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Abstract— This paper considers hybrid-ARQ under the con-
straints of noncoherent orthogonal modulation and hard-decision
decoding. Information theoretic bounds on the throughput for
such systems are derived. A practical coding technique based
on Reed-Solomon codes is proposed and analyzed. The proposed
hybrid-ARQ protocol is modified to allow relay nodes to service
retransmission requests. The proposed protocol is suitable for
IEEE 802.15.4/Zigbee networks using commodity off-the-shelf
hardware.

I. INTRODUCTION

In slow (non-ergodic) fading channels, the instantaneous
channel capacity varies from one transmitted codeword to the
next [1]. If the code rate selected for a particular codeword is
above the instantaneous capacity, then an information outage
will occur. One way to reduce the occurrence of outages
is to use adaptive modulation and coding, which could be
used to adapt the rate to match the instantaneous capacity.
However, such an approach requires transmitter channel state
information (CSI) in the form of knowledge of the channel’s
signal to noise ratio (SNR).

A practical alternative to adaptive modulation and coding
is hybrid-ARQ [2] that can mitigate fading effects. With
hybrid-ARQ, the message is first encoded into a very low
rate “mother” code. The codeword is then broken into several
disjoint blocks. Blocks are transmitted one by one until the
receiver is able to successfully decode and send back a positive
acknowledgement (ACK). The information theory of hybrid-
ARQ in block fading is discussed in [3], with an emphasis
on throughput and delay. With hybrid-ARQ, each time a new
block is sent, the code rate is effectively lowered. Thus,
this approach can be viewed as a form of adaptive rate
coding. With hybrid-ARQ, the required transmit CSI is entirely
embodied in the ACK messages. Even when large blocks are
used, then the amount of CSI (in the form of ACK messages)
does not need to be high.

The original information theoretic analysis of hybrid-ARQ
presented in [2] is based on the assumption of Gaussian input
symbols. While such an assumption is convenient because it
allows the instantaneous capacity of each block to be expressed
in the form log(1 + SNR), it is unrealistic because practical
modulation alphabets do not produce Gaussian symbols. More
realistic bounds on throughput can be obtained by constraining
the instantaneous capacity depending on the choice of modu-

lation. In [4], we discuss the impact of modulation constraints
upon the throughput of hybrid-ARQ from an information-
theoretic perspective. As a specific example, bounds on the
throughput of hybrid-ARQ with QPSK and 16-QAM were
calculated and compared against the throughput of an actual
turbo coded hybrid-ARQ system that uses these modulations
(from the UMTS-HSDPA standard).

A natural application of hybrid-ARQ is low cost wireless
networks, such as personal area networks that follow the
Bluetooth standard or sensor networks that follow the IEEE
802.15.4/Zigbee standard [5]. Such networks tend to use
modulation techniques that can be noncoherently detected. For
instance, Bluetooth uses nonorthogonal binary Gaussian fre-
quency shift keying (GFSK) while Zigbee uses 16-ary pseudo-
orthogonal modulation. The information theoretic bounds on
the performance of hybrid-ARQ applied to these two systems
could be determined by applying the approach set forth in
[4] and conditioning the instantaneous capacity on both the
modulation and the noncoherent detector.

If one had access to the matched filter outputs on board
the receiver, one could implement soft-decision decoding. If
combined with a capacity approaching code, the system could
be designed to closely approach the modulation-constrained
information theoretic limits on throughput. However, most
practical low cost wireless networks do not use soft-decision
decoding. If a code is used at all, it is hard-decision decoded.
This is a disadvantage from a performance standpoint, because
hard-decision decoding always performs worse than soft-
decision decoding. However, the use of hard-decisions makes
for a convenient implementation because the channel code and
decoder can be designed independently from the modulation.

In fact, the coding and decoding could be done on the host
processor rather than on the radio transceiver. All that would
be required is that the host processor encode the message prior
to passing it down to the transceiver, and that the transceiver
pass the received codeword up to the host processor even
if the message is received in error (e.g. error detection on
the transceiver device must be turned off). If the decoding is
performed on board the host processor, then so could the logic
that controls the hybrid-ARQ protocol. Thus, it is conceivable
that off-the-shelf Bluetooth or Zigbee devices could be used
to implement a hybrid-ARQ protocol without any modification
to the radio hardware.



In this paper, we present an information theoretic analysis of
the performance of hybrid-ARQ systems that are constrained
to use noncoherent orthogonal modulation (which approxi-
mates the modulation used in Zigbee) and hard-decision de-
coding. The analysis follows that of [4] using the instantaneous
capacity of hard-decision decoded noncoherent orthogonal
modulation. This is the first contribution of this paper.

While the information-theoretic analysis assumes the use
of capacity-approaching codes, such codes are generally not
feasible in low-cost systems. Thus, the second contribution of
this paper is to propose a coding technique suitable for hybrid-
ARQ with hard-decision decoding. The coding technique is
based on the use of Reed-Solomon codes. The Reed-Solomon
codeword is broken into several blocks, with five blocks being
a convenient choice. We further propose using a selective
combining decoding technique [6] that is appropriate for such
a system. After the Bth block is received, a conventional
hard-decision decoder will base its decision on all B blocks.
However, if one or more of the blocks has significantly
more errors than the other, then the decoder will fail even
if some blocks have only a few errors. In our selective code-
combining technique which we call pseudo-soft, the decoder
attempts several decoding passes, with each pass using one
distinct combination of the B received blocks that improves
the chances of recovering the encoded message. The decoding
technique is valid for Reed Solomon codes, since RS codes are
typically able to detect the presence of uncorrectable errors.

As a final contribution, we contemplate the use of the
proposed hybrid-ARQ technique in a relay network. The idea
behind relaying is that if the network is dense enough, then it
could be viewed as a large distributed antenna array. When a
block is transmitted, it might be overheard by nodes other than
the intended destination. If the destination requires an ARQ
retransmission, the retransmission could come from one of
theses nodes acting as a relay. Presumably if the relay is closer
to the destination than the original source was, there will be
some performance gain due to the reduced path loss when the
second block is retransmitted. We proposed such a protocol in
[7], where we termed it the HARBINGER (hybrid-ARQ based
intra-cluster geographic relaying) protocol. However, as in [3]
we assumed Gaussian input symbols. In the present paper,
we revisit the HARBINGER protocol under the constraints of
hard-decision decoded noncoherent orthogonal modulation.

II. SYSTEM MODEL

The system model is shown in Fig. 1. A message u of
k symbols is passed through a channel encoder to produce
the codeword c of length n symbols. Note that since we will
later contemplate the use of Reed Solomon codes, the encoder
does not need to be binary. The codeword is passed into a M-
ary orthogonal modulator. The M-ary orthogonal modulator
first transforms the codeword c into a sequence d of symbols
di ∈ {0, ..., M − 1} through some mapping process. Each
symbol di in the sequence is used to select a symbol from
the signal set S = {s0, ..., sM−1}. Because the system uses
orthogonal modulation, the symbol sdi is the M-dimensional

Fig. 1. A generic system model

elementary vector with a 1 in position di and zeros elsewhere.
The set of selected symbols are place into the M by N matrix
x which are scaled such that the average energy per symbol
Es = E{|x|2}.

The matrix x is then broken into Bmax equal length blocks,
and blocks are sequentially transmitted until the receiver
replies with a positive acknowledgement or all Bmax blocks
have been transmitted. Letting x[b] denote the bth block, h[b]
the complex fading coefficient for the block, and ν a vector
of complex Gaussian noise whose dimensions match x[b] and
whose components are zero-mean i.i.d. circularly symmetric
Gaussian with variance No/2 in each complex direction, the
received signal during the bth block is:

y[b] = h[b]x[b] + ν. (1)

Note that because h[b] is a scalar, it is assumed that the fading
is constant for the entire duration of the block, and across
all dimensions of the signal set. Without loss of generality,
E{|h[b]|2} = 1 so that the average received energy per symbol
is the same as the transmitted symbol energy.

Once a block has accumulated at the receiver, each received
symbol in y[b] is passed through a demodulator that produces
the log-likelihood ratio (LLR) estimates of the symbol. The
demodulation is on a symbol-by-symbol basis and the demod-
ulation process for a single symbol y needs to be considered.
For each possible xm, 1 ≤ m ≤ M , a log-likelihood is formed:

Λm = log p(xm|y)

= log
p(xm|y)∑
x∈S p(x|y)

(2)

where p(x) is the pdf of x. For noncoherent orthogonal mod-
ulation without channel state information (CSI), the likelihood
ratio given by [8] is:

f(y|xm) =
( ES

No
)2|ym|2

ES

No
+ 1

(3)

Letting the likelihood f(x|y) = κp(x|y) for any arbitrary
constant κ that is common for all postulated symbols, and
applying Bayes’ rule, then (2) can be more conveniently



rewritten as:

Λm = log
f(y|xm)∑
x∈S f(y|x)

= log f(y|xm)− log
∑

x∈S
f(y|x)

=
( ES

No
)2|ym|2

ES

No
+ 1

. (4)

While the above is the optimal metric for soft-decision de-
coding, we further constrain our receiver to use hard-decision
decoding. For hard-decision decoding, a symbol decision is
made by picking the index of the largest Λm. It is this symbol
that is passed to the decoder.

The decoding can proceed using the set of blocks {1, ..., B}
received up to time slot B ≤ Bmax. The decoder is free to
use all, one, or some subset of the received blocks. In the case
that only the most recent block is passed through the decoder,
the system is said to be a type-I hybrid-ARQ system. In type-
II and type-III hybrid-ARQ, which are based on incremental
redundancy, combinations of two or more accumulated blocks
can be made. Because coding is done across the transmitted
blocks (which essentially form a longer codeword for the same
message), error correction performance can be more robust.
The difference between the two is that the individual blocks
in type-III hybrid-ARQ are also self-correctable whereas for
type-II they are not.

III. DISCRETE MEMORYLESS CHANNEL (DMC)
CAPACITY

The mutual information between channel input X and
output Y is defined by [9] as:

I(X, Y ) =
∑

y

∑
x

p(x, y) log2

p(x, y)
p(x)p(y)

(5)

where p(x, y) is the joint pmf of x and y and p(y) and p(x)
are the a priori probabilities of the occurrence of symbol x or
y from S . The capacity of a channel is found by maximizing
the mutual information over all possible input distributions:

C = max
p(x)

I(X,Y ). (6)

By assuming that p(x) = 1/M , the capacity in (6) is thus
maximized. By using the fact that p(y|x) = p(x, y)/p(x) and
assuming that all outputs are equally likely (i.e p(y) = 1/M
for all symbols in S), the mutual information in (5) becomes:

I(X, Y ) = (7)

=
M∑

x=1

p(y|x) log2(Mp(y|x)) (8)

We are using noncoherent M-ary orthogonal modulation
where the Ps (probability of symbol error) is given by [10]
as:

Ps =
M−1∑

k=1

(
M − 1

k

)
(−1)k+1

k + 1
exp

[
− k

k + 1
Es

N0

]
(9)

where M is the modulation order.
Once we calculate the Ps for a particular signal to noise ra-

tio, Es/No, it is straightforward to derive the symbol transition
matrix. The probability of correctly receiving any symbol is
1−Ps. The use of M orthogonal basis functions implies that if
a symbol error is made, any of the other M−1 symbols could
have been sent with equal probability. Hence the probability
that a specific symbol from S is received given that it is in
error is simply Ps/(M − 1). In other modulation schemes
such as QPSK or 16-QAM, the transition probability of an
errant symbol would not have been equal for all symbols.
Thus orthogonal signalling as in this case provides an easy
way to compute the symbol transition matrix. The M × M
symbol transition matrix, Ts, is:

Ts =




1− Ps
Ps

M−1 · · Ps

M−1
Ps

M−1 1− Ps · · Ps

M−1

· · · · ·
· · · · ·

Ps

M−1 · · · 1− Ps




(10)

Ts(y, x) is yth row and xth column element. It is the
conditional probability p(y|x) that yth symbol was received
given that xth symbol was sent. Both x and y are any M
possible symbols of signal constellation S . Given x = y then
Ts(y, x) = 1 − Ps which is the probability of successfully
receiving the transmitted symbol x. Our mutual information
equation (8) or equivalently the Discrete Memoryless Channel
(DMC) capacity now becomes:

C =
M∑

x=1

Ts(y, x) log2(M × Ts(y, x))

= log2 M + Ps log2

Ps

M − 1
+(1− Ps) log2(1− Ps) (11)

IV. BLOCK FADING

In block fading, the codeword is broken into B blocks and
each block is sent over an independent channel. The fading
coefficient h[b] of the bth block is constant for the entire
duration of the block and the channel has a DMC capacity. Due
to the fading coefficient, the instantaneous signal to noise ratio
of the bth block denoted by γb ≡ |h[b]|2Es/N0, alongside its
corresponding capacity C(γb) are also random. For Rayleigh
block fading, |h[b]| is Rayleigh and |h[b]|2 is exponentially
distributed.

Furthermore, when code-combining is used, then the com-
bined capacity of the B blocks is more than that of individual
blocks, since each block is sent over an independent channel.
For code-combining in soft decision channels, we add block
capacities. However, for hard-decision DMC, we need a differ-
ent approach. Whenever, the Bth block transmission is made,
the cumulated codeword at the receiver has B sets of blocks
each with an independent Ps due to varying instantaneous
block signal to noise ratio γb. Suppose for B = 2, the two
transmitted blocks have symbol error probability Ps1 and Ps2 .



Thus the DMC has an error probability Ps1 half the time and
Ps2 the other half.

For B transmissions, the average probability of symbol
error, Ps becomes:

P s =
(Ps1 + Ps2 + .. + PsB

)
B

(12)

Using Ps we can compute the accumulated DMC Capacity,
C(γ1, ..., γB) using (10) and (11) respectively. The overall
code-combined capacity is therefore:

C(γ1, ..., γB) = log2 M + P s log2

P s

M − 1
+(1− P s) log2(1− P s) (13)

When B is finite, the channel is not ergodic, and therefore a
Shannon-sense channel capacity does not exist. For finite B,
a more relevant performance metric is the information outage
probability, defined in [11] and [1] as the probability that the
instantaneous capacity C(γ1, ..., γB) is less than the rate RB =
R/B:

p0(B) = P [C(γ1, ..., γB) < RB ] . (14)

When C(γ1, ..., γB) is less than RB , an information outage
occurs. In block fading, the information outage probability is
an information theoretic bound on the frame error rate (FER)
of any system. In fig. (2), the FERs are derived by comparing
the code rate against the channel capacity. Increase in B (due
to subsequent hybrid-ARQ retransmissions) causes this rate to
fall relative to the DMC capacity and consequently the FERs
improve. Since we have the same rate for both type-II and
type-III hybrid-ARQ the theoretical results will be the same
for both.

V. THROUGHPUT ANALYSIS

In order to provide the throughput analysis we borrow from
the approach taken in [4]. Suppose the random variable B
indicates the number of hybrid-ARQ transmissions until a
block is successfully received at the destination. In the case
when B is equal to an arbitrary value, b, the first b−1 attempts
must have failed while the bth attempt has succeeded. The pmf
of B is thus:

pB [b] = (1− p0(b))
b−1∏

i=1

p0(i) for b ≥ 1 (15)

Practical hybrid-ARQ protocols are limited to a maximum
number of transmissions, which we denote as Bmax If a mes-
sage has not been correctly decoded after Bmax transmissions,
then the system moves on to the next message. The pmf of
B, when constrained with Bmax number of transmissions, is:

pB [b] =





ξ (1− p0(b))
b−1∏

i=1

p0(i) for 1 ≤ b ≤ Bmax

0 otherwise,
(16)
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Fig. 2. Theoretical Frame Error Rates (FER) vs. SNR of noncoherent 16-ary
orthogonal modulation. We assume a generic (51, 45) codeword for B=1. By
the fifth block transmission (B=5), we equivalently have a (255, 45) codeword.

where ξ is a normalization factor needed to make pB [b] a valid
pmf:

ξ =

[
Bmax∑

i=1

(1− p0(b))
b−1∏

i=1

p0(i)

]−1

. (17)

Finally, we can derive the throughput efficiency, which is the
ratio of correct bits to transmitted bits:

ηeff =
1− p0(Bmax)

E[B]
. (18)

where E[B] is the expected value of transmissions needed for
a given value of SNR. Some of the following figures showing
comparison of throughputs are based on this metric.

VI. REED SOLOMON CODING

Reed Solomon (RS) codes are a class of non-binary block
codes that have been extensively used for error correction in
digital communication systems. An extensive review of the
Reed Solomon codes is provided by [12]. A (n, k) RS code
operates over an alphabet of size n+1 and thus the number of
bits per RS symbol is log2(1 + n). The number of correctible
errors in a RS code is:

tc = b(n− k)/2c (19)

We suppose a (255, 45) Reed Solomon mother codeword
that is comprised of 45 × log2(1 + 255) = 360 message bits
that are encoded to 255×log2(1+255) = 2040 codeword bits.
A 16-ary orthogonal modulation scheme implies that every
log2(16) or four bits from this codeword are transmitted as an
orthogonal symbol. For every block, there are 2040/(4×5) =
102 orthogonal symbols transmitted over the channel.

The first Reed Solomon block is thus a (51, 45) codeword
and is able to correct (b(51 − 45)c/2 = 3 errors. If due to
fading and low signal to noise ratio, the receiver is unable



to decode the codeword, the next block from the original
codeword is transmitted over the channel. At the receiver, the
new block is code-combined with the original block to yield an
error correcting performance of (b(51×2−45)c/2 = 28 sym-
bols for the two blocks. This process of block transmissions
continues until the destination is able to decode the original
message or the maximum number of transmissions are made.
This incremental redundancy allows a larger number of errors
to be corrected for successive block transmissions. Using (19),
the correctable errors capability for the 5 transmissions of
a (255, 45) mother code are 3, 28, 54, 79 and 105 errors
respectively.

The drawback of the type-II approach is that if there are a
very large number of errors for one block, there is a chance
that if another block transmission is made, the total number of
accumulated errors would still be too large for error correction
capability of the combined blocks. Putting it in another way,
it is possible that individual blocks or combinations of blocks
are correctable even though the thus far accumulated codeword
may not be. This is in contrast to the information theoretic
approach where the channel capacity can only increase with
incremental redundancy.

In [6], a combinatoric code combining technique for RCPC
(Rate-compatible Punctured Convolutional) codes was pre-
sented. In this hybrid-ARQ approach, the receiver makes
selective combinations of the blocks to maximize the chances
of successfully decoding the message. We can use this idea
for Reed Solomon codes to exploit the incremental redundancy
in a better way than the type-II hybrid-ARQ. Suppose in four
transmissions of (51, 45) blocks from the original mother code
of (255, 45), the block errors are 15, 51, 21 and 17. The
total accumulated symbol errors are 104, which is beyond the
limit of 79 correctable errors of four transmissions. However a
closer look would reveal that blocks 1, 3 and 4 have 53 errors
in total which is within the limit of 54 correctable errors for
three blocks.

In our pseudo-soft approach, encoding is done in such a
way that for every transmission B, the receiver looks to see if
individual blocks or combinations of blocks can be decoded. If
the hard-decision decoding fails, the system will have to make

up to
∑Bmax

i=1

(
Bmax

i

)
combinations of received blocks

and compare against correctable errors for transmission B to
see if the message can be decoded. The pseudo-soft type-
III hybrid-ARQ provides significant dividends because due
to block fading the instantaneous signal to noise ratio of
a combination of random blocks might be enough for the
message to be decoded even though the codeword on the whole
might be in outage. The gain is shown in fig. (3).

For the sake of comparison, we have also examined the
throughput performance of type-I hybrid-ARQ as shown in fig.
(4). Upon the failure of the receiver in decoding the symbol
errors of a block, a retransmission is made. The receiver then
tries to decode the new block without combining it with the
previous transmission.
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Fig. 3. Frame Error Rates (FER) vs. SNR for noncoherent 16-ary orthogonal
modulated hybrid-ARQ with 5 block transmissions B=1,2,.,5 of a (255, 45)
Reed Solomon mother code.
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Fig. 4. The throughput efficiency curves of noncoherent 16-ary orthogonal
modulated hybrid-ARQ vs. SNR with a (255, 45) Reed Solomon mother code.
The Theoretical curves represent the computation of throughput by comparing
the DMC capacity against the code rate rather than by using the actual code.

VII. NETWORK RELAYING

In a relaying network, relay nodes help the transmission
of a message from the source to destination particularly at
low signal to noise ratios. In [7] the HARBINGER (hybrid-
ARQ based intra-cluster geographic relaying) protocol was
presented. Although the initial hybrid-ARQ block comes from
the source, subsequent block transmissions may come from
any relay that has successfully decoded the message and is
closest to the intended destination. Hence the time-diversity
benefit of hybrid-ARQ is further enhanced by the spatial-
diversity effect of relaying. This is in contrast to conventional
hybrid-ARQ where retransmitted packets also have to come
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Fig. 5. The throughput efficiency vs SNR in a comparison of point-to-point
and relay-based transmission. The results are derived for the Type III pseudo-
soft technique using a (255, 45) mother code .

from the original source. The performance of HARBINGER
in [7] demonstrated a significant improvement in the energy-
latency tradeoff when compared with conventional multihop
protocols. In fig.(5), a relay positioned midway between the
source and destination in an environment with a path loss
coefficient of 2 is assumed. A significant improvement in
throughput efficiency at low signal to noise ratios can be
observed.

In [13], Turbo codes were implemented for the Bluetooth
standard by encoding messages for the AUX1 packets, without
requiring any modification to the existing standard. The results
of [13] showed significant improvement in throughput and
reduction in latency at low signal to noise ratios. Likewise, the
HARBINGER protocol using the pseudo-soft coding can be
incorporated into the applications layer of a broadcast-oriented
network based on the IEEE 802.15.4 standard. The Zigbee
protocol for the 2450 MHZ band does not use truly orthogonal
modulation, but rather Walsh codes with O-QPSK using 16-ary
symbols that are nearly orthogonal [5]. Therefore our results
for noncoherent 16-ary orthogonal modulation should also be
approximated for the Zigbee standard.

The Zigbee standard uses node clusters communicating
either on a star or a peer-to-peer topology. Each cluster is
assigned an ID number and is controlled by a coordinator node
alongside CSMA-CA mechanism for medium access control
[5]. The HARBINGER protocol lends itself to a peer-to-peer
topology since intra-cluster communication does not need to
be routed through the coordinator. This is in contrast to the
star topology where all messages are communicated through
the coordinator [5]. In the applications layer, the message can
be encoded and then transferred to the lower layers as payload
to be transmitted as as part of the Data Frame. In case of failure
in decoding the message, subsequent Data Frames would carry
the payloads corresponding to the remaining blocks of the

encoded message.

VIII. CONCLUSIONS

The throughput of a practical hybrid-ARQ system in block
fading suffers loss relative to the information theoretic bound
because of modulation and coding constraints. We have looked
at both these constraints by using noncoherent 16-ary orthog-
onal modulation and a Reed Solomon code. Additionally, our
paper has looked at theoretic performance limits of hybrid-
ARQ based on a hard-decision DMC capacity. Prior work
had either assumed unconstrained modulation or soft-decision
capacities. To reiterate, the DMC capacity is a more appropri-
ate comparison parameter for low-power hard-decision digital
radios. A selective code-combining technique has been used
that maximizes the decoding capability of a mother code.
We have suggested a basic framework for running a decode-
and-forward protocol like HARBINGER for the Zigbee-based
networks. As for the coding scheme, future work could also
consider RCPT (rate compatible punctured Turbo) codes [14]
or the rate-less raptor codes [15].
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