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Abstract

Parametric Scheduling is a scheduling technique used to partially address the inflexibility of static schedul-
ing in real-time systems. Real-Time scheduling confronts two issues not addressed by traditional scheduling
models viz. parameter variability and the existence of complex relationships constraining the execution of
tasks. Accordingly, modeling becomes crucial in the specification of scheduling problems. In this paper, we
study the complexity of parametric scheduling within the E-T-C scheduling framework introduced in [Sub00].
We establish that (a) The parametric schedulability query is in PSPACE for arbitrary constraint sets, and
(b) Parametric dispatching is not harder than than deciding the schedulability query. To the best of our
knowledge, our results are the first of their kind for this problem. '

1 Introduction

An important feature in Real-time systems is parameter impreciseness, i.e. the inability to accurately determine
certain parameter values. The most common such parameter is task execution time. A second feature is the pres-
ence of complex relationships between tasks that constrain their execution. Traditional models do not accomodate
either feature completely: (a) Variable execution times are modeled through a fixed value ( worst-case ), and (b)
Relationships are limited to those that can be represented by precedence graphs. We present a task model that
effectively captures wvariable task execution time, while simultaneously permitting arbitrary linear relationships
between tasks. Real-Time scheduling problems can be classified as static, co-static or parametric depending upon
the information available at dispatching [Sub00]. In this paper we focus on real-time systems in which the only
information available before a job is to be dispatched is the actual execution time of every job sequenced before it.
The primary scheduling goal is to provide an offline guarantee that the input constraints will be met at run-time.
Such systems are termed as Parametrically Specified systems or Parametric Systems, since the dispatch time of a
job will, in general, be a parameterized function of the start and execution times of jobs sequenced before it.
The parametric scheduling problem is concerned with the following two issues:

1. Deciding the schedulability predicate for a parametrically specified system ( §2 ), and
2. Determining the dispatch time of a job, given the start and execution times of all jobs sequenced before it.

The rest of this chapter is organized as follows: We introduce the parametric scheduling problem in Section
82 and state the schedulability query. Section §3 motivates the necessity for the parametric schedulability speci-
fication through examples from real-time design. Previous work in the design of parametrically specified systems
is detailed in Section §4. The complexity of the parametric schedulability query is analyzed in Section §5; we
show that for arbitrary constraint systems the query is PSPACE-easy. Section §6 provides a dual interpretation
of the parametric schedulability algorithm in [Sak94]. Online dispatching algorithms for arbitrarily constrained
parametric systems are discussed in Section §7. Section §8 summarizes our contributions in this chapter and
tabulates our results.

1 The results presented in this chapter also appear in Chapter 5 of [Sub00].



2 Statement of Problem
2.1 Job Model

Assume an infinite time-axis divided into windows of length L, starting at time ¢ = 0. These windows are called
periods or scheduling windows. There is a set of non-preemptive, ordered jobs, J = {Ji, Ja, ..., J, } that execute
in each scheduling window.

2.2 Constraint Model

The constraints on the jobs are described by System (1):
A58 <b, €€k, (1)
where,
e A is an m X 2.n rational matrix,

e E is an arbitrary convex set; in this paper we confine ourselves to axis-parallel hyper-rectangles ( aph )
which can be represented as the product of n closed intervals [I;, u;];

wny

® S=[s1,82,...,8,] is the start time vector of the jobs, and

oL

e €=[e1,ea,...,¢,] € E is the execution time vector of the jobs

2.3 Query Model

Suppose that job J, has to be dispatched. We assume that the dispatcher has access to the start times
{51, 52,...,54—1} and execution times {e1,€2,...,e4_1} of the jobs {J1,J2, ..., Jo_1}-

Since the actual execution times of the previously executed jobs are required, the execution time domain must
perforce be an axis-parallel hyper-rectangle ( aph ). For the rest of this paper, we assume that the domain E in
System (1) is an aph represented by:

Y = [ll,ul] X [lz,Ug] X [ln,un] (2)

Definition: 2.1 A parametric schedule of an ordered set of jobs, in a scheduling window, is a vector § =
[$1, 82, ...,8n], where s1 is a rational number and each s;,1 # 1 is a function of the start time and execution
time variables of jobs sequenced prior to job J;, i.e. {s1,e1,s2,€2,...,8i_1,€i_1}. Further, this vector should
satisfy the constraint system (1) for all execution time vectors € € Y.

The Parametric Scheduling problem is concerned with the following two issues:

1. Determining whether the given job-set has a parametric schedule, i.e. a schedule as defined in Definition

(2.1);
2. Computing the start-time of a job in each scheduling window, assuming that

(a) The parametric schedulability query has been decided affirmatively, and

(b) The start and execution times of all jobs sequenced before it are provided.
This corresponds to the online dispatching phase.

The discussion above directs us to the following formulation of the parametric schedulability query:

351 Veq € [l u1] 35y Vey € [la.ug], .. .35, Ve, € [, un] A5, €]<b ? (3)



3 Motivation

Parametric scheduling provides a means of addressing the lack of flexibility in static scheduling.
Ezample (1): Consider the two job system J = {Jy, Jo}, with start times {s1, s2}, execution times in the set
{(e1 €)[2,4] x (e2 €)[4, 5]} and the following set of constraints:

e Job Jy must finish before job Jy commences; i.e. s1+ €1 < sa;
o Job Jy must commence within 1 unit of J1 finishing; i.e. so <s1+e1+1;

Clearly a static approach would declare the constraint system to be infeasible i.e. there do not exist rational
{51, s2} which can satisfy the constraint set for all execution time vectors [SA00]. Now consider the following

start time dispatch vector:
= [ . ] - [ 0 ] ®)
S2 s1t+er

This assignment clearly satisfies the input set of constraints and is hence a valid dispatch schedule. The key
feature of the schedule provided by Equation (4) is that the start time of job J; is no longer an absolute time,
but a ( parameterized ) function of the start and execution times of job Ji. Thus, the parametric schedulability
query provides the flexibility to partially address the loss of schedulability phenomenon.

Parametric schedulability is particularly useful in real-time Operating Systems such as Maruti [LTCAS89,
MAT90] and MARS [DRSK89], wherein program specifications can be efficiently modeled through constraint
matrices, and interactions between processes are permitted through linear relationships between their start and
execution times. The flexibility of parametric schedulability greatly enhances the schedulability of a job-set, at
the expense of computing dispatch vectors online.

4 Related Work

The parametric model for axis-parallel hyper-rectangle domains was proposed in [Sak94]. In [GPS95],
polynomial time algorithms were presented for the case, in which the constraints are restricted to be standard
( network, unimodular ). The principal technique used in their algorithm was the Fourier- Motzkin elimination
procedure to eliminate existentially quantified variables [DE73]. They showed that when the constraints are
standard, the elimination procedure does not lead to an exponential increase in the set of resolvent constraints,
a phenomenon observed when the constraints are arbitrary [HJLL90]. In Section §6, we shall provide a dual
interpretation of their algorithm. [Cho97] and [Cho00] extend the results in [GPS95] to handle the case, in which
inter-period constraints are permitted in the job-set. In [WDL91], a dynamic scheduling scheme is presented;
however no offline guarantees are provided. Relative separation constraints, but only in restricted forms, are
considered in [HL92b] and [HL92a]; in their model, certain distance constraints require to be satisfied between
successive invocations of a job.

Our work here represents the first attempt to study the parametric scheduling problem from a computational
complexity perspective and we show that the parametric schedulability query can be decided in polynomial space
for arbitrary constraint sets.

5 Complexity of Parametric Schedulability

Prior to analyzing the complexity of the query, let us discuss a simple algorithm to decide the query. Quantifier
elimination procedures help us to work through query (3), by eliminating one quantified variable at a time.
Algorithm (5.2) describes the procedure for eliminating the universally quantified execution variable e; € [l;, u;].
The Fourier-Motzkin elimination technique discussed in [CR99] represents one implementation of ELIM-EXIsT-
VARIABLE. In general, any polyhedral projection method suffices.
The correctness of Algorithm (5.2) has been argued in [GPS95], while the correctness of the Fourier-Motzkin
procedure is discussed in [Sch87].
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Function PARAMETRIC-SCHEDULER (Y, A,b)
1: for (i=n down to2) do
2:  ELIM-UNIV-VARIABLE(€;)
3:  ELIM-EXIST-VARIABLE(S;)
4: end for
5: ELIM-UNIV-VARIABLE (1)
6: if (a<s1<b, a,b>0) then
7 Valid Parametric Schedule Exists
8 return
9: else
10: No Parametric Schedule Exists
11: return
12: end if

Algorithm 5.1: A Quantifier Elimination Algorithm for determining Parametric Schedulability

Function ELIM-UNIV-VARIABLE (A, b)

1: Substitute e; = I; in each constraint that can be written in the form e; > ()
2: Substitute e; = u; in each constraint that ca be written in the form e; < ()

Algorithm 5.2: Eliminating Universally Quantified variable ¢; € [I;, u;]

Observation: 5.1 FEliminating a universally quantified execution time variable does not increase the number of
constraints.

Observation: 5.2 Fliminating an existentially quantified variable s; in general, leads to a quadratic increase
in the number of constraints, i.e. if there are m constraints, prior to the elimination, there could be O(m?)
constraints after the elimination ( See [DE73] ). Thus, the elimination of k existential quantifiers could increase

the size of the constraint set to O('m2k) [CR99]. Clearly, the exponential size blow-up, makes the Algorithm (5.1)
impractical for general constraint sets.

Lemma: 5.1 Query (3) is locally convex over the execution time variables, i.e. if the query is true for e; = ay
and e; = by, then it is true for e; = Aag + (1 —A).b,0 <A< 1.

Proof: Follows from the correctness of Algorithm (5.2). D
Lemma (5.1) allows us to restate the parametric schedulability query as:

351 Vey € {ly,u1} Isy Vey € {ly.us},.. .35, Ve, € {ln,u,} A5, € <b ? (5)

We shall refer to query (5) as the parametric schedulability query in subsection §5.1. Note that query (3) is
equivalent to query (5) in that query (3) is true if and only if query (5) is true. The advantage of the discrete
form is that it simplifies the complexity analysis of the query.

5.1 Parametric Schedulability as a 2—person game

We show that query (5) can be modeled as a 2—person game; the modeling helps us to establish that the query
is PSPACE-easy.
Let A and B denote the two players involved in the following 2—person game:

1. The two players move alternatingly, with 4 making the first move, B making the second move and so on;
2. The game has 2.n moves;

3. In its #** move, A guesses a valid start time s; for Job J;, where the guess is valid, if the guessed value lies
in the scheduling window i.e [0, L];




4. In its (i + 1)** move, B guesses a valid execution time e;, for Job J;, where a guess is valid if e; € {l;, u;};
5. At the end of 2.n moves 4 has guessed § = [s1, s2,...,5,], while B has guessed € = [eq, €2, ...,¢,];

6. If A.[s, €] < b ( See System (5) ), the game is considered a win for A; otherwise the game is considered «a
win for B.

Definition: 5.1 An Alternating Turing Machine ( ATM ) is a non-deterministic Turing machine N = (K, X, A, s),
in which the set of states K is partitioned into two sets Kanyp and Kog, i.e. K = Kanp U Kogr. Let x be an
input and consider the tree of computations of N on x. Fach node in the tree is a configuration of the precise
machine at that state and includes the step number of the machine. Starting from the leaves of the tree, and going
up, we recursively define a subset of these configurations, called eventually accepting configurations as follows:
First, all leaf configurations with state “yes” are eventually accepting. A configuration C' in state Kanp is ac-
cepting, if and only if all its successor configurations are eventually accepting. A configuration C' in state Kopg is
accepting, if and only if at least one of its successor configurations is eventually accepting. Finally, we say that
N accepts z, if the initial configuration is eventually accepting. We say that an Alternating Turing Machine N
decides a language Lo, if and only if N accepts all x € Lo and rejects all strings © & Loo.

Definttion: 5.2 ATIME(f(n)) is defined as the class of languages that can be decided by an Alternating Turing
Machine, in at most f(n) steps, on an input of size n 2.

It is thus clear that
Lemma: 5.2 The parametric schedulability query can be decided in ATIME(m?).

Proof: Algorithm (5.3) describes the Alternating Turing machine that decides query (5). The only non-trivial
computation is at the leaf of the tree and this computation involves the multiplication of a m x 2n matriz with a
2.n x 1 vector, giving a running time of ATIME(m.n), which can be expressed as ATIME(m?), since m > n. O

Function PARAM-DECIDE(A, b, Y)
1: for (i=1ton) do

2 Guess a value for s; € [0, L] in state Kog, of the computation tree

3 Guess a value for e; € {l;,u;} in state Kanp, of the computation tree
4: end for{ We now have both §=[s1, s2,...,s,] and € = [e1,€2,...,€,]. }
5: if (A.[S,€]<b) then

6: There exists a parametric schedule

7: else

8 There does not exist a parametric schedule

9

: end if

Algorithm 5.3: An Alternating Turing Machine to decide Parametric Schedulability

Corollary: 5.1 Parametric schedulability is PSPACE-easy.

Proof: From [Pap9/], we know that, PSPACE = U ATIME(m'). O

5.2 Parametric Co-scheduling

As part of our complexity analysis, we briefly study the complement of the parametric schedulability query; this
query called the Parametric Co-Scheduling query is instrumental in explaining the difference between parametric
scheduling and co-static scheduling.

The complement of the parametric schedulability query is given by:

2For details on Turing Machines, configurations and a more detailed exposition of Alternating Turing Machines, see [Pap94].



—( Jsy Vey € [l1,u1] Tsg Vea € [la.uz],...3s, Ve, € [y, un] A.[S, €] < b ? ) (6)
which can be rewritten as:
Vsy ey € [l1, uy] Vs Jey € [lay uz] ... Vs, Jen € [ln, un]A.[5,6] £ b 7 (7)

Query (7), called the parametric co-scheduling query, asks whether there exists an execution time vector in the
form

€1 = 91(81)
€2 = 91(817 82)
e — €3 293(81,52,33) (8)
€n = gn(sla 82500y Sn)
where g;(s1, s2, - - -, 8;) are functions which specify that the e; could depend upon the particular start time chosen,

such that the constraint system (1) is violated. Such a vector is called the break vector of the parametric system
or a parametric break vector. The difference between a parametric break vector and a co-static break vector is that
in the co-static break vector all component elements are rational numbers, while in the parametric break vector,
the 1" component element €param (1) could depend upon the start times s, s2,...,s; ( see [Sub00]. It follows that
the parametric schedulability specification is stronger than the co-static schedulability specification, inasmuch
as parametric schedulability requires the absence of a parametric break vector, and not merely the absence of a
co-static break vector, with elements in Y.

A constraint system which is co-statically schedulable, but not parametrically schedulable is given in Example
(2).
Ezample (2):

s1+er < s2

sgt+ex< s +e+4
s3+e3 > 8

S1 S 4

€1 € [172]7 €2 € [274]

We show that if query (7) is true, then we can restrict the range of each g;() to {l;,u;} i.e. there exists a
parametric break vector with component values in {/;, u;}. Thus, we can regard the g;() as bi-valued functions
with g;(s1, $2,..-,8;) = or u;, depending upon the values assumed by s1, sa, ..., s;.

Lemma: 5.3 Query (7) is true if and only if
Vsy Jey € {l1,u1} Vsy ey € {la,uz} ... Vs, e € {ln, unJA.[S,6] £ b 7 (9)

Proof: Consider a start time vector s’ = [s1,8h, ..., sh], such that Lemma (5.2) does not hold. Let e, be the
first job, where eq € [lg, Uqg], €q F# la, tq. In the linear system (1), one or more of the constraints are violated. We
show that e, can be set to either l, or e,, maintaining the truth of query (7). Using induction, it follows that we
can use the same argument for all e; which do not belong to {l;,u;}. Setting e, = l, causes one of the following
things to happen:

(a) The constraint system is still violated, in which case, the assignment preserves the answer to query (7), or

(b) The constraint system is satisfied, in which case set eq = uq. Clearly the constraint system must be violated,
or else the constraint system is valid for all e, € [lq, uy], violating the premise.
O

Using an argument that parallels the discussion of Lemma (5.2), it is clear that the Parametric Co-Scheduling
query can also be decided in PSPACE. This is not surprising, since we know that PSPACE = co-PSPACE [Pap94].



6 Special Case Analysis

We analyze the problem <aph|stan|param>i.e. the schedulability problem in which the system is parametric, the
constraints are standard ( see Appendix (A ) and the execution time domain is an axis-parallel hyper-rectangle.
We provide a dual interpretation of the quantifier elimination algorithm, discussed in [Sak94].

Given an instance of <aph|stan|param>, we use the procedure in Appendix §A to construct the dual graph.
Algorithm (6.1) takes the dual graph as input and decides the schedulability query over the dual. The principal
difference between this algorithm and Algorithm (5.1) lies in the implementation of the existential variable
elimination procedure. When the constraints are standard, existential variable elimination can be performed
through vertex contraction, in the manner discussed in Algorithm (6.2). The exponential increase in the number
of constraints that is a feature of the Algorithm (5.1) is prevented in this case; Algorithm (6.3) deletes redundant
edges ( constraints ) as new edges ( constraints ) are created as a result of vertex contraction, thereby bounding
the total number of constraints at any time in the computation.

Function PARAM-SCHEDULE-STANDARD (G =<V, E >)
1: for (i=n down to2) do
2 Substitute e; = u; on all edges where ¢; is prefixed with a negative sign
3 Substitute e; = I; on all other edges { We have now eliminated ¢; in Ve; € [I;, u;] }
4:  G'=< V', E' >=VERTEX-CONTRACT( s; )
5: end for
6: Substitute e; = u; on all edges, where €1 is prefixed with a negative sign
7: Substitute e; = {1 on all other edges { At this point, the only edges in the graph are between s; and sg and
the weights on these edges are rational numbers.}
Find the edge s; ~ so with the smallest weight, say u. {« >0}
9: Find the edge sg ~ s; with the largest weight in magnitude, say [. {1<0 }
10: if (=l <wu) then
11:  return [/, u] as the range in which .J; can begin execution
12: else
13: There is no Parametric Schedule
14: return
15: end if

»

Algorithm 6.1: Implementing quantifier elimination over the dual graph

Observation: 6.1 For deleting redundant edges between a verter s, and another verter s,, where a > b, we
use a separate function >pack (€oid, €new), which retains the edge with the smaller ( positive ) weight. See also

Observation (A.4);

Observation: 6.2 The number of edges from any vertex s, to any other vertezx s, ( say a < b ) does not exceed
four at any time; in fact, after the elimination of ey, the number of edges does not exceed two.

Observation: 6.3 The class of standard constraints is closed under execution time variable elimination, i.e. the
elimination of the execution time variables does not alter the network structure of the graph;

Observation: 6.4 The class of standard constraints is closed under vertex contraction. A naive implementation
of VERTEX-CONTRACT() would cause the number of edges between the two vertices to increase quadratically; our
observations in Appendiz §A provide us with a means of eliminating redundant edges on the fly, in O(1) time;

Observation: 6.5 The only manner in which infeasibility is detected is through the occurrence of a negative
weight self-loop on any vertex ( Step (5) of Algorithm (6.2) and Steps (7-13) of Algorithm (6.1). ) These loops

could occur in two ways:

1. The contraction of a vertex results in a self-loop with a negative rational number on another vertex; e.g. in
the constraint set s;1 4+ 8 < sa, 52 < 51+ 7, contraction of sy resulls in a self-loop at s1 of weight —1;




Function VERTEX-CONTRACT (G =<V, E >,s;)

1

2:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

© % e g

: for each edge s; ~ s;, with weight w;; do

for each edge s; ~ si, with weight w;; do
Add an edge ( say epew ) 55 ~ sp with weight wj; + wig
if j =k then
if (wj;+ wix <0) then
No Parametric Schedule Exists { See Observation (6.5)}
return( false )
end if{ Eliminating self-loops }
else
Discard e e
continue {We do not add self-loops to the edge set}
end if
E' = EUepew
REMOVE-REDUNDANT( G =< V, E' >, s;, Sk, €new )
end for
E/ = E/ — (Sj ~> Si)
end for
for each edge s; ~ si, with weight w;; do

E/ = E/ — (Si ~> Sk)
end for

V=V —{s;} { We have now eliminated s; in 3s; }

Algorithm 6.2: Vertex Contraction

Function REMOVE-REDUNDANT(G =< V, E >, 54, Sk, €ncw)

1

TR W

11:
12:
13:

© ® 3

: { W.lo.g. assume that j < k.}

{ €new s the new edge that is added from s; to si. }
Let ¢, = type of €new{ t, must be one of the four edge types discussed in (A.2)}
if ( there does not exist an edge from s; to s, having type ¢, ) then
Retain e,c, {The addition of e, does not cause the number of edges from s; to si to increase beyond
four.}
else
Let €,4 be the existing edge with the same type as epey
if ( Zfor (eoldaenew ) then
Discard e, e
else
Discard eqq
end if
end if

Algorithm 6.3: Redundant edge elimination

Function Zfor (eolda enew)

1
2
3
4:
5
6

: Symbolically compare weights on both edges

: if ( eoq has the more negative weight ) then
return( true )

else
return( false )

: end if

Algorithm 6.4: Implementation of >¢,,




2. The contraction of a vertex results in a self-loop of the following form: e, — 7, on vertex sq. In this case,
either l, > 7, in which case the edge can be discarded ( redundant ), or the system is infeasible.

6.1 Correctness and Complexity

The correctness of the algorithm follows from the correctness of the quantifier elimination algorithm (5.1).

The elimination of an universally quantified execution time variable e; takes time proportional to the degree of
vertex s;, since e; occurs only on those edges that represent constraints involving s;. Hence eliminating e; takes
time O(n) in the worst case. The total time taken for execution time variable elimination over all n vertices is
thus O(n?). The contraction of a single vertex takes time O(n?) in the worst-case, since every pair of incoming
and outgoing edges has to be combined. In fact O(n?) is a lower-bound on the contraction technique. However,
the total number of edges in the graph is always bounded by O(n?); the total time spent in vertex contraction is
therefore O(n?).

Thus the complexity of <aph|stan|param>is O(n?).

7 Complexity of Online Dispatching

In [Sak94] and [Cho97], query (3) was addressed by providing a parametrized list of linear functions for the start
time of each job, as shown in Table (1). During actual execution, s; can take on any value in the range [a, b].
Upon termination of job Ji, we know e; which along with s; can be plugged into f1() and fi(), thereby providing
a range [a’, b'] for so and so on, till job J,, is scheduled and completes execution.

| Lower bound function | < Start time < | Upper bound function |
a s1 b
fi(s1,e1) 52 fi(s1,€1)
f2(51761782762) S3 fé(slaehS?an)
fn—1(517613527627"'75n—176n—1) Sn fé_1(81,61,82,62,.-.,Sn_l,en_l)

Table 1: List of parametric functions

The principal problem with the creation of the function lists is that we cannot a priori bound the length of these
lists. We argue here that explicit construction of the parameterized function list is unnecessary. Determination
of feasibility is sufficient, thereby eliminating the need for storing the parameterized function list. Observe that
at any point in the scheduling window, the first job that has not yet been scheduled has a start time that is
independent of the start and execution times of all other jobs. Once this job is executed, we can determine a
rational range, e.g.[a”, b"'] for the succeeding job and the same argument applies to this job. In essence, all that
is required to be determined is the start time of the first unezrecuted job in the sequence.

Let us assume the existence of an oracle £ that decides query (3) in time T'(£2). Algorithm (7) can then be
used to determine the start time of the first unexecuted job ( say J, * ) in the schedule :

The end of the period L is the deadline for all jobs in the job-set. We must have 0 < s, < L. The goal is to
determine the exact value that can be safely assigned to s, without violating the current set. Let

G’.s? + H'.é" < b7 (10)
denote the current constraint set, where

e G is obtained from G, by dropping the first (p — 1) columns; G1~7 represents the first (p — 1) columns of
G,

e H’ is obtained from H, by dropping the first (p — 1) columns; H*~* represents the first (p — 1) columns of
H,

3 At commencement, p = 1




© P =[5p,Spq1,--05n); ST = [51,50,...5,1];
o e’ =[ep €pp1s--erenl; €177 =[e1,€2,...€,_1], and

° b_;’ = G — (Gl—ﬂ‘sl_:p + Hl—p‘e]_ip)‘

Function DETERMINE-START-TIME (G”,H?, b7’, [ai, an])

—_

: { Initially [a;, ap] = [0, L]; the interval is reduced to half its original length at each level of the recursion}

2: Let m' = #25%

3: if (Q(GP,HP,b_;),sp > m’)) then

4:  {We now know that there is a valid assignment for s, in the interval [m/, ap]; the exact point in time needs
to be determined}

5. if ( Q(Gp,H”,b_;),sp =m') ) then

6 sp=m'

7 return

8 else

9 { m’ is not a valid point; however we can still recurse on the smaller interval}
10: DETERMINE-START-TIME (G, H?, qu, [m',an])

11:  end if

12: else

13:  { We know that the valid assignment for s, must lie in the interval [a;, m'] }
14:  DETERMINE-START-TIME (G*, H”, b?, m’)

15: end if

Algorithm 7.1: Parametric Dispatcher to determine s,

Algorithm (7.1) exploits the local convexity of s,, i.e. if s, > a is valid and s, < b is valid, then any
point s, = da+ (1 — A).b,0 < A < 1 is valid. The cost of this strategy is O(log L) calls to the oracle €, i.e.
O(T(f2).log L). We have thus established that the principal complexity of the parametric scheduling problem is
in deciding query (3). This result is significant because it decouples dispatching complexity from decidability. In
many complexity analyses involving PSPACE problems, the size of the output is used to provide a lower bound for
the running time of the problem, e.g. if we can provide a problem instance where the start time of a job must
have exponentially many dependencies, due to the nature of the constraints, then we have an exponential lower
bound for the dispatching scheme in [GPS95]. Algorithm (7.1) assures us that efficient dispatching is contingent

only upon efficient decidability.

8 Summary

In this paper, we studied the computational complexity of the parametric schedulability query. A naive imple-
mentation of the quantifier elimination algorithm, as suggested in [Sak94], requires exponential space and time
to decide the query. Our work establishes that the problem is PSPACE-easy for arbitrary constraint classes.

We also analyzed the dual of <aph|stan|param>; the analysis enabled us to design an O(1) dynamic dispatching
algorithm, using one additional processor per job. In real-time systems, more often than not, it is preferable to
achieve timing goals at the expense of other resources ( increased processor requirements, in our case ) and our
algorithm provides a marked improvement over the dispatching algorithms in the literature [Sak94, Cho97].

Table (2) summarizes the results discussed in this paper.

A Construction of Dual Graph for Standard Constraints

The purpose of this appendix is to provide a step-by-step procedure for constructing the dual graph, when the
system constraints are standard.
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| | <aph|arb|param>| <aph|stan|param>| <aph|net|param>

Schedulability

PSPACE-easy

O(n?) open

Online Dispatching

O(T(R).1og L)

o) O(T(%Y). log L)

Table 2: Summary of Results for Parametric Scheduling

Given a set of n jobs, with standard constraints imposed on their execution, we create a graph G =< V, F >,
where V is the set of vertices and F is the set of edges.

1. V =< sg,81,82,...,8, >, i.e. one node for the start times of each job, and node sg which is used for
handling absolute constraints;

2. For every constraint of the form:

3. For every constraint of the form:

4. For every constraint of the form:

5. For every constraint of the form:

6. For every constraint of the form:

7. For every constraint of the form:

8. For every constraint of the form:

9. For every constraint of the form:

si + k < s;, construct and arc s; ~ s;, with weight —k;

si +¢; < s; + k, construct an arc s; ~ s;, with weight k — e;;

s; < s; +e; + k, construct an arc s; ~ s;, with weight e; + k;

si +¢; < s; +e¢; + k, construct an arc s; ~ s;, with weight e; —e; + k;
s; < ¢, construct an arc s; ~ sg, with weight ¢;

s; > ¢, construct an arc sg ~ s;, with weight —¢;

s; + €; < ¢, construct an arc s; ~ so, with weight ¢ — e;;

s; + €; > ¢, construct an arc sg ~ s;, with weight e; — ¢;

10. Finally construct arc s, ~ s; with weight 0, since s; > 0 and arc s, ~ sg with weight L — e,, since all jobs
have to be completed by the end of the current scheduling window.

Observation: A.1 In the dual graph, there are n + 1 vertices and m edges, corresponding to a job-set with n
jobs and m standard constraints on their execution.

Observation: A.2 There are at most 4 edges from node s; and s;; we classify them as:

1. Type 1 - An edge s; ~ s; with weight ki, representing temporal distance between the start times of J; and

Jj'

2. Type 2 - An edge s; ~ s; with weight —e; + ko, representing temporal distance between the finish time of
Ji and the start time of J;;

3. Type 3 - An edge s; ~ s; with weight e; + k3, representing temporal distance between the start time of J;
and the finish time of J;;

4. Type 4 - An edge s; ~ s; with weight e; — e; + k4, representing temporal distance between the finish times

of J; and J;.
where, kl, ]{72, k’g, ks €R.

Observation: A.3 There are at most 2 edges between any job node s; and the node sg.

Corollary: A.1 In case of standard constraints, the dual graph has at most O(n?) edges.

Proof: Follows from the fact there are at most (n+ 1).n vertex pairs, with at most 4 edges between them. O

Observation: A.4 A forward edge, i.e. an edge s; ~ s;,1 < j, dictates the degree of separation required between
Ji and J; , whereas a backward edge s; ~ s;, j >t dictates the degree of closeness required between them.
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Ezample (3):  We construct the dual graph for a 4—job set {Jy,Ja, J3, Js}, subject to a set of standard
constraints.

4<e; <8, 6<es<1l, 10<e3<13, 3<es<9
s4 +e4 <H6
s4+e4 < s3+e3+12
s2+ex+ 18 < s4
s3+e3<s1+e+31
0<s1, s1+e1 <83, s34 €3 <s53,83+e3< 54 (11)

Figure (1) represents the corresponding dual graph.

e;-e;+31

€3-e,+12

Sy

So

Figure 1: Dual graph of System (11)

B Illustration of Algorithm (6.1)

Ezample (4): Consider an instance of <aph|stan|param>, in which the underlying constraint system is repre-
sented by Figure (1) and the parametric specification is given by query (12). Figures (2-4) display the application
of Algorithm (6.1) to the dual graph.

ds, Ve; € [4, 8] dsy Veqy € [6, 11] ds3 Ves € [10, 13] ds4 Vey € [3, 9] {(11)} ? (12)
The final output is 0 < s; < 10.
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e;- e;+31

So
Elimnating e,

-e;+31

50

El i minating s,

18+e,

So

Eliminating e;

Figure 2: Algorithm (6.1) on query (12)
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13+e;- €,

18+e;

So

o Eliminating s;
Eliminating redundant edge between (s,,s3)

So

Eliminating e,

Figure 3: Algorithm (6.1) on query (12) ( contd. )

18-e;

So

Elimnating s,

So

Elimnating e;

Figure 4: Algorithm (6.1) on query (12) ( contd. )
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