An analysis of Quantified Linear Programs

K. Subramani *
LDCSEE,
West Virginia University,
Morgantown, WV
{ksmani@csee.wvu.edu}

Abstract

Quantified Linear Programming is the problem of checking whether a polyhedron specified by a linear sys-
tem of inequalities is non-empty, with respect to a specified quantifier string. Quantified Linear Programming
subsumes traditional Linear Programming, since in traditional Linear Programming, all the program variables
are existentially quantified (implicitly), whereas, in Quantified Linear Programming, a program variable may
be existentially quantified or universally quantified over a continuous range. On account of the alternation
of quantifiers in the specification of a Quantified Linear Program (QLP), this problem is non-trivial. QLPs
represent a class of Declarative Constraint Logic Programs (CLPs) that are extremely rich in their expressive
power. The complexity of Quantified Linear Programming for arbitrary constraint matrices is unknown. In
this paper, we show that polynomial time decision procedures exist for the case in which the constraint matrix
is Totally Unimodular (TUM). We also provide a taxonomy of Quantified Linear Programs, based on the
structure of the quantifier string and discuss the computational complexities of the constituent classes.

1 Introduction

Quantified Linear Programming was a term coined in [Sub00], in discussions with [Joh] and [Imm] to describe
linear programming problems in which one or more of the variables are universally quantified over some domain
and the rest of the variables are existentially quantified in the usual sense. Quantified Linear Programs (QLPs)
are extremely expressive in that they can be used to express a number of schedulability specifications in real-
time systems [Sub02]. In a typical real-time programming language such as the Maruti Programming Language
(MPL) [MKAT92, LTCAS89], it is necessary to specify constraints between various tasks that make up the schedule;
constraints such as relative timing constraints cannot be captured through precedence graphs and necessitate the
use of QLPs [Sub02]. While no hardness result is known for the general problem, in this paper we show that the
recognition problem is in PSPACE . The main contributions of this paper are as follows:

1. Description of the QLP framework in general form

2. Development of new proof techniques to analyze the decidability of QLPs,

3. Development of a new sufficiency condition guaranteeing the polynomial time convergence of a given QLP,
4. Development of a taxonomy scheme for QLPs, based on their quantifier strings.

The rest of this paper is organized as follows: Section §2 formally describes the Quantified Linear Programming
problem. The motivation for our analysis and related work are discussed in Section §3. Section §4 describes an
algorithm for the Quantified Linear Programming problem, while Section §5 proves the correctness of the same. In
Section §6, we analyze the complexity of the algorithm discussed in Section §4, for the case in which the constraint
matrix is totally unimodular (TUM). In Section §7, we provide a taxonomy of QLPs based on the structure of

*This research has been supported in part by the Air Force Office of Scientific Research under Grant F49620-02-1-0043

the quantifier string; we show that the class of E-QLPs is solvable in polynomial time (using a modification of
the algorithm in Section §4), regardless of the structure of the constraint matrix and that the class of F-QLPs
is coNP-complete, in general. We conclude in Section §8 by summarizing our results and discussing a number of
problems for future research.

2 Problem Statement

We are interested in deciding the following query:

G : 3y € [ay,b1] Yy1 € [l1,u1] Fxo € [ag, ba] Yya € [la,us] ... 3zp € [an, bn] Yyn € [ln, un]
A-xyT<b. x>0 (1)
where
e A is an m X 2 -n matrix called the constraint matrix,
e X is a n—vector, representing the control variables (these are existentially quantified)

e ¥y is a n—vector, representing the variables that can assume values within a pre-specified range; i.e., com-
ponent y; has a lower bound of [; and an upper bound of u; (these are universally quantified);

e b is an m—vector

The pair (A, 6) is called the Constraint System. Without loss of generality, we assume that the quantifiers are
strictly alternating, since we can always add dummy variables (and constraints, if necessary) without affecting
the correctness or complexity of the problem.

The string Jz1 € [a1,b1] Vy1 € [l1, u1] a2 € [az, ba] Yy2 € [la,ug] ... Ty € [an,by] Yyn € [ln, uy] is called the
quantifier string of the given QLP and is denoted by Q(X,¥). The length of the quantifier string, is denoted by
|Q(X,¥)| and it is equal to the dimension of A. Note that the range constraints on the existentially quantified
variables can be included in the constraint matrix A (z; € [a;, b;] can be written as a; < x;, x; < b;) and thus
the generic QLP can be represented as:

G :3xy Vyp € [l1,u1] Tz Yyo € [lo, us] ... 32, Yyn € [ln, uy)
A-xy"<b (2)

It follows that the QLP problem can be thought of as checking whether a polyhedron described by a system
of linear inequalities (A - [¥]T < b) is non-empty vis-a-vis the specified quantifier string (say Q(X,¥)). The
pair < Q(X,¥), (A, B) > is called a Parametric Polytope. In other words, Quantified Linear Programming is
concerned with checking the non-emptiness of Parametric Polytopes, just as traditional linear programming is
concerned with checking the non-emptiness of simple polytopes. For the rest of this paper, we shall assume that
the generic QLP has the form described by System (2), so that the analysis is simplified. Accordingly, we observe
that in a QLP, the dimension of the constraint matrix A and hence the length of the quantifier string is always
even.

2.1 Constraint Satisfaction and Model Verification

Definition 2.1 Let G =< Q(X,¥), (A, B) > represent an arbitrary Parametric Polytope (QLP) in the form
specified by System (2). We say that G is true or non-empty if there exists an x1 € R, such that for all
y1 € [l1,u1] (which could depend upon x1), there exists an x2 € R (which could depend upon y1), there exists a
Y2 € [l2,ua] (which could depend upon x1 and x2) and so on such that A - [X ¥]T < B, where ® = [x1, T2, ..., 25)T
and ¥ = [y1, Y2, - -, Yn) T -

In order to better understand Definition (2.1), we resort to the following 2-person game. Let X denote the
existential player and Y denote the Universal player. The game is played in a sequence of 2 - n rounds, with X

making his i* move, 2, in round 2 -7 — 1 and Y making his i*" move, y;, in round 2 -4. The initial constraint
system A - [¥ ¥|T < b is referred to as the initial board configuration. The following conventions are followed in
the game:

1. T, Yi € %, Y; € [ll,uq]’tz 1,2,...,n,

2. The moves are strictly alternating, i.e., X makes his i*" move before Y makes his ' move, before X makes
his (i + 1)** move and so on,

3. When either player makes a move, the configuration of the board changes; for instance, . suppose that X makes
the first move as 5. The current conﬁguratlon is then transformed fromA-[R ¥]T <btoA’- [x’ y']T <b/,

where A’ is obtained from A, by dropping the first column, X’ = [z2, z3, ..., z,]T and b’ =b—5-ay, with
ay denoting the first column of A.

4. The i*" move made by X, viz., ; may depend upon the current board configuration as well as the first
(¢ — 1) moves made by Y; likewise, y; may depend upon the current board configuration and the first 4
moves made by X.

5. Let X3 denote the numerical vector of the n moves made by X; y7 is defined similarly. If A - [x3 y1]T < B,
then X is said to have won the game; otherwise, the game is a win for Y. It is important to note that the
game as described above is non-deterministic in nature, in that we have not specified how X and Y make
their moves. Further, if it is possible for X to win the game, then he will make the correct sequence of
moves; likewise, if X cannot win the game, then corresponding to every sequence of moves that he makes,
Y has a corresponding sequence of moves to ensure that at least one constraint in the constraint system is
violated. (See [Pap94, HO02].)

6. From the above discussion, it is clear that the moves made by X will have the following form:

- [C], fl(yl)7 f2(y17 y2)7 ey fnfl(yhy% . 7ynfl)]T (3)
where ¢; is a constant and z; = f;_1(y1,¥2,...,yi—1) captures the dependence of x; on the first (i — 1)
moves of Y.

Likewise, the moves made by Y have the following form:
5; - [gl(xl)v g2($17 I2), e ,gn($1, Z2,.-- 7xn)]T (4)

The fi() and g;() are Skolem functions.

The following phrases are equivalent and will be used interchangeably for the rest of this paper:

(a) X is a solution vector of G,
(b) X is a model for G,
(

satisfies G,

><1

Ml

)
(c)

d) X is appropriate for G,

l

(e) X € G,

(f) X is a winning strategy for G.

Note that corresponding to any game (QLP) G, either the Existential player (X) has a winning strategy
against all strategies employed by the Universal player (Y) or (mutually exclusively) the Universal player
(Y) has a winnging strategy, against all strategies employed by the Existential player. However a specific
strategy X, for X may or may not be winning; if it is not a winning strategy for X, then Y has a winning
strategy ¥(X), corresponding to X.

Suppose that a solution vector X in the form described by Equation (3) is given; then the above model verification
algorithm requires an infinite precision Alternating Turing Machine, since there is no guarantee that the guessed
values have polynomial size or even finite size! We shall show in Section §5 that the space required for each guess
is polynomial in the sizes of A and B, if A and b are rational; thus the Alternating Turing Machine verifying the
appropriateness of X for G runs in polynomial time.

3 Motivation and Related Work

Quantified Linear Programs represent a rich language that is ideal for expressing schedulability specifications
in real-time scheduling [Sak94, GPS95, Cho97, Cho00, Sub00, Sub01], although the term Quantified Linear
Programming is being used for the first time in this paper. The scheduling QLPs that are considered in the
above citations have two restrictions, which were both used in the development of polynomial time algorithms,
viz. (a) a total ordering on the Existentially quantified variables, i.e., 11 < 29 < ... <z, and (b) all constraints
are “standard”, i.e., strict difference constraints. Note that difference constraints are constraints of the form
z; +y; < xj +y; + ¢ and hence can be represented by a constraint graph [Sub01]. Although Restriction (a) is a
component of the real-time scheduling problems that were studied, it must be noted that it does make the problem
easy. In our framework, there is no order on the variables, other than what can be deduced from the constraints.
Further, the constraints we consider are far more general, in that the restriction that we place on the constraint
matrix is total unimodularity, as opposed to the restriction that the constraint system is representable as a network
graph. Observe that difference constraints form a subset of the class of totally unimodular constraint systems
[Sch87, NW99]. The work in this paper represents the first attempt to study Quantified Linear Programming as
an independent mathematical programming paradigm.

The connections between logic and optimization have been addressed at great depth in [Hoo00] and [CH99).
Constraint Logic Programming resulted from the combination of the declarative aspects of First-order Logic and
procedural aspects of Programming [CD00, Col86]. Quantified Boolean formulae have been studied extensively
from both the theoretical and the practical perspectives, within the Artificial Intelligence community [CGS98,
CG™197]. We remark that all the above paradigms are essentially discrete; to the best of our knowledge, our work
represents the first effort to consider logic programming in conjunction with real-valued (continuous) variables.
At their heart, QLPs represent a subset of Constraint Logic Programs, that combine the expressiveness of First
Order Logic with the power of Linear Programming. It is worth noting that our framework subsumes the Bi-level
Programming problems discussed in [BA93, VC94].

4 The Quantifier Elimination Algorithm

Algorithm (4.1) represents our strategy to decide Query (1). It proceeds by eliminating one variable at a time,
until we are left with precisely one variable, viz. x;. If there is a feasible choice for x1, then the QLP is feasible,
since we can then work backwards to build a solution for each of the variables x5 to x,; otherwise it is not. A
variation of this algorithm (for restricted constraint classes) was proposed in [GPS95] and analyzed; our proof
explicitly uses techniques (such as the notion of non-determinism in the form of 2-person games) that make it
significantly more general and is completely different from all previous work.

The chief idea is that the constraint matrix A undergoes a series of transformations through variable elimination
techniques; in the following section, we shall argue that each of these transformations is solution preserving.

Observe that given a variable z;, every constraint involving x; must be representable as a constraint of the
form z; < () or (mutually exclusively) z; > (), where the () notation represents the function that is created
by transposing the rest of the variables to the Right Hand Side. For instance, consider the constraint /; :
211+ y23 < 8. Clearly l; can be written in the form z; < 4 — % - 123; in this case, the function 4 — % - o3 is
represented by (). When a variable (existential or universal) is eliminated the (possibly) new constraints that
result are called derived constraints. These derived constraints could: (a) Make an existing constraint redundant,
(b) be redundant themselves, or (¢) Create an inconsistency. In cases (a) and (b), the appropriate constraints
are eliminated through PRUNE-CONSTRAINTS(), whereas in case (c), the system is declared infeasible (through

CHECK-INCONSISTENCY ().

Function QLP-DECIDE (A, b)

— =
=

12:
13:
14:
15:
16:
17:
18:

/n+1 =A; bln+1 =b
for (i =n down to 2) do

(A;,E’i) = ELIM-UNIV-VARIABLE (A§+1,5'i+1,yi,li,ui)

(A, b/;) = ELIM-EXIST-VARIABLE (A, b';, ;)

if (CHECK-INCONSISTENCY()) then

return (false)

end if

PRUNE-CONSTRAINTS()
end for
(A],b'y) =ELIM-UNIV-VARIABLE (A}, b/a, 41,11, u1)
{After the elimination of y;, the original system is reduced to a one-variable system, i.e., a series of intervals
on the z;-axis. We can therefore check whether this system provides an interval or declares an inconsistency.
An interval results if after the elimination of redundant constraints, we are left with 1 > a,z1 < b,a < b; an
inconsistency results if we are left with 23 > a, 21 < b, < a.}
if (a<z <b, a,b>0, a<b) then

System is feasible

return
else

System is infeasible

return
end if

Algorithm 4.1: A Quantifier Elimination Algorithm for deciding Query G

Function ELIM-UNIV-VARIABLE (A, b, i, s, Uj)

1:

{Every constraint involving the variable y; can be re-written in the form y; < () or (exclusively) y; > (), i.e.,
in a way that the coefficient of y; is +1.}

Substitute y; = I; in each constraint that can be written in the form y; > ()

Substitute y; = u; in each constraint that can be written in the form y; < ()

Create the new coefficient matrix A’ and the new vector b’ after the requisite manipulations
return(A’,b')

Algorithm 4.2: Eliminating Universally Quantified variable y; € [l;, u;]

Function ELIM-EXIST-VARIABLE (A, b, z;)

1:

10:

11:

Form the set L< of every constraint that can be written in the form z; < (). If z; < mj; is a constraint in
(A,Db), my; is added to L<.
Form the set L> of every constraint that can be written in the form z; > (). Corresponding to the constraint
x; > ny of (A,B), ny is added to L>.
Form the set L_ of every constraint that does not contain x;
L=¢.
for each constraint m; € L< do

for each constraint n; € L> do

Create the new constraint l; : np < myj; L= LU ;.

end for
end for .
Create the new coefficient matrix A’ and the new vector b/, to include all the constraints in £ = LU L_,
after the requisite manipulations.
return(A’,b')

Algorithm 4.3: Eliminating Existentially Quantified variable z;

Ezample (1): Let us say that the universally quantified variable ys € [3,5] is eliminated from the constraint
set: Iy 1 ys+x1 < 14, lo : 1 < 12. Using Algorithm (4.2), we get the constraints [y : x1 <9, Iy : 1 < 12. Clearly
5 is redundant and can be eliminated.

Ezample (2): Let us say that the existentially quantified variable x4 is eliminated from the constraint set:
l1:24 <7, 1y : —x4 < —8. We get the constraint 0 < —1, which is clearly an inconsistency.

5 Correctness

We use induction on the length of the quantifier string of G, i.e., |Q(X,¥)| and hence on the dimension of A.
Observe that as defined in System (2), |Q(X,¥)| is always even.

Lemma 5.1 Algorithm (4.1) correctly decides feasibility of a QLP having |Q(X,¥)| = 2
Proof: Observe that a QLP in which |Q(X,¥)| = 2, must be of the form:

dx1Vy; € [ll,ul] g xr1 + ﬁ -y < 6 (5)

When the QLP represented by System (5) is input to Algorithm (4.1), Step (10 :) is executed first. The
ELIM-UNIV-VARIABLE() procedure converts System (5) into a QLP of the form

3I1 g T < l;/, (6)

where

= bi—ll-hi, thz<0

= b;, otherwise

Note that System (6) represents an intersection of intervals that are closed on one side and extending infinitely
on the other; the i*" constraint in System (6), is either of the form x; < ¢; (when g; > 0) or (mutually exclusively)
of the form x; > ¢; (when g; < 0), where ¢; = % . Let @ = max., {1 > ¢} and b = min., {z; < ¢;}. Tt follows
that applying ELIM-EXIST-VARIABLE() to System (6) results in an interval of the form a < 21 < b, if a < b or an
inconsistency otherwise. Let us say that System (6) has a solution 1 = ¢1; we need to show that System (5) has

a solution. Pick any constraint p; : g; - 1 + h; - y1 < b; in System (5). Assume that h; > 0. Since ¢; is a solution
to System (6), we know that

gi-caa < b
< b;—wui-h; since h; >0
=g;-c1 < bi—1l1-hi sincely <u
=Vy € [lh,u1] gi-aa < bi—1li-hy

It follows that
e Vy1 € [l ua] gi- 21+ hi-y < by

is true. Parallel arguments hold for the cases when h; = 0 and h; < 0. Since the constraint p; was picked
arbitrarily, it follows that z; = ¢; satisfies all the constraints of System (5), i.e., it is a valid solution for System

(5)-
Now let us consider the case when System (5) has a solution, say x1 = ¢;. Pick an arbitrary constraint
Di: gi - x1 < b} in System (6). The corresponding constraint in System (5) is of the form p} : ¢; - x1 + h; - y1 < b;
Since x1 = ¢; satisfies pj, we have
gircrthi-ly < b
gi-c1+hi-up <

Hence the corresponding constraint in System (6), i.e., p; is satisfied, since the RHS of p; is either b; — h; - [or
b; — h; - u1. Since the constraint p; was chosen arbitrarily, it follows that x; = c; satisfies every constraint in
System (6).

We have thus proved the base case of the induction. O

We now assume that Algorithm (4.1) decides correctly decides QLPs, when |Q(X,¥)| = 2- (n — 1). Lemma
(5.2) and Lemma (5.3) consider a QLP, where |Q(X,¥)| =2 n.

Lemma 5.2 Let
L : 3z Y1 € [l1,u1] 322 Vo € [l2,ua] ... 32,y € [ln,un] A-[X F]T <b

and

-

R:3dz; Vyl S [ll,ul] dzo Vyg S [lg,’dz] .. .HInflvynfl S [ln,l,un,l}EI:z;" A [i I]T < l;/,

where y' = [y1, 92, ..., yn—1]T and (A',k;’) is the constraint system that results after calling Algorithm (4.2) on
(Av ba Yn, lna un) Then L & R.

Proof: Let (XL, Y1) denote the Existential and Universal players of game L and let (Xr, Yr) denote the
Existential and Universal Players of game R respectively. Let

Xg = [Clafl(yl)-,fZ(yla?ﬂ)a e -,fnf1(y1,yz, - --ynfl)]T

be a model for L. We shall show that Xy, is also a model for R.

Let us assume the contrary and say that xj, is not a model for R. From the discussion in Section §2.1, we know
that Yr, has a winning strategy yr(X1,), corresponding to the strategy x,. Note that y; has n — 1 components,
i.e., player YR makes only n — 1 moves. (We could add a column 0 to A’, so that Yg makes all n moves.)

Consider the complete set of moves made by Xg and YR to decide R, with Xg playing, as per xj, and Ygr
playing, as per ygr(XL); let x1 and y"lR denote the corresponding numerical vectors. Since yg(X1,) represents
a w1nn1ng strategy, there is at least one constraint in the system A’ - [X y] < b’ of QLP R that is violated.
Let p, : a]- [y']T < b, represent a violated constraint; we thus have a/ - [}3™ yi™]T > b/, Let p; denote the
correspondlng constraint in the constraint system A - [¥]T < b of QLP L. Consider the following two cases:

1. p; does not contain y,, - In this case, the constraints p; and p) are identical. Consequently, the violation of
p} implies the violation of p;. It follows that yr(XL) is also a winning strategy for Yy, contradicting the
existence of Xj, as a model for L

2. p; contains y,, - We assume that p; can be written in the form y,, > (). Thus p; was obtained from p; by
substituting y,, = [,,. Now consider the strategy

YL = YR(XL), ln]”

for the Universal player Y, of the QLP L. Since the constraint p} is violated, yi, causes a violation of
p; as well, establishing that yj, is a winning strategy for Y, and contradicting the hypothesis. A parallel
argument holds for the case when p; can be written in the form y,, < ().

It follows that X7, is also a model for R; we have thus shown that X € L = X € R.
We now proceed to prove the converse. Let

xi = [e1, fr)s 2 (U1, y2)s - s Frm1 (Y1 Y2s oo Yn—1)]

be a model for R. We shall show that it is also a model for L. Assume the contrary and say that it is not a
model for L. It follows that Y, has a winning strategy yL(xgr), corresponding to Xg.

Consider the complete set of moves made by Xy, and Y, to decide L, with Xy, playing, as per xg and Y7y,
playing, as per yL(xRr); let %" and y1~ denote the corresponding numerical vectors. Since yi, (XR) represents
a winning strategy, there is at least one constraint in the system A -[¥ ¥|T < b of QLP L that is violated.
Let p; : a3 - [X ¥]T < b; represent a violated constraint; we thus have aj - [x3% y1“]T > b;. Let p; denote the
corresponding constraint in the constraint system A’ - [¥ §/]T < b’ of QLP R. Consider the following two cases:

1. p; does not contain y, - In this case, the constraints p; and pj are identical. Consequently, the violation of
p; implies the violation of p}. Tt follows that y1,(xg) is also a winning strategy for Ygr, contradicting the
existence of xg as a model for R.

2. p; contains y, - We assume that p; can be written in the form y, > (). Thus p; was obtained from p; by
substituting y,, = l,. Since Xgr ensured that this constraint was satisfied for y,, = [, it follows that this
constraint will be satisfied for all values of y, € [l,,u,]. In other words, there is no legal move that Y,
can make that would cause this constraint to be violated. Thus, p;, cannot exist and since p; was chosen
arbitrarily, it follows that no such constraint can exist. A parallel argument works for the case in which p;
is of the form y,, < (). Hence, Y1, does not have a winning strategy, corresponding to xR, i.e., Xg € L.

We have thus shown that X € R = X € L. The lemma follows. O

Lemma 5.3 Let
L:dx Vyl S [ll,ul] dxo Vyg S [l2,u2} ...dx, A- [i y’]T < 6
and

R:dxy Vy; € [ll,ul] dzs Vyo € [lQ,Ug] oo de, Yy, o1 € [lnfl,unfl] A [X/ /]T < Db/,
where y' = (Y1, Y2s s Yn—1]t, x = [T1,22,...,7n_1]F and (A',l;’) is the constraint system that results after

calling Algorithm (4.8) on (A, B,xn) Then L & R.

Proof: As in Lemma (5.2), we let (XL, Y1) denote the Existential and Universal players of game L and let
(XRr, Yr) denote the Existential and Universal Players of game R respectively.
Let

Xi, = len, fi(va), fo(Wv2)s o fa 1 (U1, 42, - 1)]" €L
be a model for L
We shall show that
X_ﬁ = [cla fl(yl)a f2(y17 yQ)u s afn*Q(yh Y2, ynfg)]T
is a model for R. Note that xg has been obtained from xj, by truncating the last component.

Let us assume the contrary and say that Xg is not a model for R. It follows that Ygr has a winning strategy
YR(XR), corresponding to xi. Consider the complete set of moves made by Xg and Yg to decide R, with Xg
playing as per xg and Yg playing as per yr(xR); let . ® and y"lR be the corresponding nnumerical vectors.
Likewise, consider the complete set of moves made by X, and Yy, to decide game L, with Xy, playing as per Xy,;
let x3% and y_'lL be the corresponding numerical vectors.

Slnce yR(xR) is a winning strategy, at least one constraint in the system Al [x yT < b is violated. Let
Di [x y']T < b represent a violated constraint; we thus have a - yi™T >). Note that x3 %, y3 &
and y1 are (n — 1) dimensional vectors, while %3 is an n-dimensional vector. We use the notation ai(n) to
indicate the nt" element of the vector &;.

We consider the following 2 cases:

1. p; appears in identical form in L - We first rewrite p; as: g_i)EZ + l;: . };Z < b}. Let p} be the constraint in
L that corresponds to p;. Observe that p} is constructed from p; as follows: p} : g} - X + h; 37’ < b;, where
bi = b, & = [gf, 0]", hi = hf, X =[x/, z,]".

Since Xy, is a model for L, it is a winning strategy for X and hence a; - [x_’lL y_’lL]T < b;, where

a =g} H;]T Thus, p; (or more correctly p}) is satisfied in L, irrespective of the guess made for z,
by Xp. It follows that if p; is violated in R, then yg(xg) is also a winning strategy for Yy,, contradicting

the existence of x1, as a model for L.

2. p; was created by the fusion of two constraints I; : m; < =, and l; : 2, < ny, in L to get m; < ny, as
per Algorithm (4.3) - We rewrite the constraint [; as g - x' + hi-y + b; < z,, and the constraint [; as
Ty < 85 X +l’ﬁ }7’ + b;-, where x/ = [z1,22,...,2p-1]T and 37’ = [y1,92,---,Yn—1]T. Since X3, is a model
for L, we know that

. - L / - L

gi-xy +hi-y; +b <x37(n) (7)
L - 7L - 7L /

x17(n)<g;-x{ +h;-y) + b7,

S L
where X/, denotes the first (n—1) components of x3"; likewise for y3"". Since yi (X&) represents a winning
strategy for Ygr, we know that

R - -R ~R - =R
g-x) +hi-yy +0>gj-x; +hj-yy +0] (8)

It follows immediately that yg(xg) is also a winning strategy for Yr,, since if System (8) is true, there
cannot exist a Xi"(n) € R for Xy, to guess that would make System (7) true. Thus, if y& (xR) is a winning
strategy for YR, X1, cannot be a model for L.

We have shown that corresponding to a model for L, there exists a model for R; we now need to show the
converse.
Let
Xk = [c1, filn) 2 (W1, 02)s - fr2 (U1 vz, o yn2)] "

be a model for R. We need to show that Xxg can be suitably extended to a model for L.

Let S1 = {m1 < zp,ma2 < z,,...,m, < z,} denote the set of constraints in L that can be written in the form
x, > (). Likewise, let So = {z,, < n1, 2, < na,...,x, < ny} denote the set of constraints that can be written
in the form z,, < (). Consider the following Skolem function describing x,: maxt_; m; < x, < rningz1 n;. We
claim that Xj, = [XR, z,]7 is a model for L.

Assume the contrary and say that Xy, (as defined above) is not a model for L; it follows that Yy, has a winning
strategy yL(X1,), corresponding to xi,. Consider the complete set of moves made by Xy, and Yy, to decide L,

~ -~ L
with Xy, playing as per xXj, and Yy, playing as per yL,(XL); let 1" and y1 denote the corresponding numerical
vectors. Likewise, consider the complete set of moves made by Xg and Ygr to decide R, with Xg playing as

- R - R
per xg; let x; and y; denote the corresponding numerical vectors. Since yi,(Xf,) is a winning strategy for

Yy, there is at least one constraint in the system A - [X f’]T < b that is violated. Let p; denote the violated
constraint. We consider the following 2 cases:

1. p; appears in identical form in R - Observe that z,, cannot appear in p; and hence as argued above, y1,(XL,)
is also a winning strategy for Ygr, contradicting the existence of xg as a model for R.

2. p; is a constraint of the form /; : m; < x, € S1 - Consider a constraint of the form /; : z, < n; € Sa. In
this case, the constraint m; < n; is part of the QLP R.

We rewrite the constraint /; as g - x + hj - y/ +b; < z,, and the constraint [; as z, < gj - x + H; -y’ +b%,

where x/ = [z1,22,..., 7, 1]T and 37’ = [y1,Y2,---,Yn_1]T. Since xR is a model for R, we know that
- R - SR, _ o SR - SR
gi-x; +hiryy +b;<gj-x3 +hj-y; +0 (9)

Since yT,(X1,) represents a winning strategy for Yp,, we know that

—
—

L - - L
g -x, +hi-y, +b>xi%(n) (10)

This means that Xy, could not find a x3%(n) € R such that

-L - =L
g %, +hi-y) +b <xi"(n), and (11)
- L - St - 5L ’
X1 (n) <gj-x3 +hj-y; +bj (12)
This means that
T A LRV R b R LY
gi-x; +hi-y; +b;£g5-x3 +hj-y; +b; (13)

It follows immediately that yj,(Xj,) is also a winning strategy for Yr, since this strategy would cause System
(9) to fail. Hence xg cannot be a model for R.

A similar argument works for the case, when the violated constraint p; is of the form [; : z,, <n; € Ss.

Theorem 5.1 Algorithm (4.1) correctly decides query G of System (2).

Proof: We have shown that eliminating the n** universally quantified variable and the n'”* existentially quan-
tified variable of a QLP, with |Q(X,¥)| = 2 - n using Algorithm (4.1), is solution preserving, for arbitrary n. As
a consequence of the elimination, we are left with a QLP, having |Q(X,¥)| = 2- (n — 1). Applying the principle
of mathematical induction, we conclude that Algorithm (4.1) correctly decides an arbitrary QLP. O

Remark 5.1 Algorithm (4.3) has been described as the Fourier-Motzkin elimination procedure in the literature
[NW99, DE73].

It is now easy to see that:

Theorem 5.2 Query (2) can be decided by an Alternating Turing Machine in polynomial time, if A and b are
rational.

Proof: From the ELIM-UNIV-VARIABLE() procedure, we know that the guess of Y for y; can be confined to
{li,u;} (instead of (possibly) non-rational values in [l;,u;]). Observe that the ELIM-EXIST-VARIABLE() proce-
dure can be implemented through repeated pivoting; pivoting has been shown to be rationality preserving in
[Sch&7]. Thus, in round 1, X guesses a rational z1, while in round 2, Y must guess from {l;,u,}. After round
2, we are left with a new polyhedron in 2 dimensions less than the original polyhedron. Once again, we note
that z2 can be guessed rational and y2 must be rational. It follows that if the QLP is feasible, X can guess a
rational vector X for the vector ¥ that is guessed by Y, taking into account the alternations in the query. Thus,
the language of QLPs can be decided in Alternating polynomial time which is equivalent to saying that QLPs
can be decided in PSPACE. O

6 Analysis

To calculate the running time of the algorithm, we note that the elimination of a universally quantified variable
does not increase the number of constraints and hence can be carried out in O(m - n) time (assuming that the
matrix currently has m constraints and O(n) variables), while the elimination of an existentially quantified variable
could cause the constraints to increase from m to m?2. In fact, [Sch87] provides a pathological constraint set, in
which the Fourier-Motzkin elimination procedure results in the creation of O(ka) constraints after eliminating
k variables.

Let us now consider the case of totally unimodular matrices, i.e., assume that A is a TUM.

10

Definition 6.1 A matriz A is said to be totally unimodular (TUM) if the determinant of every square submatrix
A’ belongs to the set {0,1,—1}.

Lemma 6.1 The class of totally unimodular matrices is closed under Fourier-Motzkin elimination.

Proof: For details of Fourier-Motzkin implementation, see [VR99]. Assume that we are eliminating variable
x1. Let us denote :

[] IJF:{’LAZl:—Fl}
° 17:{7A11:71}
.IO:{Z'ZAHZO}

Assuming, neither I™ nor I~ are empty (if [T is empty we can simply discard the inequalities in [~ and vice
versa), pick k € I and [€ T~. Add the inequality Ay -X < by to the inequality Aj-X < ;. The variable z; is
eliminated, after each (k,l) pair is processed in this fashion. The key point is that the elimination is a variation
of a pivot operation i.e., adding a row to a multiple of another row. In this case the multiple is always {+1}.
Further, we know that the class of totally unimodular matrices is closed under these operations (See Pg. 540,
Proposition 2.1 of [NW99]). The lemma follows. O

Lemma 6.2 Given a totally unimodular matriz A of dimensions m X n, for a fived n, m = O(n?), if each row
1S unique.

Proof: The above lemma was proved in [Ans80, AF84]. O

Observe that the elimination of a universally quantified variable trivially preserves total unimodularity since
it corresponds to deleting a column from the constraint matrix.

Lemma 6.3 Given an m X n totally unimodular constraint matriz, Algorithm (4.1) runs in polynomial time.

Proof: We have observed previously that eliminating a universally quantified variable does not increase the
number of constraints and hence can be implemented in time O(m - n), through variable substitution. Further,
since it corresponds to simple deletion of a column, the matrix stays totally unimodular. From Lemma (6.2),
we know that there are at most O(n?) non-redundant constraints. Eliminating an existentially quantified vari-
able, could create at most as O(n*) constraints, since m = O(n?) [VR99]. A routine to eliminate the redundant
constraints can be implemented in time n x O(n* - logn*) = O(n® - logn) through a sort procedure. (There are
O(n*) row vectors in all; comparing two row vectors takes time O(n).) The procedures PRUNE-CONSTRAINTS)()
and CHECK-INCONSISTENCY () work only with single variable constraints and hence both can be implemented in
time O(m -n). Thus a single iteration of the i loop in Algorithm (4.1) takes time at most O(n® -logn) and hence
the total time taken by Algorithm (4.1) to decide a given QLP is at most O(n® - logn). O

Remark 6.1 We could use a variation of RADIX-SORT(), to achieve sorting in time O(n x n*), to give a total
running time of O(n®).

7 A taxonomy of QLPs

In the preceding sections, we have shown that a fully general QLP, i.e., a QLP with unbounded alternation can
be decided in polynomial time, if the constraint matrix has the property of being totally unimodular. Total
unimodularity is a property of the constraint structure; in this section, we classify QLPs based on the structure
of the quantifier string and obtain some interesting results.

11

Definition 7.1 An E-QLP is a QLP in which all the ezistential quantifiers precede the universal quantifiers,
e., a QLP of the form:

321329 ... 3, Vin € [l ua]Vys € [la, ua), ... Yy € [ln,un] A-[R 7T <b
Theorem 7.1 E-QLPs can be decided in polynomial time.

Proof: We need to modify Algorithm (4.1) so that ELIM-UNIV-VARIABLE() is called n times so as to eliminate
the universally quantified variables. From the argument in Section §6, we know that this can be accomplished in
O(n x m-n) = O(m -n?) time. (Note that all the universally quantified variables can be eliminated in a single
pass in time O(m - n).) The resultant QLP is a standard Linear Programming problem in n variables and m
constraints, which can be solved in polynomial time [Vai87]. O

Definition 7.2 An F-QLP is a QLP in which all the universal quantifiers precede the existential quantifiers,
e., a QLP of the form:

Vo1 € [li.wn] Yy € [l2,uz), . .. Vyn € [ln,un] F2y Fzn... 32, A-[X 7|7 <b
Lemma 7.1 The F-QLP recognition problem is in coNP.

Proof: A Non-deterministic Turing Machine guesses values for y1, 42, . . ., Y, with Yi € {l;, u; }. The constraint
system A - [¥]T < b is transformed into a polyhedral system of the form G - X < b’. We can use a linear pro-

gramming algorithm that runs in polynomial time to verify that the polyhedral system is empty, i.e., G - X £ b.
Thus the “no” instances of F-QLPs can be verified in polynomial time. O

In order to prove the coNP-Hardness of F-QLPs, we need the concept of an inverse reduction.

Definition 7.3 A problem P is said to inversely reduce to problem Py, written P <p P, if there exists a Turing
machine computable function f(), such that v € P, < f(z) € Pa.

Inverse reductions are useful in the following way: If P; is complete for a class C and f() is computable in
logarithmic space, then P is complete for the class co — C.

Lemma 7.2 The F-QLP recognition problem is coNP-Hard.

Proof: Let P, be the MAX2SAT problem: Given a 2SAT formula ¢ = ¢1 A ¢3 ... ¢y on the literals
{Y1, 71,92, 925 - - - yYn, Un}, 1S there an assignment such that the number of satisfied clauses is greater than or equal
to k?

MAX2SAT has been shown to be NP-complete in [Pap94].

The F-QLP (P,) is constructed as follows: Each clause ¢; is replaced by a pair of linear constraints as per
the rules below:

1. If ¢; = (y;, yx) add the 2 constraints: (1 —y;) +z; > 1 and (1 —yg) +z; > 1;
2. If ¢; = (¥, yx) add the 2 constraints: y; +z; > 1 and (1 — yi) + z; > 1;

3. If ¢; = (yj, yx) add the 2 constraints: (1 —y;) +x; > 1 and yi + z; > 1;

4. If ¢; = (y;, yx) add the 2 constraints: y; + z; > 1 and y + z; > 1;

Note that the clause set ¢ has been replaced by a set of 2-m linear constraints; call this set Z;. The second set
of linear constraints that are added to the F-QLP are the box constraints on X, i.e., 0 <x; <1,i=1,2,...,m;
call this set 2.

12

Finally, we add the aggregate constraint Y ;" #; < k — 1 (23) and the quantifier string Yy, € [0,1] Yy €
[0,1]...Vy, € [0,1] 21325 ...3z,. Thus the F-QLP is completely specified as:

Vyl S [O, 1] Vy2 < [0, 1] .. V’ljn S [0, 1] E'Il E'(L‘Q - E'In Zl A\ ZQ A\ Zg

Note that all the constraint sets are linear.

Consider an assignment to the clause set ¢; let us say that clause ¢; is satisfied by this assignment. Assume
that ¢; has the form (y;, yx); the other 3 cases can be argued in identical fashion. The corresponding constraints
in the F-QLP are: (i) (1 —y;)+x; > 1 and (ii) yx + x; > 1. Without loss of generality assume that y; =true in
P;. In Py, the setting y; = 1 forces z; to be at least 1, in order to satisfy (i). Extending this argument, we see that
whenever an assignment satisfies a clause ¢;, the variable z; is forced to be set to at least 1 in the corresponding
setting in the F-QLP. Thus if an assignment satisfies £ or more clauses in P, at least k of the x; variables are
set to 1, violating the aggregate constraint and hence the F-QLP cannot be true.

Likewise, consider the case where the clause ¢; = (y;, i) is not satisfied by an assignment y. To make ¢, false,
y; must be false and y; must be true. Thus the corresponding linear constraints in the F-QLP are satisfied
using the ¥ values only (i.e., y; = 0 and y; = 1) and z; can be set to 0. Hence, if all assignments to ¢ sat-
isfy at most k—1 clauses, we need to set at most (k—1) z; values to 1, in each assignment, i.e., the F-QLP is true. O

Theorem 7.2 The F-QLP recognition problem is coNP-complete.

Proof: Follows from Lemma (7.1) and Lemma (7.2). O

Definition 7.4 A QLP, which is neither an E-QLP nor an F-QLP is called a G-QLP.

As mentioned before, the complexity of recognizing G-QLPs is unknown, although we strongly suspect that it
is PSPACE-complete.

8 Conclusion

In this paper, we described a new problem called Quantified Linear Programming. Although the complexity
of this problem for general constraint matrices is unknown, we showed that in the case in which the constraint
matrix is totally unimodular, the problem can be decided in polynomial time. As part of our solution strategy, we
independently proved that the class of totally unimodular matrices is closed under Fourier-Motzkin elimination.
We also provided a taxonomy for QLP problems and analyzed the complexity of 2 special cases.

We make a couple of interesting observations:

1. The Fourier-Motzkin procedure provides an alternative technique to prove that Linear Programs specified
by a rational system of inequalities have rational solutions. This proof is much simpler than the proof used
in [PS82], which requires the computation of sizes of subdeterminants of the constraint matrix!

2. The coNP-completeness of the recognition problem for F-QLPs is remarkable in that QLPs are continuous
valued mathematical programs, whereas NP-completeness is essentially a discrete concept. A similar result
was obtained by Vavasis in [Vav91l] for the Quadratic Programming problem.

There are a number of open problems, that we believe merit further investigation:
1. What is the complexity of G-QLPs?
2. Are there constraints structures other than TUMSs, for which Algorithm (4.1) converges in polynomial time?

3. What is the complexity of G-QLP(2)? QLP(i) refers to the case in which the existential support (the
number of existentially quantified variables) of every constraint is at most 2.

13

References

[AF84]
[Ans80]

[BA93]
[CDO0]

[CG+97]

[CGS98]

[CH99]

[Cho9T]

[Cho00]

[Col86]

[DE73]

[GPS95]

[HO02]

[Hoo00]

[Imm)]
[Joh]
[LTCAS9]

[MKAT92]

[NW99]

[Pap94]

R.P. Anstee and M. Farber. Characterizations of totally balanced matrices. J. Algorithms, 5:215-230,
1984.

R.P. Anstee. Properties of (0,1)-matrices with no triangles. J. of Combinatorial Theory (A), 29:186—
198, 1980.

O. Ben-Ayed. Bilevel linear programming. Computers and Operations Research, 20:485-501, 1993.

Alain Colmerauer and T. Dao. Expressiveness of full first order constraints in the algebra of finite or
infinite trees. In Proceedings of Constraint Programming, September 2000.

M. Cadoli, , M. Giovanardi, A. Giovanardi, and M. Schaerf. Experimental analysis of the compu-
tational cost of evaluating quantified boolean formulae. In Lecture Notes in Artificial Intelligence,
1997.

M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified boolean formulae. In
AAAI-98, July 1998.

V. Chandru and J. N. Hooker. Optimization Methods for Logical Inference. Series in Discrete Math-
ematics and Optimization. John Wiley & Sons Inc., 1999.

Seonho Choi. Dynamic Time-based scheduling for Hard Real-Time Systems. PhD thesis, University
of Maryland, College Park, jun 1997.

Seonho Choi. Dynamic time-based scheduling for hard real-time systems. Journal of Real-Time
Systems, 2000.

A. Colmerauer. Logic Programming and Its Applications, chapter Theoretical Model of Prologll, pages
181-200. Ablex Series in Artificial Intelligence. Ablex Publishing Corporation, 1986.

G. B. Dantzig and B. C. Eaves. Fourier-Motzkin Elimination and its Dual. Journal of Combinatorial
Theory (A), 14:288-297, 1973.

R. Gerber, W. Pugh, and M. Saksena. Parametric Dispatching of Hard Real-Time Tasks. [IEEFE
Transactions on Computers, 1995.

Lane A. Hemaspaandra and Mitsunori Ogihara. The Complexity Theory Companion. Springer-Verlag,
New York, 2002.

J.N. Hooker. Logic-Based methods for Optimization. Series in Discrete Mathematics and Optimization.
John Wiley & Sons Inc., 2000.

Neil Immerman. Personal Communication.
D.S. Johnson. Personal Communication.

S. T. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala. The Maruti Hard Real-Time Operating
System. ACM Special Interest Group on Operating Systemns, 23(3):90-106, July 1989.

D. Mosse, Keng-Tai Ko, Ashok K. Agrawala, and Satish K. Tripathi. Maruti: An Environment for
Hard Real-Time Applications. In Ashok K. Agrawala, Karen D. Gordon, and Phillip Hwang, editors,
Maruti OS, pages 75—85. IOS Press, 1992.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,
New York, 1999.

Christos H. Papadimitriou. Computational Complezity. Addison-Wesley, New York, 1994.

14

[PSs2
[Sak94]

[Sch&7]

[Sub00]

[Sub01]

[Sub02]

[Vaig7]

[Vav9l]
[VC94]

[VR99]

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Prentice Hall, 1982.

Manas Saksena. Parametric Scheduling in Hard Real-Time Systems. PhD thesis, University of Mary-
land, College Park, June 1994.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New York,
1987.

K. Subramani. Duality in the Parametric Polytope and its Applications to a Scheduling Problem. PhD
thesis, University of Maryland, College Park, August 2000.

K. Subramani. Parametric scheduling - algorithms & complexity. In et. al. Burkhard Moniem, editor,
Proceedings of the 8" International Conference on High-Performance Computing (Hi-PC), volume
2228 of Lecture Notes in Computer Science, pages 36—46. Springer-Verlag, December 2001.

K. Subramani. A specification framework for real-time scheduling. In W.I. Grosky and F. Plasil,
editors, Proceedings of the 29" Annual Conference on Current Trends in Theory and Practice of
Informatics (SOFSEM), volume 2540 of Lecture Notes in Computer Science, pages 195-207. Springer-
Verlag, November 2002.

P. M. Vaidya. An algorithm for linear programming which requires O(((m + n)n? + (m + n)'-5n)L)
arithmetic operations. In Alfred Aho, editor, Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, pages 29-38, New York City, NY, May 1987. ACM Press.

S. A. Vavasis. Nonlinear Optimization: Complexity Issues. Oxford University Press, New York, 1991.

L. Vicente and P. Calamai. Bilevel and multilevel programming: A bibliography review. Journal of
Global Optimization, 5:291-306, 1994.

V.Chandru and M.R. Rao. Linear programming. In Algorithms and Theory of Computation Handbook,
CRC Press, 1999. CRC Press, 1999.

15

