A polynomial time algorithm for a class of Quantified Integer Programs

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV
{ksmani@csee.wvu.edu}

Abstract
It is well known that the Quantified Satisfiability problem (QSAT) is PSPACE-complete. It follows that
the problem of deciding the language of 0/1 Quantified Integer Programs (QIPs) i.e., testing whether a linear
system of inequalities has a quantified lattice point is PSPACE-complete. One aspect of research is to focus on
designing polynomial time procedures for interesting special cases. In this paper, we show that if the constraint
matrix defining a 0/1 QIP is totally unimodular (TUM), then the QIP can be decided in polynomial time .

1 Introduction

Quantified decision problems are useful in modeling situations, wherein a policy (action) can depend upon the
effect of imposed stimuli. A typical such situation is a 2— person game. Consider a board game comprised of an
initial configuration and two players A and B each having a finite set of moves. A can win the game if the decision
problem: Given the initial configuration, does A have a first move (policy), such that for all possible first moves
of B (imposed stimulus), A has a second move, such that for all possible second moves of B,... , A eventually
wins? can be answered affirmatively. The board configuration can be represented as as a boolean expression or a
constraint matrix; the effort involved in representing the board configuration typically determines the tractability
of the decision problem.

Definition: 1.1 Let {z1,22,...,2,} be a set of n boolean variables. A disjunction of literals (a literal is either
x; or its complement &;) is called a clause, represented by C;. A satisfiability problem of the form:
Q121Q2x2 ... Qnyn C (1)

where each Q; is either a3 or ¥V and C = Cy ACy ... A Cp,, is called a Quantified Satisfiability (QSAT) problem.

QSAT has been shown to be PSPACE-complete, even when there are at most 3 literals per clause (Q3SAT)
[Pap94], although polynomial time algorithms exist for the case in which there are at most two literals per clause
[APT79, Gav93].

Definition: 1.2 Let x1,%a,...x, be a set of n 0/1 variables. An integer program of the form
Q121 € {0,1}Qaz5 € {0,1},...Qnz, € {0,1}A.X < b? (2)
where each Q; is either 3 or ¥ is called a 0/1 Quantified Integer Program (QIP).

The PSPACE-completeness of QIPs follows directly from the PSPACE-completeness of QSAT; in fact the reduc-
tion from QSAT to QIP is identical to the one from SAT to 0/1 Integer Programming. The matrix A is called
the constraint matriz of the QIP. Without loss of generality, we assume that the quantifiers are strictly alternat-

ing, @1 = 3; further we denote the existentially quantified variables using z;,7 = 1,2,...,n and the universally
quantified variables using y;,% = 1,2,...,n. Thus we can write an arbitrary 0/1 QIP as :
3z, € {0,1}Vy; € {0,1}3zs € {0,1}Vys € {0,1} ... 32, € {0,1}Vy, € {0,1}A.[R §|T < b? 3)

for suitably chosen X, ¥, A, 1;, n



Definition: 1.3 A TQIP is a QIP in which the constraint matriz is totally unimodular.
Definition: 1.4 A linear program of the form
3z, € [0,1]Vy; € [0,1]3z2 € [0, 1]Vy2 € [0,1]...3z, € [0,1]Vy, € [0,1]A.[® F#]T < b? 4)
is called a 0/1 Quantified Linear Program (QLP).
Definition: 1.5 A TQLP is a QLP in which the constraint matriz is totally unimodular.

The complexity of QLPs (0/1 or otherwise) is not known [Joh], although the class of TQLPs can be decided in
polynomial time [SubOla] (See §A).

2 Algorithms and Complexity
Lemma: 2.1

L :3z; € {0,1}Vy; € {0,1}...32, € {0,1}Vy, € {0,1}A.[X F]T < b
&  R:3z; € {0,1}Vy; €[0,1]...32, €[0,1]Vy, € [0,1]A[R #]T <b (5)

Proof: R = L is triviel. We focus on L = R. Pick some vector y' € {0,1}"; let X' = [z}, a},...,2]T =
[co, fi(y1), oW1, 95), - s fnm1 (U1, Y5, - - Yh_1)] be such that A.[)E” f’]T <b (where the f; are the Skolem func-
tions capturing the dependence of x; on yi,y5,...,Yi_y and co is a constant in [0,1]). Likewise, pick a second
vector y' € {0,1}" and let X' = [, a4,...,2"]T = facr(, 0yl ... 0" 1), such that A[x" y"]T <b. Now
cgnsider _ghe parametric point . . .
y"'=Ay'+ (1=X).y",0 < X < 1. We shall show that the parametric point x'" = Ax' + (1 —X).x",0 <
A < 1is such that A.[x" y™"T <b. Observe that A.[x" y™|T = AAX + (1 —A).X" Ay +(1—\).y"T =
ADX AT+ A1 -Nx" (1-X)y" T = MAK y]T+ (1 -XN.AX" y]T < Ab+(1-)).b<Db, since
0 < A< 1. Thus the feasible solution space of a Quantified Linear Program is convex and the lemma is proven.
O

Lemma: 2.2

L: 3z, € {0,1}Vy; € {0,1}...3z, € {0,1}Vy, € {0,1}A.[X 7]

<b
& R:3z €0,1]Vy € {0,1}...3z, € [0,1]Vy, € {0,1}A.[ 7]T <b

(6)
Proof: Consider any vector ¥ = {0,1}™. Substituting this vector in System (3) results in a standard integer

program of the form 3IX = {0,1}"G.X < d, where G is totally unimodular. Consequently. this system has a
solution if and only if the system IX = [0,1]" G.X < d is feasible and Lemma (2.2) follows. O

Theorem: 2.1 TQIPs can be relaxzed to TQLPs, while preserving the integrality of the solution space and hence
can be decided in polynomial time.

Proof: Use Lemma (2.1) to relax the universally quantified variables and Lemma (2.2) to relax the existentially
quantified variables to get a TQLP; then use Algorithm (A.1) in Appendiz §A to decide the TQLP in polynomial
time. O

3 Conclusion

The technique used in this paper is different from the one used in [Sub01b] to provide a polyhedral projection
procedure to decide Quantified 2—SAT problems.



A Deciding Quantified Linear Programs

In this section, we outline the strategy used in [Sub01a] to solve QLPs. The principal idea underlying Algorithm

(A.1) is the elimination of the quantified variables while preserving the solution space. Elimination of a univer-

sally quantified variable leaves the number of constraints unchanged, whereas the elimination of an existentially

quantified variable using a strategy such as Fourier-Motzkin elimination could lead to a quadratic increase in the

number of constraints (see [Sch87]); consequently Algorithm (A.1) could take exponential time in the worst case.

In the case of TQLPs though, it runs in time O(n®.logn), where n represents the number of variables in the QLP.
Fast convergence in TQLPs is guaranteed by the following lemma

Lemma: A.1 Given a totally unimodular matriz A of dimensions m x n, for a fized n, m = O(n?), if each row
18 unique.

Proof: The above lemma was proved for a superset of totally unimodular matrices viz. totally balanced matrices
in [Ans80, AF84]. It therefore follows that Lemma (A.1) is true. O

The import of Lemma (A.1) is that a totally unimodular constraint matrix cannot have more than O(n?) non-
redundant constraints. The elimination of an existentially quantified variable through Fourier-Motzkin elimination
could potentially result in O(n*) constraints. Eliminating the redundant constraints is a sort operation, that can
be implemented in time O(n5.logn) time 1.

Function QLP-DECIDE (A, b, Q)
1: {The array Q stores the quantifiers i.e. Q[i] = Q;}

2: for (i=ndowntol) do

3 if (Q[i]=13) then

4: ELIM-UNIV-VARIABLE(y;)

5: if (CHECK-INCONSISTENCY()) then
6: return ( false )

7 end if

8: PRUNE-CONSTRAINTS()

9: else

10: ELIM-EXIST-VARIABLE(%;)

11: if (CHECK-INCONSISTENCY()) then
12: return ( false )

13: end if

14:  end if

15: end for

16: System is feasible

17: return

Algorithm A.1: A Quantifier Elimination Algorithm for deciding Query E

Function ELIM-UNIV-VARIABLE (A, b, i)

1: Substitute 2; = 0 in each constraint that can be written in the form z; > ()
2: Substitute z; = 1 in each constraint that can be written in the form z; < ()

Algorithm A.2: Eliminating Universally Quantified variable z; € [0,1]

The procedure ELIM-EXIST-VARIABLE is implemented through the polyhedral projection algorithm known as
the Fourier-Motzkin elimination procedure [Sch87] as discussed above.

1O(n*) row vectors can be sorted in time n*.logn*; each comparison takes O(n) time.
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