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ABSTRACT

This paper∗ investigates coded communications using non-
coherent orthogonal modulation and capacity-approaching
binary channel codes. The focus is on the interface be-
tween the decoder and demodulator, which is critical for
large modulation order M . While standard receivers for
bit-interleaved coded-modulation (BICM) segregate the
operations of demodulation and decoding, we follow the
recently proposed paradigm of BICM with iterative decoding
(BICM-ID) to approximate joint demodulation and decoding
through the iterative exchange of soft information between
demodulator and decoder. We focus our attention on the
derivation of the soft-input/soft-output SISO demodulator
for noncoherent M-FSK, and derive a log-domain SISO
demodulator suitable for channels with uniform phase and
fading amplitudes that are either known or constant (i.e.
AWGN). Simulation results are shown for M = 2, 4, 16,
and 64 using the well-known UMTS turbo code. It is found
that feeding soft information from the decoder back to the
demodulator improves performance by between 0.7-0.9 dB
for 16-ary and 64-ary NFSK in AWGN and Rayleigh fading.

INTRODUCTION

Receivers used in wireless military communication systems
must often operate in the presence of phase uncertainty. If
the channel coherence time is sufficiently long, the lack of
phase information can be alleviated by using pilot symbol
assisted modulation (PSAM) or differential phase shift key-
ing (DPSK) [1]. However, if the channel is subject to ex-
treme Doppler spread, the channel coherence time might
be on the order of a single symbol. For such systems, or-
thogonal modulation with noncoherent detection, as typified
by noncoherent frequency shift keying (NFSK), is a natural
choice. Even if the channel coherence time is relatively long,
an inexpensive system using low-cost oscillators might not
be able to maintain phase coherence over a sufficiently large
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number of symbols. Again, noncoherent orthogonal modu-
lation is a viable candidate for such systems. For instance,
IEEE 802.15 task group 4 has proposed the use of orthogonal
16-ary modulation with noncoherent detection for low rate
wireless personal area networks in the 2.4 GHz ISM band [2].

Turbo codes are capable of approaching within 0.5 dB of the
channel capacity of binary NFSK in AWGN [3] and within
0.7 dB of capacity in Rayleigh flat-fading [4]. However, the
Eb/No required to achieve capacity using binary NFSK is
quite large (in excess of 6.7 dB). One of the benefits of using
orthogonal modulation is that it allows for a tradeoff between
energy-efficiency and bandwidth [5]. By using a higher order
modulation, the required Eb/No is decreased. In systems that
are limited by energy rather than bandwidth (e.g. many mil-
itary systems and sensor network applications), larger values
of M (the number of orthogonal signals in the signal set) are
desired.

A pragmatic approach to coding for M-ary modulation with
M > 2 is bit interleaved coded modulation (BICM) [6]. With
BICM, a binary channel code is created, interleaved bit-wise,
and then passed to a M-ary modulator. While slightly infe-
rior to trellis-coded modulation (TCM) in AWGN, BICM is
actually superior to TCM in fading because it maximizes the
Hamming distance, which is more important than squared-
Euclidian distance in fading [6]. With conventional BICM
receivers, a demodulator produces soft estimates for each
code bit which is then decoded with a standard soft-input
decoder. Performance of BICM can be improved by feed-
ing soft information from the decoder back to the demod-
ulator, a process known as bit interleaved coded modulation
with iterative decoding (BICM-ID) [7]. BICM-ID has been
considered for several types of M-ary modulation, including
8-PSK [8, 9] and QAM [10]. Most work on BICM-ID to
date has focused only on two-dimensional modulation for-
mats; BICM-ID used with M-ary orthogonal modulation has
been virtually ignored. One notable exception is found in
[11], which proposes an iterative noncoherent demodulator
and turbo decoder for turbo coded orthogonal modulation.
The receiver proposed in [11] uses the BICM-ID concept, al-
though it never explicitly uses this term. Unfortunately, the
one-page limit of the conference precluded a detailed expo-
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Figure 1: System model.

sition. Furthermore, [11] only indicates a performance im-
provement of 0.1 dB in the waterfall region of the turbo code
when using 64-FSK. Results shown here (table I) indicate a
gain of 0.87 dB for AWGN and Rayleigh fading for the same
modulation order, indicating that perhaps the system pro-
posed in [11] was suboptimal.

In this paper, we consider iterative demodulation and decod-
ing for turbo-coded noncoherent orthogonal modulation. We
derive the optimal soft-input/soft-output (SISO) symbol-by-
symbol demodulator for noncoherent orthogonal modulation.
A log-domain expression is given that permits efficient and
numerically stable implementation of the SISO demodulator
for NFSK. Simulation results are given for the rate R = 1/3
UMTS turbo code, and these results are compared to the
corresponding channel capacity [12].

Before proceeding further, let us stipulate some notational
conventions. Bold lowercase letters will be used to denote
vectors, e.g. x, and bold uppercase will be used for matrices,
e.g. X. All vectors are row-vectors, but can be transposed
into column vectors, e.g. xT . Vector elements are plain
lowercase letters with subscripts beginning at zero, e.g.
x = [x0, x1, ..., xM−1]. Matrices are represented as a row of
column vectors, e.g. X = [xT

0 ,xT
1 , ...,xT

N−1]. The function
p(·) represents the probability of an event, a probability
density function, or a probability mass function with the
context clearly dependent upon the argument.

SYSTEM MODEL

The discrete-time system model is shown in Fig. 1. A vec-
tor u ∈ {0, 1}K of message bits is passed through a binary
encoder to produce a codeword b′ ∈ {0, 1}N which is in-
terleaved by a permutation matrix Π to produce the bit-
interleaved codeword b = b′Π. The bit-interleaved code-
word is then passed through a M-ary orthogonal modulator
to produce the M × L matrix of symbols S = [sT

0 , ..., sT
L−1]

where L = dN/ log2 Me. Each column of S represents one
M-ary symbol and is represented as an elementary vector em

comprised of all zeros except for a one in the mth position.

Assume that arbitrary symbol s is transmitted. Without
loss of generality, assume that the first µ = log2 M bits in
b are gathered to form the symbol, i.e. s ⇔ {b0, ..., bµ−1}.
With orthogonal modulation, the mapping of code bits to
symbols is unimportant since the symbols are equidistant,
and thus a natural mapping suffices. In this case, the symbol
s = em ∈ {e0, ..., eM−1} where the index

m =
µ−1∑

k=0

bk2k. (1)

The coded symbol stream passes through a frequency-
nonselective channel with complex fading amplitudes c ∈
CL. The ith fading coefficient can be represented as ci =
ai exp{θi

√−1}, where ai and θi are the real-valued ampli-
tude and phase, respectively. In general, the ci’s could have
any distribution, but in the following discussion we focus
on two cases: (1) AWGN: ai = 1 and the θi’s are i.i.d.
uniform on [0, 2π); and (2) Rayleigh Fading: the ci’s are
i.i.d. zero-mean complex Gaussian with a variance of 1/2
in both the real and imaginary directions and thus the ai’s
are Rayleigh and θi’s are uniform. The ith fading coeffi-
cient ci is multiplied by the ith symbol si and the result is
added to the ith column nT

i of the noise matrix N ∈ CM×L

which contains uncorrelated zero-mean complex Gaussian
noise samples with variance σ2 = 1/(2Es/No) in both di-
rections (No is the one-sided noise spectral density). The
energy per coded symbol Es is related to the energy per mes-
sage bit Eb by Es = KEb/L. The received complex symbols
Y = [(c0sT

0 +nT
0 ), ..., (cL−1sT

L−1 +nT
L−1)] are then passed to

the receiver.

The input to the conventional noncoherent BICM demodu-
lator is the matrix of received symbols Y, an estimate of the
average symbol signal-to-noise ratio Es/No, and estimates of
the fading amplitudes a = [a0, ..., aL−1]. Because the receiver
knows a, it is said to have channel state information (CSI).
An estimate of Es/No can be computed using the method in
[4], while estimates for a can be found in correlated fading
by using a Wiener filter matched to the channel’s autocorre-
lation, possibly aided by periodically inserted pilot symbols
[13].

In addition, the BICM-ID demodulator has available extrin-
sic information v produced by the soft-output decoder, which
is used by the demodulator as a priori estimates of the likeli-
hood of the code bits. The demodulator interprets elements
of v as the log-likelihood ratio

vk = log
p̂k

1− p̂k
, (2)

where p̂k is the decoder’s estimate of the probability that
bk = 1; because this is extrinsic information, it is produced
using information about all code bits other than bk.
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The SISO demodulator works on a symbol-by-symbol basis,
producing soft information for all µ code bits associated with
a particular symbol, using only those portions of the demod-
ulator inputs Y,v, and a that pertain to that symbol. For
an arbitrary symbol s, let y be the received signal vector, c
the complex channel gain, a = |c| the channel amplitude, and
ṽ = [v0, ..., vµ−1] be the portion of v that corresponds to this
symbol. The SISO demodulator computes a log-likelihood
ratio for each code bit bk, in the form

λk = log
p(bk = 1|y, ṽ, a)
p(bk = 0|y, ṽ, a)

. (3)

If a noniterative BICM receiver [6] is used, the conditioning
on ṽ is removed (represented in Fig. 1 by removing the v
input at the bottom of the demodulator block). As will be
shown in (6), the LLR can be decomposed into λk = zk +vk,
where zk is extrinsic information. To prevent the harmful
positive feedback of probabilities, only zk is passed to the
channel decoder.

The extrinsic information at the output of the demodulator is
deinterleaved and the resulting sequence z′ = zΠ−1 is passed
to a soft-input decoder which produces a vector û containing
hard estimates of the message bits. The BICM-ID receiver
requires that the decoder produces extrinsic information v′

of the code bits, which is reinterleaved to form the input v
to the demodulator. The details of the soft-output decoder
will not be discussed here, as it has already been treated ex-
tensively in the literature. To obtain our simulation results,
we used the soft-input/soft-output (SISO) algorithm of [14]
implemented in the log-domain [15, 16].

The BICM-ID receiver iterates between demodulation and
decoding, with the reliability of the exchanged extrinsic
information improved after each half-iteration. Note that we
have placed no requirements on the type of code. If the code
itself does not require iterative decoding, for instance if it is
a conventional convolutional code, then it is natural for there
to be a single iteration of decoding for every iteration of
demodulation. For non-iteratively decoded codes, the itera-
tive nature of the BICM-ID receiver substantially increases
the complexity of the system, which grows linearly in the
number of iterations. For instance, [7] uses a convolutional
code and three iterations of BICM-ID decoding, thereby
tripling the complexity relative to the non-iterative BICM
receiver. On the other hand, if the code must be iteratively
decoded, BICM-ID does not impose a heavy burden on
the overall system complexity. This is because the receiver
already must iterate for the sake of decoding, and thus up-
dating the soft demodulator statistics between each decoder
iteration is less of a burden than requiring entire iterations
solely for the sake of BICM-ID. Complexity can be reduced
further by allowing the decoder to execute several local
iterations of decoding before updating the soft demodulator
metric (this is done in [11] which executes 5 local iterations

of turbo decoding for each of 2 global iterations of BICM-ID).

SOFT NFSK DEMODULATOR

Now let us turn our attention to the calculation of (3). The
first step is to partition the two probabilities in (3) over the
set of symbols,

λk = log

∑
i∈S

(1)
k

p(si|y, ṽ, a)
∑

i∈S
(0)
k

p(si|y, ṽ, a)
, (4)

where the set S
(1)
k contains the indices of all symbols labelled

with bk = 1, and S
(0)
k contains the indices of all symbols

labelled with bk = 0. To compute the summands in (4), first
apply Bayes’ rule

p(si|y, ṽ, a) =
p(y|si, ṽ, a)p(si, ṽ, a)

p(y, ṽ, a)
(5)

The extrinsic information ṽ pertaining to this symbol is gen-
erated by the decoder using information pertaining to sym-
bols other than this one. As a consequence, ṽ is independent
of a, si, and y and thus p(y|si, ṽ, a) = p(y|si, a). Since {bk =
b} and S

(b)
k are equivalent events, p(si, ṽ, a) = p(si, ṽ, a, bk =

b) for i ∈ S
(b)
k . Furthermore, a is independent of si, ṽ, and

bk, thus p(si, ṽ, a, bk = b) = p(a)p(si, ṽ, bk = b). From
the definition of conditional probability p(si, ṽ, bk = b) =
p(si|ṽ, bk = b)p(ṽ, bk = b) = p(si|ṽ, bk = b)p(bk = b|ṽ)p(ṽ).
Gathering all these terms, we get for i ∈ S

(b)
k

p(si|y, ṽ, a) =
p(y|si, a)p(a)p(si|ṽ, bk = b)p(bk = b|ṽ)p(ṽ)

p(y, ṽ, a)

Inserting this back into (4), cancelling common terms, and
taking the p(bk = b|ṽ) term out of the summation yields

λk = log
p(bk = 1|ṽ)

∑
i∈S

(1)
k

p(y|si, a)p(si|ṽ, bk = 1)

p(bk = 0|ṽ)
∑

i∈S
(0)
k

p(y|si, a)p(si|ṽ, bk = 0)

= vk + log

∑
i∈S

(1)
k

p(y|si, a)p(si|ṽ, bk = 1)
∑

i∈S
(0)
k

p(y|si, a)p(si|ṽ, bk = 0)
, (6)

where the last equality follows from (2). The demodulator
outputs the extrinsic information zk = λk − vk, or

zk = log

∑
i∈S

(1)
k

p(y|si, a)p(si|ṽ, bk = 1)
∑

i∈S
(0)
k

p(y|si, a)p(si|ṽ, bk = 0)
(7)

This expression clearly delineates the contribution of the
channel observation, which influences only the p(y|si, a)
term, and the contribution of the a priori information passed
to the demodulator from the decoder, which affects only the
p(si|ṽ, bk) term.

When the demodulator does not use a priori information
from the decoder, as in a conventional BICM receiver, then
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p(si|ṽ, bk) = p(si|bk) = 2/M , and since these terms are all
equal, they cancel out in (7). But now consider what hap-
pens if the demodulator has available an estimate p̂k of the
probability that bk = 1, which can be found from the a priori
LLR input ṽ. Let symbol si be labelled by {b(i)

0 , ..., b
(i)
µ−1}.

Under the assumption of independent code bits (achieved by
proper interleaving), the symbol probability is

p(si|ṽ, bk) =
µ−1∏

j=0
j 6=k

p(bj = b
(i)
j |vj)

=
µ−1∏

j=0
j 6=k

b
(i)
j p̂j + (1− p̂j)(1− b

(i)
j )

=
µ−1∏

j=0
j 6=k

b
(i)
j evj + (1− b

(i)
j )

1 + evj

=
µ−1∏

j=0
j 6=k

eb
(i)
j vj

1 + evj
(8)

where the third line follows from the second from (2).

Now consider the p(y|si, a) term in (7). Since y = cs+n, y is
complex Gaussian with mean cei when conditioned on sym-
bol si and complex fading coefficient c. Thus its conditional
pdf is, from [5],

p(y|si, c) =

( Es

πNo

)M

exp




− Es

No


|yi − c|2 +

M−1∑

j=0
j 6=i

|yj |2








. (9)

Because the demodulator is noncoherent, the phase θ of c is
unknown and thus (9) must be marginalized with respect to
θ. Assuming that θ is uniform, as also shown in [5],

p(y|si, a) =
∫ 2π

0

p(θ)(y|si, c)dθ = (10)

( Es

πNo

)M

exp



−

Es

No


a2 +

M−1∑

j=0

|yj |2





 I0

(
2Esa|yi|

No

)
,

where I0(·) is the zeroth order modified Bessel function of
the first kind. If the distribution of θ is not uniform, as in
Rician fading, then (10) needs to be calculated with respect
to the corresponding p(θ) [12].

The soft demodulator output zk is found by substituting (8)
and (10) into (7). However, this operation can be simplified

by exploiting the fact that (7) contains a ratio of probabilities
and thus many terms may cancel. For instance, the (1+ evj )
in the denominator of (8) will cancel in the ratio and can
be dropped. Furthermore, all terms except for the Bessel
function will cancel in (10). Thus,

zk = log

∑

i∈S
(1)
k

I0

(
2Esa|yi|

No

) µ−1∏

j=0
j 6=k

exp
(
b
(i)
j vj

)

∑

i∈S
(0)
k

I0

(
2Esa|yi|

No

) µ−1∏

j=0
j 6=k

exp
(
b
(i)
j vj

) . (11)

This expression can be further simplified by using the max-
star operator as defined in [16],

max∗
i

{xi} = log

{∑

i

exi

}
, (12)

where the pairwise max-star operator is defined as
max∗(x, y) = max(x, y) + log(1 + e−|x−y|) = max(x, y) +
fc(|x−y|) and multiple arguments imply a recursion of pair-
wise operations, i.e. max∗(x, y, z) = max∗(x, max∗(y, z)).
In terms of max∗, (11) becomes

zk = max∗
i∈S

(1)
k


log I0

(
2Esa|yi|

No

)
+

µ−1∑

j=0
j 6=k

b
(i)
j vj




−max∗
i∈S

(0)
k


log I0

(
2Esa|yi|

No

)
+

µ−1∑

j=0
j 6=k

b
(i)
j vj


 .

(13)

Much of the computational complexity of the above expres-
sion lies in the calculation of several nonlinear functions.
Note, however, that the logarithm and Bessel function
always appear together as log[Io(·)] and so this combined
function can be implemented as a single table look-up. A
piecewise linear approximation for this nonlinear function is
given in [3]. Also note that the arguments of the log[Io(·)]
operator are all channel observations that do not change
after any iteration of decoding (only v changes after each
demodulator iteration). Thus, the log[Io(·)] calculation
need only be performed prior to the first iteration. Another
frequently computed nonlinear function is the correction
function fc(z) = log(1 + e−z) that must be calculated
by each pairwise max-star operation. This function can
be implemented using the linear approximation in [17].
Alternatively, by noting that max∗(x, y) ≈ max(x, y), each
max∗ operator in (13) could be replaced with max, although
this imposes a performance penalty (we observed a loss of
approximately 0.5 dB over a wide range of parameters). The
additional complexity per-bit-iteration of using BICM-ID is
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at worst M(µ − 1) additions and M − 2 pairwise max∗ (or
max) operations. This complexity could be further reduced
by exploiting the structure in the natural mapping given
by (1). Note that the log[Io(·)] must be computed even for
BICM, and since it is only computed once in BICM-ID,
it imposes no additional burden. Given the complexity of
the turbo decoder and the nonlinear log[Io(·)] operation,
the additional complexity of BICM-ID is quite manageable,
especially for reasonable values of M .

SIMULATION RESULTS

To illustrate the effectiveness of the proposed BICM-ID tech-
nique for M-ary NFSK, we conducted an extensive set of
simulations. For the channel code, the full-length turbo code
from the UMTS specification was used [18]. This code has
length (N,K) = (15354, 5114), including tail bits, and is
(roughly) rate R = 1/3. The BICM interleaver Π was im-
plemented as a µ by L block interleaver, with bits written
into the interleaver row-wise and read out column-wise. Sev-
eral other interleaver designs were also examined, including
s-random interleavers and interleavers designed according to
the three rules in [9]. We found, however, that performance
was not significantly influenced by interleaver design, pre-
sumably due to the fact that the turbo code already contains
its own internal interleaver.

We considered both AWGN and fully-interleaved Rayleigh
flat-fading. In all cases, it is assumed that the average value
of Eb/No is known at the receiver and in the fading case, the
fading amplitudes a are known. Four values of the modula-
tion order M were considered, M = 2, 4, 16, and 64. For
M > 2, both BICM and BICM-ID were considered (for
M = 2, BICM-ID is equivalent to BICM). In each case, 16
iterations of BICM-ID decoding were performed (with a sin-
gle local iteration of turbo decoding for each global iteration
of BICM-ID). For every data point, the simulation ran until
at least 30 frame errors were recorded.

Fig. 2 shows BER performance for M=16 in AWGN as
a function of the number of iterations. This plot shows
curves for both BICM (solid lines) and BICM-ID (dashed
lines). From right to left, the performance after iterations
1,2,3,4,5,10, and 16 are shown (the performance after 1 iter-
ation is identical for both systems). The curves indicate that
the performance of BICM-ID after 3 iterations is always bet-
ter than the performance of BICM after all 16 iterations.
This implies that, although BICM-ID is marginally more
complex per iteration than BICM, a system using BICM-
ID can actually be much less complex than BICM because
it can achieve the same performance by running far fewer
iterations.

Fig. 3 shows performance in AWGN after all 16 iterations
for all four values of M considered. For each M > 2 a pair of
curves are shown, one for BICM and the other for BICM-ID.
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Figure 2: BER vs. Eb/No for the UMTS turbo code and
16-ary NFSK using both BICM (solid line) and BICM-ID
(dashed line) in AWGN. From right to left, the curves show
performance after 1, 2, 3, 4, 5, 10, and 16 iterations.
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Figure 3: BER vs. Eb/No for the UMTS turbo code using M-
ary NFSK and both BICM (solid line) and BICM-ID (dashed
line) in AWGN after 16 iterations for different modulation
orders.
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Figure 4: BER vs. Eb/No for the UMTS turbo code us-
ing M-ary NFSK and both BICM (solid line) and BICM-ID
(dashed line) in fully-interleaved Rayleigh flat fading after
16 iterations for different modulation orders.

The corresponding curves for the fully-interleaved Rayleigh
flat fading channel is shown in Fig. 4.

In Table I, we list the value of Eb/No required to achieve a
BER of 10−5 using the UMTS turbo code for each modula-
tion order in both AWGN and Rayleigh fading. The table
indicates the required value of Eb/No when using BICM and
BICM-ID. Also, the Shannon capacity for M-ary NFSK is
given. These values for capacity were found by solving the
multidimensional integration given in [12] by applying the
Monte Carlo integration technique of [19].

The dB gain due to using BICM-ID increased with M , with
gains between 0.37 and 0.39 dB for M = 4, between 0.72 and
0.74 dB for M = 16, and between 0.78 and 0.86 for M = 64.
The gains in fading and AWGN were comparable. Despite
the impressive gains due to using BICM-ID, performance
is still further away from capacity than it is with binary
NFSK. In AWGN, the gap to capacity increases from 0.58
dB for M = 2 to 0.73, 1.25, and 1.83 dB for M = 4, 16, and
64, respectively. In Rayleigh fading, the gap increases from
0.8 dB for M = 2 to 1, 1.5, and 2 dB for M = 4, 16, and
64, respectively. As the performance improvement due to
BICM-ID increases with M , so does the gap to capacity,
suggesting that further improvements to this process are
possible.

CONCLUSIONS

The combination of binary turbo codes and binary noncoher-
ent orthogonal modulation can approach the Shannon capac-
ity to within a fraction of a dB. When the same binary turbo

Type M BICM BICM-ID Capacity
AWGN 2 7.44 dB N/A 6.86 dB

4 5.47 dB 5.08 dB 4.35 dB
16 4.29 dB 3.55 dB 2.30 dB
64 3.98 dB 3.20 dB 1.37 dB

Rayleigh 2 8.35 dB N/A 7.55 dB
Fading 4 6.37 dB 6.00 dB 5.01 dB

16 5.13 dB 4.41 dB 2.91 dB
64 4.82 dB 3.96 dB 1.94 dB

Table 1: Minimum Eb/No required to achieve a BER of 10−5

using the full-length UMTS turbo code, M-ary noncoherent
FSK, and either BICM or the proposed BICM-ID technique.
The corresponding Shannon capacity is also given.

code is bit-interleaved, modulated with M-ary orthogonal
modulation, then demodulated noncoherently and finally de-
coded, the gap to Shannon capacity increases with M . This
gap can be partially closed by approximating joint demod-
ulation and decoding with a simpler algorithm that iterates
between a SISO demodulator and decoder. For instance,
the performance of 64-ary NFSK in AWGN is improved by
0.78 dB relative to segregated demodulation and decoding.
In this case performance is still 1.83 dB from capacity, sug-
gesting that further improvements should be possible. One
source of improvement is through careful interleaver design,
but our attempts at improved interleaver design proved fruit-
less when we used the UMTS turbo code. Any attempt to
improve the interleaving should jointly consider the turbo
code’s internal interleaver with the global BICM interleaver.

In our work, we assumed that the average Eb/No is known
at the receiver, as our prior experience and reports in the
literature indicate that estimating Eb/No over a large block
of data is not difficult and turbo decoding is robust against
slight SNR estimation errors [20]. Nevertheless, the problem
of SNR estimation should be considered more thoroughly
before the proposed technique can be fielded. Likewise,
our results for Rayleigh fading assumed that the amplitude
estimates can be perfectly estimated. While this is difficult
when the channel coherence time is short, accurate estimates
can be achieved if the channel coherence time is sufficiently
long by periodically transmitting pilot symbols or tones
[21]. Alternatively, the receiver could operate without
channel state information by also marginalizing out a in
(10). A more sophisticated blind receiver could actually
switch between operating with and without CSI. During the
first few iterations, the receiver does not know the fading
amplitudes and must operate without CSI. However, as the
decoder begins to resolve the data, the fading amplitudes
could be estimated. Then the estimated fading amplitudes
could provide CSI for future iterations. A hybrid receiver
could operate without CSI for some symbols and with CSI
for only those symbols whose amplitudes have been reliably
estimated.
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