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Abstract

In this paper, we study the implementation of polyhedral projection schemes for problems in the domains
of Network Optimization, Real-Time Scheduling and Logic. We use the Fourier-Motzkin elimination procedure
or its dual to effect polyhedral projection. In the case of the Network Optimization and Real-Time scheduling
problems, polyhedral projection schemes performed an order of magnitude better than existing schemes on
randomly generated inputs, thereby conclusively demonstraing their superiority. To the best of our knowledge,
our implementational study of Quantifed 2SAT (Logic) is the first of its kind.

1 Introduction

This paper is concerned with the experimental validation of polyhedral projection (or its dual) as a general-purpose
technique for attacking problems in diverse domains, such as Network Optimization, Real-Time Scheduling and
Logic. We use the Fourier-Motzkin elimination technique (see §B) (or its dual) as the backbone of our polyhedral
projection algorithms. Although, other polyhedral projection schemes exist in the literature [Wei97, LW93], the
Fourier-Motzkin procedure is our method of choice, on account of its simplicity and wide applicability.

In Network Optimization, we are concerned with the problem of checking whether there exists a negative cost
cycle in an arbitrary, directed graph with positive and negative costs on the edges. This problem has numerous
applications in VLSI design and scheduling (§2.2). In real-time scheduling, we are interested in ascertaining
the parametric feasibility of a constraint system on jobs with variable execution times. Checking for parametric
feasibility is in some sense, a natural generalization of the negative cost cycle problem. In this case, polyhedral
projection (although not necessarily the Fourier-Motzkin procedure), is necessitated by the description of the
problem (See §3. In Logic, we work on the problem of checking whether an arbitrarily specified Quantified 2SAT
formula is feasible. Our approach to this problem too is based on polyhedral projection and is completely different
from the approach in [APT79].

Our experiments indicate that polyhedral projection is an effective alternative to “standard” algorithms in the
literature; our work also has some interesting theoretical consequences, which are delineated in the appropriate
sections.

The rest of this paper is organized as follows: Section §2 discusses the problem of identifying a negative-cost
cycle in a directed, weighted graph. The contraction algorithm developed in this section is used as the basis
for designing an algorithm for Parametric Scheduling in Real-Time Systems; implementations of the primal and
dual versions of a quantifier elimination algorithm are discussed in Section §3. Section §4 is concerned with the
implementation of algorithms for the Quantified 2SAT problem. We conclude in Section §5, by summarizing our
contributions and discussing problems of theoretical interest.



2 The Negative Cost Cycle Problem

This section is concerned with the problem of identifying the existence of negative cost cycles in directed graphs.

2.1 Statement of Problem

Given a directed graph G =< V,E >, where |V| = n and |E| = m, and a cost function ¢ : E — R, is there a
negative cost cycle in G?

2.2 Motivation and Related Work

Constraint graphs are often used to represent systems of difference constraints; an application of Farkas’ Lemma
shows that a system of difference constraints is feasible if and only if there does not exist a negative cost cycle
in the corresponding constraint graph [CLR92, DMP91]. In the design of VLSI circuits, it is required to isolate
negative feedback loops. These negative feedback loops correspond to negative cost cycles in the amplifier-gain
graph corresponding to the circuit [WE94]. The problem of checking whether a zero-clairvoyant scheduling system
has a valid schedule can also be reduced to the problem of identifying negative cost cycles in the appropriate
graph [Sub00].

One of the earliest and to date the fastest (asymptotically) algorithm for the negative cost cycle problem is the
Bellman-Ford algorithm [CLR92]. When all the arc-weights are integral, the scaling algorithm in [Gol95] has been
shown to be better empirically. The principal problem with both these algorithms is that they are both functional
in nature, i.e. they are designed to calculate the actual shortest paths in the graph (optimization). As a result,
they always execute a pre-specified number of steps: O(mn) in the case of Bellman-Ford and O(y/n.mlog N) in
the case of Goldberg’s algorithm (NN is absolute value of the most negative edge in the graph). Our problem is
much simpler in the following sense; we are content with merely identifying the existence of a negative cost cycle
(feasibility). It is therefore at least reasonable to expect that our problem has a faster strategy (even, if only from
an empirical perspective) than the problem of finding the shortest paths in a directed graph with positive and
negative edge weights.

2.3 The Vertex-Contraction Algorithm

The vertex contraction procedure consists of eliminating a vertex from the input graph, by merging all its incoming
and outgoing edges. Consider a vertex v; with incoming edge ep; and outgoing edge e;,. When v;, is contracted,
ep; and e;, are deleted and a single edge ep, is added with cost ¢p; + ¢;,- This process is repeated for each pair
of incoming and outgoing edges. Consider the edge ep, that is created by the contraction; it falls into one of the
following categories:

1. Tt is the first edge between vertex v, and vp. In this case, nothing more is to be done.

2. An edge e}, already existed between v, and vy, prior to the contraction of v;. In this case, if ¢;, < ¢}, keep
the new edge and delete the previously existing edge (since it is redundant); otherwise delete the new edge
(since it is redundant).

Algorithm (2.1) is a formal description of our technique.

The function PRUNE-GRAPH() checks for the presence of multiple edges and loops. Multiple edges are replaced
by a single non-redundant edge, while loops are discarded (if they have non-negative cost). If a negative cost loop
is detected in PRUNE-GRAPH(), the algorithm terminates.

2.4 Correctness and Analysis

The correctness of Algorithm (2.1) follows from the trivial observation that vertex contraction is a path-cost
preserving operation, i.e. if there is a path of cost ¢; from vertex v, to vertex vy, before the contraction of a
vertex (other than v, or vp), then there exists a path of cost at most ¢; from v, to v, after the contraction.



Function NEGATIVE-COST-CYCLE(G,n)
1: if (n = 1) then

2:  if (¢; < 0) then

3: return(true)

4: else

5: return(false)

6: end if

7: else

8: G’ =VERTEX-CONTRACT(G,n)

9:  if (PRUNE-GRAPH)(G',n — 1)) then
10: return(true)

11:  end if

12:  NEGATIVE-CosT-CYCLE (G',n —1)
13: end if

Algorithm 2.1: Negative cost cycle detection

Function VERTEX-CONTRACTION(G, n)
1: for (i=1ton)do
2: for (j=1ton)do
3 if (ein, and en; exist) then
4: Delete edges e;; and e;,
5: Add edge e;; with cost ¢i;j = cin + Cnj
6 end if
7 end for
8: end for

Algorithm 2.2: Vertex Contraction




Every cycle (including negative cost cycles) is a path from some vertex to itself and hence negative cost cycles
will eventually be detected as negative cost loops about some vertex.

Each vertex-contraction and pruning operation takes at most O(n?) time; since there are n vertices in all,
NEGATIVE-CoST-CYCLE() takes O(n®) time in the worst case. Thus, for dense graphs, Algorithm (2.1) is
competitive with Bellman-Ford; however for sparse graphs, the situation is not so sanguine. For instance, an
adversary could provide the graph in Figure (1) as input.

Figure 1: Sparse graph that becomes dense after vertex contraction

The graph is sparse and has exactly 2.(n — 1) edges. However, if vertex v, is contracted first, the resultant
graph is the complete graph on n — 1 vertices and therefore dense. It follows that O(n?) is a lower bound on the
time required by the vertex-contraction algorithm. Note that instead of picking vertices in the defined order, we
could choose the vertex to be contracted at random, without affecting the correctness of the algorithm. We have
implemented Algorithm (2.1) in two different ways; in one implementation, the vertex to be contracted is chosen
in a well-defined order, whereas in the second implementation, it is chosen at random.

Remark: 2.1 The vertex contraction algorithm is precisely the Fourier-Motzkin elimination technique applied to
the dual graph! (see §B)

2.5 Implementation

Function GENERATE-GRAPH(G,n, k,p1,p2)
1: for (i=1ton)do
2: for (j=1ton)do

3: if (i > j) then

4: With probability p; create edge e;;.

5: Assign random weight from [1 - -k].

6: else

7: if (i < j) then

8: With probability p» create edge e;;.
9: Assign random weight from [—k - - — 1].
10: end if
11: end if
12:  end for
13: end for

Algorithm 2.3: Procedure for generating a graph G, with n vertices, maximum edge weight absolute value k,
positive weight edge probability p;, and negative weight edge probability ps, for the Negative Cost Cycle Problem.




Sparse Medium Dense

n BF VC | RVC BF VC | RVC BF VC | RVC
25 1 0 0 1 0 0 0 0 0
50 2 0 0 3 0 0 4 0 0
75 7 0 0 10 0 0 12 0 0
100 15 0 0 23 0 0 29 0 0
125 30 0 0 44 0 0 55 1 0
150 51 1 1 7 1 0 99 0 1
175 83 0 1 121 1 0 158 1 1
200 124 1 0 183 1 1 236 1 1
225 174 1 1 258 1 1 332 1 1
250 236 2 1 352 2 1 458 2 1
275 314 2 2 468 2 2 610 2 2
300 404 2 3 612 2 2 800 2 2
325 522 2 3 775 2 2 1,022 2 3
350 644 4 3 982 3 3| 1,254 3 3
375 803 3 4| 1,202 3 3| 1,578 3 3
400 973 3 3| 1,461 3 4| 1,910 4 4
425 1,141 4 5 1,767 4 5 2,291 4 4
450 | 1,400 5 5| 2,080 5 5| 2,716 6 4
475 | 1,636 5 5| 2,432 6 5| 3,182 6 5
500 | 1,924 6 6| 2,867 6 6| 3,677 7 5
Total: 10,484 41 43 15,7118 42 40 20,423 45 40

Table 1: Comparison of Bellman-Ford (BF), Vertex Contraction (VC) and Randomized Vertex Contraction(RVC)
execution times required to solve the Negative Cost Cycle problem on graphs of varying size and edge density.

Graphs for the Negative Cost Cycle problem were generated according to the procedure shown in Algorithm
(2.3). The graphs generated are vertex ordered in that edge e;; will have cost < 0, if i < j and cost > 0, if
i > j !. Table (1) shows a comparison of Bellman-Ford, Vertex Contraction, and Randomized Vertex Contraction
execution times required to solve the Negative Cost Cycle problem for graphs of varying size and edge density.
Execution times for all implementation tables are given in (truncated) hundredths of a second; a running time
of zero, merely indicates that the time taken was less than 1(1]—0 of a second. “Sparse” graphs are those in which
the probability that a particular edge exists p; = p2 = 0.1; in “Medium” graphs p; = p» = 0.5, and in “Dense”
graphs p; = p» = 0.9. Edge weights are generated from a uniform distribution over the appropriate interval.

Table (1) compares the performance of the 3 algorithms: Bellman-Ford (BF), Vertex Constration (VC) and
Randomized Vertex-Contraction (RVC) on vertex ordered graphs of varying densities.

Table (2) compares Bellman-Ford, Vertex Contraction, and Randomized Vertex Contraction execution times
for graphs in which the probability that a backward (positive weight) edge exists differs from the probability a
forward (negative weight) edge exists. For graphs with “many Negative Edge Weights,” the probability that a
backward edge exists p1 = 0.1, and the probability a forward edge exists p» = 0.9. For graphs with “Few Negative
Edge Weights,” the probabilities are reversed, with p; = 0.9 for backward edges and p» = 0.1 for forward edges.
Essentially, we are taking into account graphs which do not have a high probability of containing negative cost
cycles.

2.6 Summary

From Table(1) and Table (2), it is easy to see that the Vertex Contraction technique (with or without randomiza-
tion) is vastly superior to the Bellman-Ford algorithm in all instances. The superiority is demonstrated not only
in the total suite time, but also in each individual instance. We note that the effect of randomization has been
minimal at best; the reason is that we are generating random graphs to begin with; consequently the probability

1Tt is not hard to see that the class of vertex ordered graphs encompasses the set of all directed, weighted graphs.



Many Negative Few Negative

Edge Weights Edge Weights
n BF VC | RVC BF VC | RVC
25 0 0 0 0 0 0
50 2 0 0 3 0 0
75 9 0 0 9 0 0
100 22 0 0 21 0 1
125 43 1 0 41 0 1
150 75 0 1 72 0 1
175 120 0 1 116 1 1
200 180 1 1 173 1 0
225 252 1 2 247 1 1
250 348 2 2 344 2 1
275 470 2 2 451 2 1
300 606 2 2 592 2 2
325 779 3 2 760 3 2
350 970 3 3 942 3 2
375 | 1,191 3 4| 1,164 3 4
400 | 1,450 3 4| 1411 4 4
425 | 1,727 5 4| 1,694 4 5
450 | 2,043 5 5| 2,005 5 5
475 | 2,420 4 6| 2,363 5 5
500 | 2,824 6 7| 2,764 6 6
Totals: 15,531 41 47 15,172 42 42

Table 2: Comparison of Bellman-Ford (BF), Vertex Contraction (VC) and Randomized Vertex Contraction(RVC)
execution times required to solve the Negative Cost Cycle problem on graphs of varying size and number of negative
edge weights.

that in any given instance, we will make a sequence of bad choices for vertices to be contracted is small. One
interesting direction in which our research could be extended is to provide an analysis of the expected convergence
time, in case of the Randomized Vertex Contraction algorithm.

3 Real-Time Scheduling

An important feature in Real-Time systems is parameter impreciseness, i.e. the inability to accurately determine
certain parameter values. The most common such parameter is task execution time. A second feature is the
presence of relative timing constraints between jobs such as: Start Job Jo 5 units after J; finishes. Here, we
focus on parametric real-time systems wherein the only information available before a job is to be dispatched is
the actual execution time of every job sequenced before it. The primary scheduling goal is to provide an offline
guarantee that the input constraints will be met at run-time. In a Parametric System, the dispatch time of a job
will, in general, be a parameterized function of the start and execution times of jobs sequenced before it.

3.1 Statement of Problem

Assume an infinite time-axis, divided into windows of length L, starting at time ¢ = 0. These windows are called
periods or scheduling windows. There is a set of non-preemptive, ordered jobs, J = {Ji, Ja, ..., J,} that execute
in each scheduling window.

3.2 Constraint Model
The constraints on the jobs are described by System (1):



A[s &7 <b, E€E, (1)
where,
e A is an m X 2.n rational matrix,

e E is an axis-parallel rectangle aph represented by:
T = [ll,ul] X [ZQ,UQ] X ... [l",u"] (2)

The aph Y models the fact that the execution time of job J; can assume any value in the range [I;, u;] i.e.
it is not constant.

e §=[s1,82,...,8y,] is the start time vector of the jobs, and
e €= [eq,e3,...,e,] € E is the execution time vector of the jobs

Since, the jobs are non-preemptive, the finish time f; of job J; can be expressed as f; = s; + e;; hence there is
no gain in introducing separate variables to represent finish times. In this paper, we only care about “standard”
constraints, i.e. strict difference constraints between start or finish times of jobs. Accordingly, the following types
of constraints are permitted between J; and J;, (i < j):

1. Relative timing between s; and s;, e.g. s; +4 < s;

2. Relative timing between s; and (s; +e;), e.g. s; +4>s;+e; +8

3. Relative timing between (s; + ¢;) and s;, e.g. (s; +¢e;) +4 <'s;

4. Relative timing between (s; +€;) and (s; +¢€;), e.g. s;i +e +8> s; +e¢;

For a detailed description of standard constraints, see [GPS95].

3.3 Query Model

Suppose that job J, has to be dispatched. We assume that the dispatcher has access to the start times
{51, 82,...,84—1} and execution times {ej,es,...,e,_1} of the jobs {J1, J2,..., Jo—1}.

Definition: 3.1 A parametric schedule of an ordered set of jobs, in a scheduling window, is a vector § =
[s1,82,---,8,], where s1 is a rational number and each s;,i # 1, is a function of the start time and execu-
tion time variables of jobs sequenced prior to job J;, i.e. {s1,e1,82,€2,...,8;—1,€i—1}. Further, this vector should
satisfy the constraint system (1) for all execution time vectors € € Y.

Accordingly, the parametric scheduling problem is concerned with deciding the following query:
Is1Ve; € [ly,u1]TsyVes € [lo, uy ... IspVey, € [In,un] ALS € < b? (3)
Remark: 3.1 Observe that the query is asking whether a totally unimodular Quantified Linear Program [Sub01c]
is feasible.
3.4 Motivation and Related Work

Parametric scheduling provides a means of addressing the lack of flexibility in static scheduling.
Ezample (1): Consider the two job system J = {Jy, Jo}, with start times {s1, s2}, execution times in the set
{(e1 €)[2,4] x (e2 €)[4,5]} and the following set of constraints:

e Job J; must finish before job Jo commences; i.e. s1 + e < Sa;

e Job Jo must commence within 1 unit of J1 finishing; i.e. so <s1+e1+1;



Clearly a static approach would declare the constraint system to be infeasible, i.e. there do not exist rational
{51,852} that satisfy the constraint set for all execution time vectors. Now consider the following start time

dispatch vector:
§= [ 51 ] = [ 0 ] (4)
S92 S1 + e

This assignment satisfies the input set of constraints and is hence a valid dispatch schedule. The key feature
of the schedule provided by Equation (4) is that the start time of job J; is no longer an absolute time, but a
(parameterized) function of the start and execution times of job J;.

Parametric Scheduling was introduced in [Sak94] as a technique to address the inflexibility of Static Scheduling.
A number of special cases have been analyzed since in [GPS95, Cho00, SA00, Sub01b]. To the best of our
knowledge, our effort in this paper marks the first implementational study of algorithms for parametric scheduling.

3.5 Primal and Dual Algorithms

Algorithm (3.1) [GPS95, Cho97] represents a primal strategy to solve the problem, while Algorithm (3.3) [Sub00,
Sub0la] represents a dual strategy for the same.

Function PARAMETRIC-SCHEDULER (Y, A, b)
1: for (i =n down to 2) do
2:  ELIM-UNIV-VARIABLE(e;)
3:  if (CHECK-INCONSISTENCY()) then
4 return (false)
5: end if
6: PRUNE-CONSTRAINTS()
7:  ELIM-EXIST-VARIABLE(S;)
8:  if (CHECK-INCONSISTENCY()) then
9 return (false)
10:  end if
11: end for
12: ELIM-UNIV-VARIABLE (e;)
13: if (@< s <b, a,b>0) then
14: Valid Parametric Schedule Exists
15:  return
16: else
17:  No Parametric Schedule Exists
18: return
19: end if

Algorithm 3.1: The Primal Algorithm

Function ELIM-UNIV- VARIABLE (A, b)

1: Substitute e; = I; in each constraint that can be written in the form e; > ()
2: Substitute e; = u; in each constraint that can be written in the form e; < ()

Algorithm 3.2: Eliminating Universally Quantified variable e; € [l;, u;]

A detailed analysis of Algorithm (3.1), including the proof of correctness, is available in [GPS95]; essentially the
algorithm works by unrolling the quantifier string, one quantifier at a time, until only the first variable remains.
Each elimination step is solution-preserving; i.e. there is a solution to the original system, if and only if there
is a solution to the system that results after the elimination of quantified (existential or universal) variable. It
can be shown that the above algorithm converges in time O(n?®). Eliminating universally quantified variables is




done through Algorithm (3.2), while eliminating existentially quantified variables is accomplished through the
Fourier-Motzkin elimination.

Algorithm (3.1) requires an array-based implementation for the Fourier-Motzkin elimination procedure; this
implementation significantly slows down the task of checking the parametric feasibility of a Job system. Algorithm
(3.3) represents a dual strategy for the same problem. It is based on the following observations:

Let G =< V,Q > represent the dual graph of a (standard) constraint system A.[S,€] < b. V is the set of
vertices and Q is the set of edges. Consider any two vertices s; and s;, ¢ < j.

Definition: 3.2 A valid path between s; and s; is a sequence s; = s(,q1,51,92,---,qk,5; = S}, where each g is
an edge in Q from s;_, to s; and therefore represents a difference constraint of the form s;_; — s; < ()

Remark: 3.2 This definition is different from the standard definition of a path in a directed graph [CCPS98],
in that a valid path can ewist only from a vertex s; to a vertex s;, i < j, i.e. the index number of the start vertex
must be less than or equal to the index number of the final vertex.

Remark: 3.3 An edge in a valid path can exist from a verter with a higher numbered vertex to a lower numbered
verter. Thus in Figure (2), q1 is not a valid path; however it is a valid edge on the path sa2,q1,51,4qs3, S2.

e +4

S1 S3

So
Figure 2: Constraint graph representation for a system of difference constraints

Let P denote the valid path < s; = s{, 41, $1,¢2,...,5; = 8}, >, ¢ < j. The cost of this path ¢(P) is calculated as
follows: Substitute e = I on all edges of the path, where e} occurs with a positive sign and e = uy on all edges
of the path, where e occurs with a negative sign if k¥ > i 2. Now perform symbolic addition over the path P to
get an affine function r'.e + ki, for some ', k;, where € = [e1,€2,...,€;—1]. Then, | = ming r.e + ki is called the
parametric cost of the path, e.g. the parametric cost of path < ss2,¢1, 51,43, $2,¢2,53 > isminge; +4—e; —4 = 0.

Theorem: 3.1 A constraint system A[S, €] < b is parametrically infeasible if and only if there is a valid loop in
the corresponding graph G =< V,Q > having negative parametric cost.

Proof: See [Sub01a], [Sub00]. O

The above theorem is exploited by Algorithm (3.3), which essentially identifies negative parametric cost loops
in the constraint graph. The VERTEX-CONTRACT() procedure use in Algorithm (3.3) is similar to the VERTEX-
CONTRACT() procedure in Algorithm (2.1); the only difference between the two is that in case of Parametric
Scheduling, the edge costs are added symbolically. Since at most two execution time variables need to be added
during any contraction, the addition can still be implemented in O(1) time.

3.6 Implementation

Parametric Scheduling constraint graphs were generated according to the procedure shown in Algorithm (3.4).
Table (3) compares execution times for the primal algorithm and the dual algorithm running on Parametric

2Recall that e; € [I;,u;]



Function PARAM-SCHEDULE-STANDARD (G =<V, E >)
1: for (i =n down to 2) do
2 Substitute e; = u; on all edges where e; is prefixed with a negative sign
3 Substitute e; = I; on all other edges { We have now eliminated e; in Ve; € [l;,u;] }
4 G'=< V' E' > =VERTEX-CONTRACT(S;)
5: end for
6: Substitute e; = u; on all edges, where e; is prefixed with a negative sign
7: Substitute e; = I, on all other edges { At this point, the only edges in the graph are between s; and so and
the weights on these edges are rational numbers.}
Find the edge s; ~ so with the smallest weight, say u. {u >0}
9: Find the edge sg ~ s; with the largest weight in magnitude, say I. {1 <0}
10: if (=l <wu) then
11:  return [—[,u] as the range in which J; can begin execution
12: else
13: There is no Parametric Schedule
14: return
15: end if

®

Algorithm 3.3: The Dual Algorithm

Scheduling constraint graphs with varying numbers of jobs and constraints. As with Negative Cost Cycle graphs,
in “Sparse” constraint graphs a particular edge exists with probability p; = 0.1, in “Medium” graphs with p; = 0.5,
and in “Dense” graphs with p; = 0.9. Table (4) compares the algorithms on graphs with varying probability that
an edge, if it exists, is a forward (negative weight) edge. For graphs with “Many Forward Edges,” p» = 0.1; for
graphs with “Few Forward Edges,” p, = 0.9.

3.7 Summary

To the best of our knowledge, our implementational study of the Parametric Scheduling algorithms is the first of
its kind in the literature. It is clear that the performance of the dual algoritm, i.e. Algorithm (3.3) is definitely
superior to that of the primal algorithm. We handcoded the Fourier-Motzkin procedure, as opposed to using freely
available code; it is perhaps possible to speed up the Primal algorithm, by using optimized implementations of
the Fourier-Motzkin procedure. An interesting open problem is to devise an O(mn) algorithm for the Parametric
Scheduling problem.

4 Quantified 2SAT

Quantified 2SAT refers to an instance of the Satisfiability problem (assumed to be in CNF) in which:
1. Each clause has at most 2 literals,
2. Every variable is quantified with either a 3 or a V sign.

[APT79] has shown that this problem admits a linear-time solution; they exploit the correspondence between
2SAT formulae and directed graphs to derive their criteria for checking satisfiability.

In this section, we show that a 2-SAT formula can be represented as an integer program which admits polyhedral
elimination techniques; in particular we show that the Fourier-Motzkin elimination procedure can be applied to
these formulae to test for satisfiability. The advantage of using elimination procedures are twofold: (a) they
are inherently incremental, and (b) a number of symbolic computation programs have such procedures built-in
[CH99].
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Function GENERATE-CONSTRAINT-GRAPH(G, n,z, L, w, p1,p2)
1: for (i=1ton)do
2:  Choose a and b at random from [0, z].

3:  Assign job i execution time lower bound /; = min(a, b), upper bound u; = max(a,b).

4: end for

5: for (i =1ton) do

6: for (j=0toi—1)do

7: if (i=1,7=0)then

8: Create type 1 edge from vg to vy with weight 0.

9: else

10 if (i =n,j=0) then

11: Create type 1 edge from v,, to vo with weight L.

12: end if

13: else

14: for (each of four possible edge types) do

15: if (true with probability p;) then

16: if (true with probabiltiy p2) then

17: Create edge from v; to v; with constant portion of weight taken at random from [0, w]
(positive weight edge).

18: else

19: Create edge from v; to v; with constant portion of weight taken at random from [—w, 0]
(negative weight edge).

20: end if

21: end if

22: end for

23: end if

24:  end for

25: end for

26: for (i=1ton—1) do
27:  if (No type 2 or type 4 edge between v; and v;41) then

28: Create (type 2) edge from v; to v;41 with weight e;.
29: end if
30: end for

Algorithm 3.4: Procedure for generating a Parametric Scheduling constraint graph G with n jobs, maximum
job execution time bound z, scheduling window L, maximum time between jobs w, edge existence probability p;,
and edge direction probability ps.
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Sparse Medium Dense

Jobs | Primal | Dual | Primal | Dual | Primal | Dual
2 1 0 0 0 0 0
4 0 0 0 0 0 0
6 0 0 1 0 1 0
8 0 0 1 0 1 0
10 0 0 1 0 3 0
12 2 0 2 0 6 0
14 1 0 6 0 10 0
16 4 0 7 0 22 0
18 4 0 13 0 37 0
20 3 0 20 0 67 0
22 10 1 29 0 97 0
24 22 0 50 0 147 0
26 29 0 71 0 209 0
28 23 0 95 0 304 0
30 35 0 127 0 432 0
32 13 0 188 0 595 0
34 10 0 235 0 847 0
36 187 0 360 1 973 0
38 244 1 452 0 4,891 0
40 138 0 554 0| 10,755 0
Total: 726 2 2,212 1 19,397 0

Table 3: Comparison of Primal and Dual algorithm execution times required to verify the existence of a valid
Parametric Schedule, for varying constraint graph density and number of jobs.

4.1 Statement of Problem

Let
F=Qiz1Q2x2...Qnzn C, (5)

where C is a conjunction of m clauses in which each clause has at most 2 literals. The quantified satisfiability
problem is concerned with answering the question: Is F' true?
We first note that F' has the following Integer Programming formulation,

F=Qm € {07 1}@2.%’2 € {07 1} o -Qpry € {07 1} Ax< Ba (6)
where
1. A has n columns corresponding to the n variables and m rows corresponding to the m constraints.

2. A clause (z;, x;) is replaced by the integer constraint z; +x; > 1; a clause (&;, ;) is replaced by 1 —z; +x; >
1= —z; +x; > 0; a clause of the form (x;,c;) is replaced by «; + 1 —2; > 1= z; —x; > 0, and a clause
of the form (£;,%;) is replaced by 1 —2; + 1 —2; > 1= —z; —z; > 0.

3. Each @); is one of 3 or V.

The equivalence of of the clausal system and the integer programming formulation have been argued in [CLR92]
and [Pap94].
4.2 Related Work

[Sch78] argued that Q2SAT could be solved in polynomial time, but provided no algorithm for the same; [APT79]
gave the first algorithm for this problem. The parallel complexity of this problem has been explored in [Che92],
[CM88] and [Gav93] and it has been demonstrated that Q2SAT is in the parallel complexity class NC,.
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Many Forward Few Forward

(Negative Weight) | (Negative Weight)
Edges Edges

Jobs | Primal Dual Primal Dual
2 0 0 0 0
4 1 0 0 0
6 0 0 1 0
8 1 0 1 0
10 3 0 1 0
12 2 0 5 0
14 4 0 4 0
16 34 0 7 0
18 12 0 26 0
20 23 0 22 1
22 30 0 36 0
24 139 0 53 0
26 71 0 70 0
28 98 0 338 0
30 137 0 151 0
32 192 0 197 0
34 263 0 276 1
36 350 0 356 0
38 439 0 424 0
40 589 0 600 0
Total: 2,388 0 2,568 2

Table 4: Comparison of the primal and dual algorithm execution times required to verify the existence of a valid
Parametric Schedule, for varying numbers of forward edges and jobs.

Fourier-Motzkin elimination, as a technique for resolving feasibility in linear systems was proposed in [Fou24]
and elaborated in [DE73]. Extending the technique to resolving integer programs was the thrust of [Wil76]
and [Wil83]. A direct application of Fourier’s theorem to integer programs results in congruences and modulo
arithmetic. We show that for the restricted case of 2SAT integer programs, we can avoid modulo arithmetic
altogether.

4.3 The Quantifier Elimination Algorithm

Algorithm (4.1) represents our strategy for deciding a Quantified 2SAT query. Although this algorithm is similar
to Algorithm (3.1), it is important to note that the constraint program in §3 is a Quantified Linear Program
(QLP), whereas in this section we are dealing with a Quantified Integer Program (QIP). The main contribution
of this section, is the observation that 2SAT QIPs can be relaxed to QLPs and solved using existing algorithms
for the same [Sub00].

Lemma: 4.1 Given a polyhedral system of the form A.X < b and a variable x;, which is universally quantified,
i.e. of the form Vz; € {0,1}, we can replace the set {0,1} with the interval [0, 1] while maintaining the truth value
of the query.

Proof: Let us focus on any one variable, say x;, which is universally quantified as: Vx; € {0,1}. Let the query
be:

Q111Q2x2 ... Vx; € {0, ].} .. Qnﬂan)—f < B (7)
Now consider the query

Q111Q22o...V2; € [0, ].] e Qur,AX < B (8)
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It is clear that System (8) = System (7). We need to show that System (7) = System (8). Let us say that the
polyhedral system is infeasible for ©; = a,0 < a < 1. We then increase a to 1. If the system stays infeasible then
we are done. Let us consider the case, in which the system becomes feasible. Then decreasing a to 0 must cause
the constraint violation to increase and hence the System to become infeasible. This is a consequence of the local
convexity of the polyhedral system, i.e. if the system is feasible for x; = a and for x; = b, then it must be feasible
for all z; € (A.a+ (1 —X).b), A € [0,1]. We can argue similarly for every other universally quantified variable. O
The import of Lemma (4.1) is that it allows us to replace every universal quantification of the form {0,1} with
the interval [0, 1], thereby permitting us to use interval elimination techniques.

Function DECIDE-Q2SAT (A, b)

1: for (i =n down to 1) do
2: if (Qz = 3) then

3: Eliminate z; using the Fourier-Motzkin procedure
4: PRUNE-CONSTRAINTS()

5: if (CHECK-INCONSISTENCY()) then
6: return (false)

7 end if

8: end if

9: if (Q; =V) then

10: ELIM-UNIV-VARIABLE(Z;)

11: PRUNE-CONSTRAINTS()

12: if (CHECK-INCONSISTENCY()) then
13: return (false)

14: end if

15:  end if

16:  if (CHECK-INCONSISTENCY()) then
17: return (false)

18:  end if

19: end for

20: return (true)

Algorithm 4.1: A Quantifier Elimination Algorithm for deciding Quantified 2SAT

Function ELIM-UNIV-VARIABLE (A, b, z;)

1: Substitute z; = 0 in each constraint that can be written in the form z; > ()
2: Substitute z; = 1 in each constraint that can be written in the form z; < ()

Algorithm 4.2: Eliminating Universally Quantified variable

The elimination of a variable (existential or universal) results in one or more of the following consequences:

1. Some redundant constraints result, which can be pruned out. This is the function of the subroutine PRUNE-
ConsTRAINTS(). For instance, suppose that the variable x5, which is universally quantified, is eliminated
from the constraint set {(x1)(z2,z1)}, we get {(x1), (z1)} which can be pruned to {(z1)}. Likewise, suppose
that the existentially quantified variable x5 is eliminated from the constraint set {(z5, z2), (€5, 3)(z2,23)},
we get {(z2,23)(z2,23)}, which can be replaced by {(z2,z3)}. It is also possible that a clause of the form
(21, 1) results in which case we can set the formula to be true and return;

2. An inconsistency results and we return false through the function CHECK-INCONSISTENCY(). The only
inconsistencies that we care about are those that cause a variable to be set simultaneously to true and
false. For instance, suppose that variable z; is being eliminated from the constraint set {(z1)(z;,%1)(%;)},
we get {(z1)(#1)}, which is an inconsistency.
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3. We get a smaller subset of variables to work with. Observe that the total number of constraints is always
bounded by 4 times the square of the number of variables.

4.4 Correctness

The correctness of the Algorithm (4.1) follows from the correctness of the Universally quantified variable elimina-
tion procedure and the correctness of the Fourier-Motzkin elimination procedure. The correctness of the universal
variable elimination procedure for polyhedra has been argued in [Sch87] and [Sub00]. The substitution operation
performs an intersection of the polyhedron with the hyper-planes z; = 0 and z; = 1 ( assuming that we are at
step ...Vz; € [0,1]A’.x' < b'). It follows that the original proposition is true if and only if the intersection is
non-empty. We now show that the Fourier-Motzkin elimination procedure works correctly over 2SAT clauses.
Observe that the existential variable z; needs to be eliminated only if it appears both in complemented and
uncomplemented forms over the clause set. Otherwise its value is obvious and fixed.

Let us say that we are eliminating x; from the clauses (z;, ;) and (Z;,2). Using resolution, we know that
the conjunction of these two clauses can be replaced by (z;,2;). The constraint equations are z; + z; > 1 and
—z;+x > 0. We first rewrite the two equations as: 1 > 1—=z; and x; < x. Applying the elimination procedure
gives 1 —z; <z = z;+x > 1 = (z;, ), which is exactly what is needed to be proved. During the elimination,
it is possible to obtain constraints such as 2.2y < 1 or 2.z; > 1; in the former case x; is set to 1, while in the
latter case, x; is set to 0, since we only care about quantified lattice points.

Since z; and z, are chosen arbitrarily, the claim follows.

4.5 Implementation

Function GENERATE-QUERY(C, n, p1, p2)
1: for (i =1ton)do
2: if (TRUE with probability p;) then

3 Assign universal quantifier (V) to variable i.
4: else

5 Assign existential quantifier (3) to variable i.
6: end if

7: end for

8: for (i=1ton—1)do
9: for (j=i+1ton)do

10: With probability ps create clause (z;, ;).
11: With probability ps create clause (&;, ;).
12: With probability ps create clause (z;,2;).
13: With probability p, create clause (&;, &;).
14: end for

15: end for

Algorithm 4.3: Procedure for generating a quantified 2-SAT query, which is a set of clauses C with n variables;
p1 is the probability a particular variable is universally quantified, and p, is the probability a particular clause
exists.

Queries for Quantified 2-SAT were generated according to the procedure shown in Algorithm (4.3). Tables
(5), (6), and (7) compare execution times for Fourier-Motzkin elimination and Tarjan’s algorithm running on
quantified 2-SAT queries, varying the number of variables and the likelihood that a particular clause is included
in the query. Consider the graph on the 2 - n literals, {z1,41,...,Zn, 5, }. For “Sparse” constraint sets, the
probability a particular clause is included in the query p» = 0.1; for “Medium” constraint sets ps = 0.5, and for
“Dense” constraint sets po = 0.9. The quantifier for each variable is either V or 3 with probability % In Table 5,
the probability a universal quantifier is chosen for a particular variable p; = 0.1; for Table (6), p1 = 0.5, and for
Table (7), p1 = 0.9, i.e. we vary the number of alternations in the quantifier string.
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Sparse Medium Dense
Vars. | T|FM | T| FM | T | FM

210 00 010 0
410 00 010 0
6|0 00 0|0 0
810 00 0|0 0
10| 0 00 00 0
12| 0 00 0|0 2
14| 0 110 210 5
16 | 0 00 510 8
18| 0 110 310 15
20 0 110 10| 0 26
221 0 1] 0 13| 0 42
24| 0 310 211 0 65
26| 0 210 32 |1 94
28 | 1 210 43 1 0 138
30| 0 310 65| 1 191
321 510 98 | 0 276
340 91 113 | 0 363
36| 0| 22| 0 148 | 0 500
381 71 203 | 1 628
40 | 1| 42| 0 259 | 1 810
Total: 4 9 2 1,015 4 3,163

Table 5: Comparison of Tarjan’s algorithm (T) and Fourier-Motzkin Elimination (FM) execution times required
to solve Quantified 2-SAT problem for implication graphs of varying size and edge density, given the probability
p1 that a universal quantifier is chosen for a particular variable = 0.1.

4.6 Summary

From Table (6) and Table (7), it is clear that Tarjan’s algorithm is superior to Algorithm (4.1) in all instances.
However, in many constraint databses [BEW97], the Fourier-Motzkin procedure is already available and our work
establishes that it can be used, at least in principle, for the purpose of resolving Q2SAT formulae.

Some of the interesting open problems are:

1. In [CR92] it was shown that Existential 2SAT formulae, are probably satisfiable if m = ¢-n,c < 1 and
probably unsatisfiable, if ¢ > 1. In [Ala], we are working on similar bounds for the Q2SAT problem;

2. Can our rudimentary O(n®) analysis be improved?

3. Are there classes of 2SAT formulae for which the performance of Algorithm (4.1 compares favourably with
Tarjan’s algorithm?

5 Conclusion

In this paper, we analyzed polyhedral projection from an implementational perspective, by studying its perfor-
mance on problems from 3 different domains. In the case of Network Optimization, polyhedral projection is clearly
superior to the Bellman-Ford algorithm. In Real-Time parametric scheduling, some form of polyhedral projection
is unavoidable, on account of the alternations in the quantifier string representing the schedulability query. Our
dual algorithm is empirically superior to the primal algorithm, although both require O(n?®) convergence time in
the worst-case. In the case of the Quantified 2SAT problem, our result has some interesting theoretical offshoots.
We know that IP(2), i.e. Integer Programming with at most 2 variables per constraint is NP-complete [HN94];
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Sparse Medium Dense
Vars. | T|FM | T| FM | T | FM

210 110 0|0 0
410 00 010 0
6|0 00 0|0 0
810 00 0|0 0
10| 0 00 0|0 1
121 0 00 110 2
14| 0 00 110 4
16 | 0 00 510 9
18| 0 110 6|0 15
20 0 110 8|0 25
221 0 1] 0 13| 1 41
24| 0 210 211 0 66
26 | 0 211 300 94
28 | 0 6| 0 49 | 0 139
300 71 64| 0 189
32 0 12 | 1 81| 0 267
34 0| 15| 0 119 | 0 356
36| 0 8|0 285 | 0 466
3810 91 189 | 0 622
401 0| 34| 0 249 | 0 828
Total: 0 99 4 1,121 1 3,124

Table 6: Comparison of Tarjan’s algorithm (T) and Fourier-Motzkin Elimination (FM) execution times required
to solve Quantified 2-SAT problem, given the probability p; that a universal quantifier is chosen for a particular
variable = 0.5.

Q2SAT is a special subclass of IP(2). The question then is: Are there other interesting subclasses of IP(2), that
admit polynomial time solutions?

Remark: 5.1 The code for our implementations can be downloaded from :
http://www.csee.wvu.edu/ "dowen/alenex-02

A Implementation System

Table (8) describes the computer system used for all experiments presented in this paper.

B  Fourier-Motzkin Elimination

The Fourier-Motzkin elimination procedure is an elegant, syntactic, variable elimination scheme to solve constraint
systems that are comprised of linear inequalities. It was discovered initially by Fourier [Fou24] and later by
Motzkin [DE73], who used it to solve general purpose Linear programs.

The key idea in the elimination procedure is that a constraint system in n variables (i.e. ™), can be projected
onto a space of n — 1 variables (i.e. ®7~!), without altering the solution space. In other words, polyhedral
projection of a constraint set is solution preserving. This idea is applied recursively, till we are left with a single
variable (say x1). If we have a < 7 < b,a < b, then the system is consistent, for any value of z; in the interval
[a,b]. Working backwards, we can deduce the values of all the variables z»,...,z,. If a > b, we conclude that
the system is infeasible.

Algorithm (B.1) is a formal description of the above procedure.

Though elegant, this syntactic procedure suffers from an exponential growth in the constraint set, as it pro-
gresses. This growth has been observed both in theory [Sch87] and in practice [HLL90, LM91]. By appropriately
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Sparse Medium Dense
Vars. | T|FM | T| FM | T | FM

210 00 010 0
410 00 010 0
6|0 00 0|0 0
810 00 0|0 1
10| 0 00 0|0 1
121 0 00 110 2
14| 0 00 110 5
16 | 0 00 310 9
18| 0 110 510 16
20 0 110 8|0 25
221 0 1] 0 13| 0 42
24| 0 110 18| 0 62
26 | 0 411 28 | 0 96
28 | 0 8§80 42| 1 133
30| 0 510 60 | O 188
320 11| 0 8 | 0 266
34| 0| 17| 0 114 | 0 360
36| 0| 210 151 | 0 487
3810 6|0 211 | O 623
40 | 1 10| 1 264 | 0 793
Total: 1 8 2 1,007 1 3,109

Table 7: Comparison of Tarjan’s algorithm (T) and Fourier-Motzkin Elimination (FM) execution times required
to solve Quantified 2-SAT problem, given the probability p; that a universal quantifier is chosen for a particular
variable = 0.5.

choosing the constraint matrix A, it can be shown that eliminating k variables causes the size of the constraint
set to increase from m to O(m2k) [Sch87]. Algorithm (B.1) remains useful though as a tool for proving theorems
on polyhedral spaces [VR99]. [Sch87] gives a detailed exposition of this procedure.
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3
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