On the Parallel Complexity of Quantified 2SAT

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV

ksmani@csee.wvu.edu

Abstract

Quantified Boolean Formulae (QBF) have been used to model problems in Constraint Logic Programming
and Robotics and Al search domains. It is known that the problem of evaluating a QBF is PSPACE-complete,
even when each clause represents the disjunction of at most 3 literals. However, polynomial time algorithms
exist for the case in which each clause has at most 2 literals i.e. Q2SAT. In this paper, we explore the parallel
complexity of the evaluating a Quantified 2SAT formula and present an NC algorithm for the same. To the
best of our knowledge, our results are the first of their kind.

1 Introduction

Quantified Boolean formulae (QBF) are used to model a number of problems in Constraint Logic Programming
[CH99], Artificial Intelligence [CGS98] and Real-Time scheduling [Ost89]. The decision problem of evaluating a
QBF is known to be PSPACE-complete even when the propositional formula is an instance of 3-SAT. If each clause
is restricted to have at most two literals (Q2SAT), then polynomial time algorithms are known [APT79, Sch78].
The parallel complexity of Q2SAT has not been explored in the literature. In this paper, we show that Q2SAT is
in the parallel complexity class NC; in particular we show that the evaluation problem can be decided in (log2 n)

time, using at most O(l:;n) processors i.e. Q2SAT € NCs,.
The rest of this paper is organized as follows: Section §2 formally presents the Q2SAT problem. The motivation
underlying our approach as well as related work are discussed in §3. We present our algorithm and analyze its

complexity in §4. A summary of our work and a discussion of open problems is presented in §5.

2 Statement of Problem

Let
F=Qiz1Q22...Qnz, C (1)

be a quantified boolean formula, where
e Each @); is either a Jor a V,
e Each variable z; is bound to some quantifier,
e (' is a conjunction of clauses, such that each clause is a disjunction of at most two literals !

The evaluation problem is concerned with the following question : Given F, is F true 7

LA variable z; gives rise to 2 literals, z; and z;.

2.1 Graph Representation for 2SAT formuale
[APT79] and [Pap94] provide a directed graph representation for 2SAT formulae. We present their construction

here. Given a collection of m 2SAT clauses C;,¢ = 1, ..., m, over the n boolean variables z1, s, ..., z,, construct
graph G with vertex set #1,29,..., 2, %1, T2,...,Z,. Corresponding to each clause C; of the form (z;, z;), add
edges (T;, ;) and (T, z;). Thus G has 2n vertices and 2.m edges. Additionally, each vertex contains a bit which
represents its quantifying type, i.e. universal or existential.
For instance, the formula
F = 13 T VIQ E'Q?g
(x_la CE2)
(I_la IS)

(72, 73)

is represented by the graph in Figure (1).

Observation: 2.1 Each edge of the graph represents an implication; the clause (z;, ;) represents the conjunction
of the two implications (T; — x;) and (ZT; — z;). The graph G is called the implication graph corresponding to
the formula F.

® .
®
Figure 1: Graph representation of a Q2SAT formula

Theorem: 2.1 Aspuallet.al: The Q25AT formula F is true if and only if none of the followning three conditions
hold:

1. There is a path from an existential vertex u; to its complement u; and vice versa;

2. There is a path from a universal vertex u; to an existential verter u; and vice versa, with j < @ i.e. x; is
not within the quantified scope of Q;;

3. There is a path from a universal vertex u to another universal vertezx v.

3 Motivation and Related Work

Computational approaches for the general QBF evaluation problem have been discussed extensively in [CGS98]
and [CG197]. Their work emphasizes the necessity for faster sequential and parallel algorithms for this problem.
While it is unlikely that there exist efficient parallel algorithms for the general case, it is worthwhile to explore
the possibility for restricted subclasses, such as Q2SAT.

Schaefer indicates in [Sch78] that the Q2SAT evaluation problem is solvable in polynomial time; however no
proof is given. [APTT79] presents a linear-time algorithm for Q2SAT; in this paper, we shall show how their
approach can be parallelized.

4 A Parallel Algorithm

We first review the requirements for a 2SAT formula to be true.

Lemma: 4.1 A 25AT formula i.e. a Q2SAT formula in which every Q; = 3 is true under an assignment if and
only if:

1. For all i, vertices x; and T; receive complementary values, and
2. There is no path from a true vertex to a false vertex.

The above two conditions can be unified as follows: The formula is satisfiable, if and only if there do not exist
paths between a vertex x; and its complement T; and vice versa in the implication graph G.

Proof: Obvious, from the definition of the implication graph G. O
Prior to presenting our algorithm, we discuss the complexity of Q2SAT.

Lemma: 4.2 Q25AT € AL, i.e. Q25AT can be solved by an Alternating Turing Machine in logarithmic space.
Definition: 4.1 NQ2SAT denotes the set of Quantified 25AT formulae, which evaluate to false.

Observation: 4.1 The “yes” instances of NQ2SAT are the “no” instances of Q25AT and vice versa, i.e.
NQ2S5AT is the complement of Q25AT.

Proof: We show that NQ2SAT can be decided in O(logn) space using an Alternating Turing Machine. Since
AL is closed under complementation, the lemma follows. It is clear that Algorithm (4.1) decides NQ2SAT. The
input to the algorithm is the implication graph discussed in Section §2. The key issue is that we do not have to
store all the guessed moves; clearly that would take O(n) space. Instead, we store the indices of the current two
vertices under consideration and process one edge at a time. Clearly this can be achieved in O(logn) space. O

The above result is not surprising, since we know from [Pap94], that AL = P, i.e. all languages that can be
decided in polynomial time by a deterministic Turing Machine, can be decided by an Alternating Turing Machine
in logarithmic space and vice versa. The interesting question is whether an Alternating Turing Machine is required
to evaluate a Q2SAT formula in logarithmic space. For instance, proving that the problem of deciding a language
is P-complete assures us that an alternating machine is required, unless NC=P, an event which is considered
unlikely. However, we show that a Nondeterministic Turing Machine suffices to decide the evaluation problem in
logarithmic space.

Observation: 4.2 The above technique expectedly breaks down for Quantified 3SAT formulae; in fact a Quanti-
fied 3SAT formula cannot be decided in O(logn) space using an Alternating Turing Machine, unless P=PSPACE.

Lemma: 4.3 Q25AT is NL-Hard.

Proof: FEven the restriction of Q2SAT to the case in which each quantifier is existential is NL-Hard. See
[GJ79, Pap94]. O

Lemma: 4.4 Q25AT is in NL.

Function NQ2SAT DEcCISION PROCEDURE USING ALTERNATION(G)
1: Let A and B denote 2 players, with A being the existential player and B being the universal player.
2: A’s strategy is to guess values for the existential variables so that there is never a path from a true vertex
to a false vertex.
3: B’s strategy is to guess values for the universal variables so that a path from a true vertex to a false vertex
is forced.
Guess a path from a vertex z; to another vertex z; as follows:
if (z; is an existential variable) then
Enter existential state and make a guess on z;.
else
Enter universal state and make a guess on z;.
end if
10: if (there is a path from a true vertex to a false vertex) then
11: return(true)
12: else
13: return(false)
14: end if

© % e q ok

Algorithm 4.1: An alternating Turing Machine to decide NQ2SAT

Proof: We argue that the complement of Q25AT i.e. NQ2SAT is in NL. Since NL is closed under complemen-
tation, the claim follows.

From the discussion in Section §2, we know that the nondeterministic algorithm (4{.2) provides the required
decision procedure. Further, it requires space at most 3.logn i.e. O(logn). We point out that the entire sequence
of paths is never guessed; that would entail space more than O(logn). Instead succeeding vertices on the path are
guessed and verified using the input adjacency matriz. For details of implementing graph reachability, in space
O(logn), see [PS82].

O

Lemma: 4.5 Q25AT is NL-complete.
Proof: Follows from Lemma (4.3) and Lemma (4.4). O
Lemma: 4.6 Q25AT € NCs.

Proof: Any language in NL can be decided in O(log2 n) time with a polynomial number of processors. O
3
l:gn

We now present an algorithm which evaluates a Q2SAT formula in O(log?n) time, using O() processors.

The input to the algorithm is the implication graph G, discussed in Section §2.

4.1 Analysis

Computing the reachability matrix can be accomplished in [log2n] time i.e. O(logn) time, using O(l:;n)
procesors, using the matrix multiplication method, outlined in [Pap94]. The key idea is to use repeated squaring
and compute the matrices, G2, G* and so on.

Checking the conditions in the second step can be implemented in O(1) time using O(n?) processors [Rei93].
Corollary: 4.1 The quantified version of any problem in NL can be decided in NL.

Proof: Any problem in NL can be reduced to 25AT. O

Function NQ2SAT DrcisioN PROCEDURE

e e e e e e e

e A e

Guess the sequence of vertices on a path from an existential vertex u to its complement @ and vice-versa.
if (both paths exist) then
return(true)
else
return(false)
end if
Guess the path between a universal vertex u; and an existential vertex u; and vice-versa, where j < 1.
if (both paths exist) then
return(true)
: else
return(false)
: end if
: Guess the path from a universal vertex u to another universal vertex v.
: if (such a path exists) then
return(true)
: else
return(false)

: end if

Algorithm 4.2: A nondeterministic algorithm for deciding NQ2SAT

Function Q2SAT DEcIsIoN PROCEDURE(G)

1
2
3
4:
5
6

: Compute G2®, where G2™ is the reachability matrix of the graph G.
: if (any of the conditions in Theorem (2.1) holds) then

return (false)
else

return (true)

: end if

Algorithm 4.3: An NC; algorithm to decide Q2SAT

5 Conclusions and Future research

In this paper, we have been able to show that the quantified version of the 2SAT problem is in NC; in particular
we designed a parallel algorithm that decides the evaluation problem in O(log® n) parallel time, using O(lg‘an)

processors. We point out that our goal was not to design an optimal parallel algorithm, but to provide proof of

the existence of parallelizability. In the full paper, we hope to show that the processor cost can be reduced to n?.

A natural consequece of our result is that the quantified version of any NL-complete problem is in NC. Contrast
this result with the AL=P result discussed in [Pap94].

Our interest in Q2SAT stems from our focus on the problem of parametric scheduling [Sub00]. We suspect that
the parametric scheduling problem with “standard constraints” is P-complete; however we have been unable to
prove the same. We intend to use the reachability method outlined in this paper, to show that restricted versions
of the Parametric Scheduling problem can be decided in NC.

A Complexity Classes

1. P - The set of languages that can be decided in polynomial time by a deterministic Turing Machine;
2. NP - The set of languages that can be decided in polynomial time by a nondeterministic Turing Machine;

3. AL - The set of languages that can be decided in logarithmic space by an alternating Turing Machine. It
has been shown that AL = P;

4. NC - The set of languages that can be decided in polylogarithmic space, using a polynomial number of
processors;

5. PSPACE - The set of languages that can be decided by a deterministic Turing Machine in space that is
polynomial in the size of the input.

References

[APTT79] Bengt Aspvall, Michael F. Plass, and Robert Tarjan. A linear-time algorithm for testing the truth of
certain quantified boolean formulas. Information Processing Letters, (3), 1979.

[CG*97] M. Cadoli, , M. Giovanardi, A. Giovanardi, and M. Schaerf. Experimental analysis of the computational
cost of evaluating quantified boolean formulae. In Lecture Notes in Artificial Intelligence, 1997.

[CGS98] M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified boolean formulae. In
AAAI-98, July 1998.

[CH99] V. Chandru and J. N. Hooker. Optimization Methods for Logical Inference. Series in Discrete Mathe-
matics and Optimization. John Wiley & Sons Inc., 1999.

[GJT9] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of NP-
Completeness. W. H. Freeman Company, San Francisco, 1979.

[Ost89] Jonathan S. Ostroff. Temporal Logic for Real-Time Systems. Research Studies Press Ltd., England,
1989.

Pap94] Christos H. Papadimitriou. Computational Complezity. Addison-Wesley, New York, 1994.
PS82] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Prentice Hall, 1982.
Rei93] John Reif, editor. Synthesis of Parallel Algorithms. Morgan Kaufmann, September 1993.

Sch78] T.J. Schaefer. The complexity of satisfiability problems. In Alfred Aho, editor, Proceedings of the 10th
Annual ACM Symposium on Theory of Computing, pages 216-226, New York City, NY, 1978. ACM
Press.

[Sub00] K. Subramani. Duality in the Parametric Polytope and its Applications to a Scheduling Problem. PhD
thesis, University of Maryland, College Park, July 2000.

