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Abstract— This paper introduces an optimum maximum a
posteriori (MAP) frame synchronization method for packet-
based turbo coded communication systems. The synchronizer
maximizes the probability of frame synchronization by observing
the received signal sequences. This method is based on the low-
density parity-check properties of turbo codes and does not
require insertion of sync words or preambles.

I. I NTRODUCTION

Turbo codes were introduced by Berrouet al in 1993 [1].
While most work to date has viewed turbo codes from the
literal perspective of being parallel concatenated recursive sys-
tematic convolutional (RSC) codes, Engdahl and Zigangirov
provide an alternative way to view turbo codes as low density
parity check (LDPC) codes [2]. The connection is established
by the structure of convolutional codes. As early as 1973,
Forney [3] suggested to transform truncated convolutional
codes into linear block codes. Unlike usual LDPC codes that
are defined on random sparse parity-check matrices, the linear
block codes derived from turbo codes are highly structural,
and in particular, they are quasi-cyclic. By “quasi-cyclic” we
mean that the pattern in the parity-check matrix is repeated in
the rows though the shift may be greater than one symbol.

Conventional frame synchronizers require insertion of sync
words, or preambles. The correlation between the predefined
sync word and received signal is calculated to determine the
correct frame starting point. It is possible that the same or
similar patterns of the sync word are present in the payload
data. Hence the performance of synchronizers using sync
words is constricted by the random data limit [4]. Besides,
sync words consume signal energy. Thus insertion of sync
words is not desirable for codes working at very low signal-
to-noise ratio (SNR).

Both LDPC codes and turbo codes are attractive for their
extraordinary error correction capability in low SNR envi-
ronments. In order to fully achieve the potential capability,
accurate frame synchronization is necessary. However, con-
ventional frame synchronizers, which ignore the structure of
the code, usually fail at low SNR. To improve frame acquisi-
tion performance, frame synchronization should be considered
jointly with decoding [5] [6] [7] [8].

The low-density parity-check characteristics of LDPC and
turbo codes enable us to examine if a valid codeword is
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Fig. 1. Diagram of a turbo encoder.

received by using the parity-check equations [9]. In this work,
an optimum frame synchronizer for packet-transmitted turbo
codes is introduced. No additional preamble or sync words
are required. The MAP frame synchronizer minimizes the
probability of frame sync failure on a frame-by-frame base.

The remaining part of this paper is organized as follows.
Section II introduces the parity-check properties of turbo
codes. Section III describes the proposed frame synchronizer.
Section IV presents simulation results. Finally, Section V
concludes the work.

II. PARITY-CHECK CHARACTERISTICS OF TURBO CODES

A. Turbo encoder

Fig. 1 presents a diagram of a typical turbo encoder. A turbo
encoder has two identical constituent RSC encoders. Encoder
I usesx as its systematic input, while Encoder II uses an
interleaved version ofx as input. The interleaver sizeK is
an important parameter of a turbo code which determines the
length of a codeword. Usually an interleaver sizeK > 1000
is required for a powerful turbo code. The parity outputsy1

and y2, together withx enter a multiplexer so that the bits
are assembled into a codeword. In the multiplexer, some bits
in y1 andy2 may be punctured in order to increase the code
rate. A scrambler, also called a channel interleaver, permutes
the codeword so that sequential symbols are interleaved. The
permutation helps to combat burst errors which turbo codes
are not good at dealing with. It also enables the frame
synchronization technique proposed in this paper. All these
components in the encoder determine the parity-check matrix
H. The code structure is analyzed in the following.



B. Constituent RSC codes

We start with non-systematic convolutional (NSC) codes.
If an NSC code has generating matrixG (D) =
[g1 (D) g2 (D)], then its dual code is defined by the
matrix H (D) = [g2 (D) g1 (D)]. For example, let
the octal representation of the generating polynomial be
(7, 5), G (D) =

[
1 + D + D2 1 + D2

]
, the corresponding

H (D) =
[
1 + D2 1 + D + D2

]
, and the matrix in numeri-

cal form is [10]

H =




1 1 0 1 1 1 0 0 0 0 0 0
0 0 1 1 0 1 1 1 0 0 0 0
0 0 0 0 1 1 0 1 1 1 0 0
0 0 0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 1 1 0 1

· · ·

· · ·




. (1)

Most entries inH are “0”. This sparseness ofH makes it
resemble the parity check matrix of an LDPC code except
that it is quasi-cyclic. Each NSC code has its equivalent
recursive systematic convolutional (RSC) code. In the field
of GF(2), if the NSC code isG (D) = [g1 (D) g2 (D)],
then the generating matrix of the RSC code isG1 (D) =
[1 g2 (D) /g1 (D)]. Because the code space remains the same,
the H matrix of the RSC code is the same as that of the
NSC code. For a constituent RSC code in a turbo code, the
dimension ofH is determined byK. Generally there areK
parity-check equations and thereforeK rows in H before
puncturing.

C. Puncturing

Puncturing is frequently used to increase the coding rate.
The puncturer deletes some of the parity bits. Those columns
in H corresponding to these bits should not be included in
any parity check equation. Puncturing reduces the number of
parity-check equations, as well as the number of rows in the
parity-check matrix. For example, if the puncturing rule is
to delete every other parity bit, and the original codeword is
c = [x0 p0 x1 p1 x2 p2 x3 p3 x4 p4], then the puncturing result is
c′ = [x0 p0 x1 x2 p2 x3 x4 p4]. UsingH in (1) as an example,
the new parity-check matrix is

H′ =




1 1 1 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 0

· · ·

· · ·


 . (2)

The number of rows inH′ reduces to one half of the original
H. The density of the parity-check matrix is also increased
after puncturing, especially the number of 1’s in every row.

D. Permutation and interleaving

The parity-check matrixH, as shown in (1), is quasi-cyclic.
Therefore any two-bit shift of a valid codeword still satisfies
all parity-check equations. This is undesirable for frame syn-
chronization because the synchronizer needs to distinguish the
correct frame starting point from other positions. Fortunately,
the interleaver and the scrambler permutate the bit sequence so
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Fig. 2. The buffer structure.

that the resulting codeword is no longer cyclic. At the receiver,
the bit sequence is rearranged to recover its original order.

Let c0 be the original codeword before the scrambler, and
H0 be the corresponding parity-check matrix. The permutation
is an elementary operation

c = cP (3)

The new parity-check matrix is thenH = P−1H0.

III. F RAME SYNCHRONIZER

A. Packet Transmission

Packet-transmission in additive white Gaussian noise
(AWGN) channel is considered. A frame of data is encoded,
transmitted, and received. The signal is corrupted by additive
white Gaussian noise. Letd = {di} denote the transmitted
signal, andw = {wi} be i.i.d. additive Gaussian noise. The
received signal is

y = d + w. (4)

Assuming each symbol is sampled once with perfect symbol
timing synchronization, the samples of the received signal are
stored in a buffer as shown in Fig. 2. The locationµ0 where the
codeword starts is unknown. It is assumed that the codeword is
completely contained in the buffered samples. This assumption
is valid if a coarse frame estimator is available, for example, by
using the carrier power sensor as in [8]. The buffer size islN ,
whereN is the codeword length andl > 1 is the normalized
observation window size. The problem is to estimateµ0, 0 ≤
µ0 ≤ lN−N , from the whole frame of samplesy = {yi}, 0 ≤
i < lN . If the estimateµ = µ0, then frame synchronization
is achieved. Otherwise, there is a failure.

B. Optimum Synchronization

The frame synchronizer examinesy against two hypotheses
for eachµ, 0 ≤ µ ≤ lN − N . HypothesisH1 is that frame
synchronization is achieved. The null hypothesisH0 is that
there exist cycle slips of a few symbols. An optimum MAP
estimator maximizes the probability ofµ when receiving the
samplesy, Pr [µ |y ].

The following components of the samples are taken into
account, including the existence of blanks, code structure, and
uncorrelated additive noise which is independent of the data.
We usedi = 0 to represent a blank, where no real data is
transmitted, anddi = ±√Es the antipodal signal when BPSK
modulation is used.Es is the energy per symbol.Es = rEb,
wherer is the code rate, andEb is the transmitted energy per



information bit.C is the set of all valid codewords in GF(2),

C = {c : cHT = 0}. (5)

Let C̃ denote the modulated version ofC. If di = 0, thenyi =
wi, which contains only noise with zero mean and variance
σ2 = N0/2, whereN0 is the one-sided power spectral density
of additive noise.

The frame synchronizer establishes a set of parity check
equations according toH. Each parity check equation is used
to compute the probability that an even number of 1’s have
been transmitted for the subset of the bits that participate
in the equation. Using Tanner’s graphical representation [11],
H defines a bipartite graph where check nodes compute the
probability of an even number of 1’s in their adjacent variable
nodes. In logarithm domain, the results are log-likelihood
ratios (LLR).

The sum of LLR values is described by a random process
e (µ), which is a function ofµ because the LLR values change
for every possible value ofµ. WhenH1 is true, e (µ) has
a positive mean. Otherwise,e (µ) has a zero mean.e (µ) is
approximately Gaussian because of the large number of check
nodes [12] [9]. Whenµ = µ0, e (µ) ∝ N (Mmc, κMmc),
whereM is the number of check nodes, andmc is the mean
of LLR of one check node when an even number of 1’s are
present.κ is a coefficient greater than 2. The distribution of
e (µ) is expressed as

fe (x) =
1√

2πκMmc

exp

(
− [x−Mmc]

2

2κMmc

)
. (6)

Whenµ 6= µ0, e (µ) ∝ N (0, κMmc).
The a posteriori probability to be maximized is

Pr [µ |y ] =
(

1√
2πσ2

)lN−N µ−1∏

i=0

exp
(
− y2

i

2σ2

)

·
lN−1∏

i=µ+N

exp
(
− y2

i

2σ2

)

· Pr
[
{dµ, · · · , dµ+N−1} ∈ C̃ |y

]
(7)

The two products in (7) account for the blanks in head and
tail, where only noise is present. The last term on the right-
hand side is the probability of receiving a valid codeword.
The calculation of this last term requires a decoder. The block
diagram of the optimum frame synchronizer is depicted in Fig.
3. In logarithm-domain, the frame synchronizer computes the
log-likelihood function

L (µ) = −
µ−1∑

i=0

y2
i

2σ2
−

lN−1∑

i=µ+N

y2
i

2σ2
− [e (µ)−Mmc]

2

2κMmc
. (8)

The optimum estimate ofµ in MAP sense is

µ̄ = arg max
µ
{L (µ)} (9)

The synchronizer is simplified by modifying (8). When SNR
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Fig. 3. Optimum MAP frame synchronizer.

is high, the conditional probability

Pr [{d0, · · · , dµ−2} = 0 |dµ−1 = 0] ≈ 1, (10)

therefore,

Pr [{d0, · · · , dµ−1} = 0 |y ] ≈ Pr [dµ−1 = 0 |y ] . (11)

Likewise, we have

Pr [{dµ+N , · · · , dlN−1} = 0 |y ] ≈ Pr [dµ+N = 0 |y ] (12)

Therefore we obtain the high-SNR approximation as

Lhigh (µ) = −y2
µ−1

2σ2
− y2

µ+N

2σ2
− [e (µ)−Mmc]

2

2κMmc
. (13)

When SNR is low, the first two terms in (8) becomes
constant because signals are “buried” in noise. Therefore the
low-SNR approximation is valid

Llow (µ) = − [e (µ)−Mmc]
2

2κMmc
. (14)

Furthermore, if the occurrence of the events
{µ′ |e (µ′) > Mmc, µ

′ 6= µ0 } is negligible, then the following
likelihood function is viable,

L′low (µ) = e (µ) . (15)

IV. SIMULATION STUDY

Packet transmission of turbo codes in AWGN channels is
simulated with BPSK modulation. Two families of turbo codes
are tested with random interleaver and scrambler. One family
of codes has constraint lengthkc = 3. The corresponding
generating polynomial is(7, 5). The constraint length of the
other family is kc = 4 and the octal representation of
the generating polynomial is(15, 13). The interleaver sizes
considered areK = 512 and K = 1024 respectively. The
likelihood function defined in (15) andκ = (2Wr − 1) is
used, whereWr is the row weight ofH. A sync failure is
counted when the decision made by the frame synchronizer is
not the same as the actual frame starting point.

Simulation results of rate 1/3 turbo codes are plotted in
Fig. 4. The sync failure rate curves show that the failure rate
is related to both the interleaver size and constraint length.
Generally, the failure rate grows when the density ofH
increases. Longer constraint length corresponds to anH with
higher density. The interleaver size determines the number of
check nodes. If the weight of rows and columns inH stays
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Fig. 4. Frame sync failure rate of turbo codes with code rate 1/3.
Constraint lengths of constituent RSC codes arekc = 3 and kc = 4
respectively. Random interleavers and scramblers are used.
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Fig. 5. Frame sync failure rate of punctured turbo codes and original
turbo codes that are not punctured. The punctured codes have code rate
1/2. Constraint lengths of constituent RSC codes arekc = 3. Random
interleavers and scramblers are used.

the same, a greater interleaver size leads to lower density of
H. Therefore the frame sync failure rate is lower for codes
with smaller constraint length and greater interleaver size. In
all cases of interest, a frame sync failure rate lower than10−4

is achieved whenEb/N0 < 2.5 dB.
Fig. 5 compares the frame sync failure rate of punctured

and original turbo codes that are not punctured. The constraint
length iskc = 3. Half of the parity bits are removed by the
puncturer. Puncturing increases the density ofH. Hence it
increases the sync failure rate as expected. Frame sync failure
rates lower than10−4 are achieved whenEb/N0 < 3 dB.

Fig. 6 and Fig. 7 plot the frame error rates of turbo coded
systems. The curves compare the systems with perfect frame
synchronization to systems using MAP frame synchronizers.
The turbo codes that generate Fig. 6 havekc = 3. the
proposed frame synchronizer has performance almost the same
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Fig. 6. Frame error rate of turbo codes with code rate 1/3. Constraint
lengths of constituent RSC codes arekc = 3. Random interleavers and
scramblers are used.
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Fig. 7. Frame error rate of turbo codes with code rate 1/3. Constraint
lengths of constituent RSC codes arekc = 4. Random interleavers and
scramblers are used.

as perfect frame synchronization.
The turbo codes that generate Fig. 7 havekc = 4. When

K = 512, the greatest gap between the curves is less than 1
dB and the curves converge whenEb/N0 > 2.5 dB. When
K = 1024, the largest gap between the curves is about 0.5 dB
and converges whenEb/N0 > 2 dB.

Fig. 8 shows the frame error rate performance of punctured
turbo codes. Every other parity bits iny1 andy2 are punctured
to increase the code rates to 1/2. The interleaver size is
1024. It is shown that punctured turbo codes are weaker
than the original codes. The performance of the proposed
frame synchronizer is also affected by puncturing. When
kc = 4, the greatest gap between the curves of the system
using the proposed synchronizer and the system with perfect
synchronization is about 1 dB and the curves converge when
Eb/N0 > 3.4 dB. Whenkc = 3, the curves of the system
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Fig. 8. Frame error rate of turbo codes with code rate 1/2, interleaver
size = 1024. Random interleavers and scramblers are used.

using the proposed synchronizer and the system with perfect
synchronization overlap. Hence whenkc = 3, the proposed
frame synchronizer has negligible effects on the performance
of the overall system.

V. CONCLUSIONS

An optimum frame synchronization technique for turbo
coded packet-transmission system is proposed. The MAP
method minimizes the frame sync failure rate. The coding
structure of turbo codes is considered jointly with frame
synchronization. The performance of the proposed frame
synchronizer is determined by the sparseness of the parity-
check matrix. The frame sync failure rate is lower for codes
with smaller constraint length and greater interleaver size.
Puncturing increases the density of the parity-check matrix,
thus increasing the frame sync failure rate. The simulation

results show that frame sync failure rates lower than10−4 are
achieved atEb/N0 less than 3 dB for considered codes. The
frame error rates of turbo coded systems using the proposed
frame synchronizer are close to the rates of systems with
perfect frame synchronization.
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