;) are stored in
the Shared Memory. As processor C; completes the execution of Job J;, it writes (s;, e;) into the shared memory.
The other processors then use this value to update their safety intervals as discussed in Algorithm (6.1). The
model is thus a Concurrent Read Exclusive Write (CREW) model.

In the Parallel implementation, the communication costs become less significant as compared to the network
distributed model.

9 Conclusions and Future Research

In this paper, we extended existing sequential dispatching schemes to provide a distributed dispatching scheme
for parametric schedulers. Our scheme eliminates Loss of Dispatchability under the reasonable assumption that
link communication costs are insignificant as compared to computation costs over O(n) jobs. In the case, where
all jobs are run on the same machine, i.e. sequentially, our scheme permits processors to be replaced by adders
and comparators. If the constituent jobs are part of a distributed application, then techniques akin to the one we
proposed are required, since sequential schemes are no longer applicable. Finally, distributed dispatching provides
a degree of fault tolerance, which is crucial in real-time applications.

An open line of research is the actual implementation of our scheme across distributed systems to validate our
point of view.

A Construction of Dual Graph for Standard Constraints

The purpose of this appendix is to provide a step-by-step procedure for constructing the dual graph, when the

system constraints are standard.

Given a set of n jobs, with standard constraints imposed on their execution, we create a graph G =< V, F >,
where V is the set of vertices and F is the set of edges.

1. V =< sg,81,82,...,8, >, i.e. one node for the start times of each job, and node sg which is used for

handling absolute constraints;

2. For every constraint of the form:

3. For every constraint of the form:

I A

8. For every constraint of the form:

9. For every constraint of the form:

For every constraint of the form:
For every constraint of the form:
For every constraint of the form:

For every constraint of the form:

s;i + k < s;, construct and arc s; ~ s;, with weight —k;

si +¢; < s; + k, construct an arc s; ~ s;, with weight k — e;;

s; < s; +e; + k, construct an arc s; ~ s;, with weight e; + k;

si +¢; < s; +e¢; + k, construct an arc s; ~ s;, with weight e; —e; + k;
s; < ¢, construct an arc s; ~ sg, with weight ¢;

s; > ¢, construct an arc sg ~ s;, with weight —¢;

s; + €; < ¢, construct an arc s; ~ so, with weight ¢ — e;;

s; + €; > ¢, construct an arc sg ~ s;, with weight e; — ¢;

10. Finally construct arc s, ~ s; with weight 0, since s; > 0 and arc s, ~ so with weight L —e,, since all jobs
have to be completed by the end of the current scheduling window.

Observation: A.1 In the dual graph, there are n + 1 vertices and m edges, corresponding to a job-set with n
jobs and m standard constraints on their execution.

Observation: A.2 There are at most 4 edges from node s; and s;; we classify them as:

1. Type 1 - An edge s; ~ s; with weight ki, representing temporal distance between the start times of J; and

Jj'

2. Type 2 - An edge s; ~ s; with weight —e; + ko, representing temporal distance between the finish time of

Ji and the start time of J;;

3. Type 3 - An edge s; ~ s; with weight e; + k3, representing temporal distance between the start time of J;

and the finish time of J;;

4. Type 4 - An edge s; ~ s; with weight e; — e; + k4, representing temporal distance between the finish times

of J; and J;.
where, kl,]{72, kg, ks € R.

Observation: A.3 There are at most 2 edges between any job node s; and the node sg.

Corollary: A.1 In case of standard constraints, the dual graph has at most O(n?) edges.

Proof: Follows from the fact there are at most (n + 1).n vertex pairs, with at most 4 edges between them. O

Observation: A.4 A forward edge, i.e. an edge s; ~ s;,1 < j, dictates the degree of separation required between
Ji and J; , whereas a backward edge s; ~ s;, j > 1 dictates the degree of closeness required between them.

Ezample (3): We construct the dual graph for a 4—job set {Jy,Jq, J3, Ja}, subject to a set of standard
constraints.

4<e1 <8, 6<es<1l, 10<e3<13, 3<es <9
s4 +e4 <H6
s4+e4<s3+e3+12
s2+ex+ 18 < s4
s3+e3<s1+e+31
0<s1, s1+e1 <89, s+ < 53,53 +e3< 54 (5)

Figure ({) represents the corresponding dual graph.

e;-e;+31

€3-e,+12

Sy

So

Figure 4: Dual graph of System (5)

References

[Bur]
[Car84]

[Cho97]

[Cho00]

[DMPY1]

[GPS95]

[Ja’92]

[Jen90]

[KV90]

[Lyn96]

[Mul90]

[Pap94]

[SA00a)

[SA0OD)]

[Sak94]

[SP92]

[SR88]

[SSRBYS]

[Sub00a]

[Sub00b]

A. Burns. Distributed hard real-time systems: What restrictions are necessary?

P. J. Carstensen. Parametric cost shortest path problems. Unpublished Bellcore memo, available from
the Literaturstelle at the Inst. fir Okonometrie und Operations Research, U. Bonn, 8 May 1984.

Seonho Choi. Dynamic Time-based scheduling for Hard Real-Time Systems. PhD thesis, University of
Maryland, College Park, jun 1997.

Seonho Choi. Dynamic dispatching of cyclic real-time tasks with relative time constraints. JRTS, pages

1-35, 2000.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence, 49:61-95,
1991.

R. Gerber, W. Pugh, and M. Saksena. Parametric Dispatching of Hard Real-Time Tasks. [FEE
Transactions on Computers, 1995.

Joseph Ja’Ja’. An introduction to parallel algorithms (contents). SIGACTN: SIGACT News (ACM
Special Interest Group on Automata and Computability Theory), 23, 1992.

L. Jenkins. Parametric methods in integer linear programming. Annals of Operations Research, 27:77—

96, 1990.

H. Kopetz and Paulo Verissimo. Real-Time Dependability Concepts, chapter 16, pages 410-445. In
[Mul90], 1990.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann series in data management systems.

Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 1996. Prepared with IXTEX.
Sape J. Mullender. Distributed Systems. ACM Press, 1990.
Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, New York, 1994.

K. Subramani and A. K. Agrawala. A dual interpretation of standard constraints in parametric schedul-
ing. In The Sizth International Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, September 2000.

K. Subramani and A. K. Agrawala. The static polytope and its applications to a scheduling problem.
374 IEEE Workshop on Factory Communications, September 2000.

Manas Saksena. Parametric Scheduling in Hard Real-Time Systems. PhD thesis, University of Mary-
land, College Park, June 1994.

Michael Schiebe and Saskia Pferrer, editors. Real-Time Systems Engineering and Applications, vol-
ume 1. Kluwer Academic Publishers, 1992.

J. A. Stankovic and K. Ramamritham. Hard Real-Time Systems. IEEE Computer Society Press, Los
Alamitos, 1988.

John A. Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C. Buttazzo, editors. Deadline
Scheduling for Real-Time Systems. Kluwer Academic Publishers, 1998.

K. Subramani. Duality in the Parametric Polytope and its Applications to a Scheduling Problem. PhD
thesis, University of Maryland, College Park, July 2000.

K. Subramani. Parametric dispatching is as easy as parametric schedulability. Document in preparation,

2000.

10

[Sub00c] K. Subramani. Parametric schedulability with arbitrary constraint sets is not harder than pspace.
Submitted to IPL, September 2000.

[TSK92] S. Toueg, P. G. Spirakis, and L. Kirousis, editors. Distributed Algorithms, Berlin, 1992.

[Wil67] Leopold B. Willner. On parametric linear programming. SIAM Journal on Applied Mathematics,
15(5):1253-1257, September 1967.

[YTO91] N.E. Young, Robert E. Tarjan, and J. B. Orlin. Faster parametric shortest path and minimum-balance
algorithms. Networks, 21:205-221, 1991.

11

