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Abstract—Capacity analysis is used to determine the fun-
damental tradeoff between power and spectral efficiency for
coded continuous-phase frequency shift keying (CPFSK). The
modulation may use an arbitrary modulation index h and the
number of tones M may be any power of two. Detection is
noncoherent and the channel is either AWGN or fully-interleaved
(ergodic) Reyleigh fading. Numerical results demonstrate the
advantage of using nonorthogonal modulation and multiple tones
when the bandwidth requirement is tight.

I. INTRODUCTION

Continuous-phase frequency-shift keying keying (CPFSK)
is an attractive choice of modulation due to its well-behaved
spectral characteristics, near-unity peak-to-average power ra-
tio, and ability to be noncoherently detected. When spectral
efficiency is of little concern, orthogonal CPFSK with a
large number of tones (M ) can be used. The capacity of
noncoherent orthogonal modulation is discussed by Stark in
[1], and numerical results for the binary case are presented
(M = 2). In [2], we present further numerical results for
multi-tone modulation (M > 2) and compare the so-called
coded modulation (CM) capacity against the bit-interleaved
coded modulation (BICM) capacity [3]. In the same paper,
we propose using BICM with iterative decoding (BICM-ID)
[4] to close the gap between the BICM and CM capacities,
but make no attempt to optimize the code design. In [5],
Guillén i Fàbregas and Grant also consider using BICM-
ID with noncoherent orthogonal modulation, and furthermore
optimize the code with respect to the EXIT chart [6].

A drawback of orthogonal modulation is its poor spectral
efficiency. To improve the spectral efficiency of CPFSK,
the tones can be placed closer together, which results in a
modulation index h that is less than unity. As h decreases,
the system becomes more spectrally efficient but the uncoded
error rate will generally increase [7]. Some of the performance
loss can be regained with the use of a rate r error correct-
ing code, but the use of a code will decrease the spectral
efficiency. For a system characterized by a particular choice
of demodulator (e.g. coherent or noncoherent), channel (e.g.
AWGN or Rayleigh fading), alphabet size M , and required
spectral efficiency η, there will be an information-theoretic
“optimal” value of the two-tuple (h,r). By setting h and r to
their optimal values, the value of Eb/N0 required to achieve an
arbitrarily low error rate at spectral efficiency η is minimized.

A plot of η versus Eb/N0 is the constrained channel capacity
of the system, where the constraints are (1) the use of CPFSK
modulation, (2) the number of tones M , (3) the demodulator
choice (i.e. a symbol-by-symbol noncoherent detector), and
(4) the channel type (AWGN or fading).

This paper outlines a methodology for computing the ca-
pacity of CPFSK modulation with noncoherent detection. We
begin in Section II by presenting a model for CPFSK mod-
ulation with symbol-by-symbol noncoherent detection, which
is followed in Section III by a discussion of capacity under
modulation constraints with an emphasis on CPFSK modu-
lation. The capacity of noncoherent CPFSK under bandwidth
constraints is presented in Section IV, and the paper concludes
in Section V.

For the remainder of this paper, bold lowercase letters will
be used to denote (column) vectors, e.g. x, and bold uppercase
will be used for matrices, e.g. X. The scalar value xi,j is used
to denote the (i, j)th entry of the matrix X, while the scalar
value xi is used to denote the ith element of the vector x.
All matrices and vectors are indexed starting at zero, x =
[x0, x1, ..., xM−1]T . Matrices may be represented as a row of
column vectors, e.g. X = [x0,x1, ...,xN−1].

II. NONCOHERENT CODED CPFSK
A set of K data bits is passed through a channel encoder

defined over the alphabet M = {0, 1, ...M − 1}. The output
of the encoder is a length N vector q of M-ary symbols. The
code rate is r = K/N ≤ log2 M information bits per symbol.
Because the code alphabet is matched to the modulation
alphabet, the results presented in this paper are for the coded
modulation (CM) capacity. Alternatively, the data could first be
passed through a binary encoder, bitwise interleaved, and then
mapped to M-ary symbols, but in that case the results would
be for the bit-interleaved coded modulation (BICM) capacity.
Due to the data processing inequality, the BICM capacity is
always lower than the CM capacity [3].

For every entry of q, the continuous time modulated signal
xi(t) is chosen as the qth

i signal of the set S = {sk(t), k =
0, 1, · · · ,M − 1}, where

sk(t) =
1√
Ts

e
jhπ(2k−(M−1))t

Ts , t ∈ [0, Ts), (1)

and h is the modulation index. In order to produce a more
compact bandwidth, an additional phase φi is applied so that



the phase transition from symbol to symbol is continuous. This
additional phase is accumulated as

φi+1 = φi + (2qi − (M − 1)) πh (2)

During the interval iTs ≤ t ≤ (i+1)Ts, the received signal
is

yi(t) = aie
jθi

√
Ese

jφixi(t) + ni(t), (3)

where ni(t) is additive white Gaussian noise (AWGN) with
noise spectral density N0, Es is the energy per symbol, and
aie

jθi is a complex fading coefficient. In this paper, we
consider two types of channel, AWGN and fully interleaved
(ergodic) Rayleigh fading. In both channels, θi is uniformly
distributed over the range [0, 2π). For the AWGN channel
ai = 1, ∀i, while in the Rayleigh fading channel, the ai’s
are independent and identically distributed (i.i.d.) Rayleigh.

The front-end of the symbol-wise noncoherent detector is a
bank of M pairs of matched filters, with one pair matched
to the in-phase and quadrature components of each tone.
Because the detector works on a symbol-by-symbol basis,
we may drop the dependence on the symbol index i in the
following discussion. Furthermore, because the symbol-wise
noncoherent detector allows the received phase to be any
arbitrary value, the CPFSK induced phase φ can be absorbed
into the fading phase θ.

After it is matched filtered and sampled at the symbol epoch,
the received signal y(t) can be written in a vector form as

y = aejθ
√
Esx + n, (4)

where each element of y, x and n can be represented as

yk = aejθ
√
Esxk + nk (5)

xk =
∫ Ts

0

x(t)s∗k(t)dt (6)

nk =
∫ Ts

0

n(t)s∗k(t)dt. (7)

The noise vector n is now Gaussian with a covariance matrix
R = E(nnH) with (k, i)th element

rk,i = N0

∫ Ts

0

s∗k(t)si(t)dt

= N0ρk,i, (8)

where

ρk,i = N0
sin(π(i− k)h)

π(i− k)h
ejπ(i−k)h. (9)

Since n is Gaussian, the vector y given x, a
√Es, and θ

is Gaussian distributed with mean x and covariance R. Thus,
the conditional joint probability density function (pdf) is

p(y|x, a
√
Es, θ)

=
1

πMdet(R)
exp−(y−aejθ√Esx)HR−1(y−aejθ√Esx)

(10)

The exponent of the conditional pdf can be simplified as,

−(y − aejθ
√
Esx)HR−1(y − aejθ

√
Esx)

= −yHR−1y − a2EsxHR−1x

+2Re(ae−jθ
√
EsxHR−1y) (11)

= −yHR−1y − a2EsxHR−1x

+2a
√
Es

∣∣xHR−1y
∣∣ cos(ψ − θ), (12)

where ψ is the complex angle of xHR−1y.
Define K , 1

N0
R, which is the normalized version of R,

not dependant upon SNR. Note that when x(t) = sν(t) or
equivalently the symbol index q = ν, x is the νth column of
K, i.e. x = kν . Therefore, when x(t) = sν(t), the exponent
becomes

−yHK−1y + a2Es

N0
+ 2

a
√Es

N0
|yν | cos(ψ − θ) (13)

Integrating p(y|x, a
√Es, θ) over the uniform random vari-

able θ yields,

p(y|x = kν , a
√
Es)

=
1
2π

∫ 2π

0

p(y|x = kν , a
√
Es, θ)dθ

=
exp−

1
N0

(yHK−1y+a2Es)

πMNM
0 det(K)

I0

(
2
a
√Es

N0
|yν |

)
,

(14)

where I0(·) is the zeroth order modified Bessel function of the
first kind. Notice that the factor that premultiplies the Bessel
function is constant for all postulated symbols x and therefore
the conditional probability is proportional to just the Bessel
function factor. Interestingly, this is the exact same metric
as for the orthogonal case with known a

√Es/N0 [2], and
therefore as will be made more clear in the next section,
the normalized correlation matrix K does not need to be
directly used to form the decision statistic (though knowledge
of the signal set is still needed for the receiver to compute the
matched filter outputs).

III. CPFSK CONSTRAINED CAPACITY

The capacity of a channel with input symbol x and output
symbol y is

C = max
p(x)

I(x;y), (15)

where p(x) is the joint pdf of x, the average mutual informa-
tion is

I(x;y) = E[i(x;y)], (16)

and the mutual information random variable is

i(x;y) = log
p(x,y)

p(x)p(y)

= log
1

p(x)
+ log p(x|y) (17)



Note that the expectation in (16) is with respect to the joint
pdf p(x,y).

When there are no constraints on the modulation, (15) is
maximized by letting x be jointly Gaussian. However, when
there are constraints on the modulation, we may not chose
p(x) in such a way. Rather, the distribution p(x) is inextricably
linked to the choice of modulation.

Because
∑

x′∈S p(x′|y) = 1, we may rewrite (17) as

i(x;y) = log
1

p(x)
+ log

p(x|y)∑
x′∈S p(x′|y)

= log
1

p(x)
− log

∑
x′∈S p(x′|y)
p(x|y)

. (18)

From Bayes’ law and assuming equiprobable x, this becomes

i(x;y) = log M − log
∑

x′∈S p(y|x′)
p(y|x)

. (19)

For a given realization of the channel input x and output
y, the mutual information random variable may be computed
using (19) and the conditional pdf p(y|x). For noncoherent
CPFSK, the conditional pdf is given by (14). Because of the
ratio of conditional pdfs in (19), factors that are common to
all x will cancel, and thus

i(x;y) = log M − log
∑

x′∈S f(y|x′)
f(y|x)

, (20)

where f(y|x) = κp(y|x) for any value of κ that is constant
for all postulated symbols x. For CPFSK, f(y|x) is found
from (14) to be

f(y|x = kν) = I0

(
2
a
√Es

N0
|yν |

)
, (21)

where to maintain a compact notation, the conditioning on
a
√Es is no longer indicated.
According to (16), the average mutual information I(x;y) is

found by taking the expected value of the mutual information
random variable i(x;y) with respect to the joint pdf p(x,y).
For CPFSK, this expectation cannot be expressed in closed
form and thus numerical techniques must be applied. While
for low dimensionality (e.g. M = 2), the expectation can be
evaluated using numerical integration, for higher dimensional-
ity (M ≥ 4), Monte Carlo integration is most effective. In the
Monte Carlo integration, a very long sequence of symbols q
is drawn at random and then equation (5) is used to produce
simulated matched filter outputs with randomly generated
noise and fading. Given the values of the yk’s and knowledge
of the actual symbols, the mutual information random variable
may be evaluated by substituting (21) into (20) and then the
average is taken over the full set of input symbols. Because
the channel is ergodic, the value of I(x;y) estimated through
Monte Carlo integration converges to the true value as the
length of the simulated sequence goes to infinity.

For a fixed modulation format, p(x) is fixed and therefore
the maximization in (15) goes away and the capacity is merely
the average mutual information. However, if the modulation
has parameters, the maximization in (15) is over the set
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Fig. 1. Average mutual information versus Es/N0 for noncoherent
CPFSK in AWGN with M = 2 and several modulation indices h =
{0.2, 0.4, 0.6, 0.8, 1}. For fixed Es/N0, the mutual information increases
with h.

of parameters. In the case of CPFSK modulation, there are
two parameters, M and h, and the capacity is found by
optimizing the mutual information with respect to both of these
parameters. An example is shown in Fig. 1 which plots the
average mutual information as a function of Es/N0 in AWGN
with M = 2 and several values of h.

According to the Shannon coding theorem, it is possible
to signal at an arbitrarily low error probability provided that
the code rate r ≤ I(x;y). When using a rate r code, the
energy per information bit is Eb = Es/r. By replacing I(x;y)
with r and then plotting Eb/N0 = (Es/N0)/r as a function
of r, the information-theoretic minimum Eb/N0 required for
reliable signaling can be determined. An example is shown in
Fig. 2, for AWGN, M = 2, and the same values of h that
were shown in Fig. 1.

From Fig. 2 one can see that for each choice of h, there is
a particular value of r that minimizes the required Eb/N0.
This behavior is called the noncoherent combining penalty
[1]. Unlike coherent systems, going to a lower r does not
necessarily improve energy efficiency. Another trend to notice
from Fig. 1 is that the minimum Eb/N0 decreases with increas-
ing h, reaching its minimum value for orthogonal modulation
(h = 1). Furthermore, the results shown in Figs. 1 and 2 are
for the M = 2 case and would have to be repeated for all other
M . As M increases, the minimum required Eb/N0 decreases
[2]. With these behaviors in mind, it is quite apparent that the
CPFSK design point that achieves capacity by maximizing the
average mutual information is h = 1 and M →∞. This is not
a practical design because the infinite value of M will result
in unbounded system complexity and the simultaneous use of
orthogonal modulation will result in unbounded bandwidth. In
the next section, a methodology is presented for determining
capacity under bandwidth constraints. To manage complexity,
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Fig. 2. Minimum Eb/N0 required for noncoherent CPFSK to achieve an
arbitrarily low error rate versus code rate r in AWGN with M = 2 and several
modulation indices h = {0.2, 0.4, 0.6, 0.8, 1}. For fixed r, the minimum
Eb/N0 decreases with increasing h.

the capacity should be further conditioned on the choice of
M .

IV. BANDWIDTH-CONSTRAINED CAPACITY

Up to this point, the discussion has focused on minimizing
Eb/N0 without respect to bandwidth. However, the goal of this
paper is to determine the fundamental tradeoff between Eb/N0

and spectral efficiency. To quantify this tradeoff, the bandwidth
of the CPFSK signal must be computed. The power spectral
density (PSD) Φs(f) of the CPFSK signal s(t) is given in
Section 4.4.2 of [7]. From the PSD, the 99% power bandwidth
B99 of s(t) is defined as

∫ B99/2

−B99/2

Φs(f)df = 0.99
∫ ∞

−∞
Φs(f)df. (22)

This bandwidth is a function of M , h, and the symbol rate
Rs = 1/Ts. Given that s(t) with parameters M and h is
transmitted at a rate of Rs baud, we can define the normalized
bandwidth to be B(M, h) = B99Ts Hz/baud. We can then
define the spectral efficiency η = r/B(M, h), which has units
of bits-per-second-per-Hz (bps/Hz).

To determine the fundamental tradeoff between η and
Eb/N0, one must determine the minimum value of Eb/N0 for
a particular desired spectral efficiency η. This procedure is
identical to the procedure for the bandwidth unlimited case,
except now the range of r that may be considered is restricted.
More specifically, for each choice of η, h, and M , there will
be a threshold r′ on code rate

r′ = ηB(M, h) (23)

such that r ∈ [r′, log2 M ]. Rates r < r′ cannot be considered
because for the particular h and M , the spectral efficiency
will be lower than η. Under tight bandwidth constraints, the
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Fig. 3. Minimum Eb/N0 required for noncoherent CPFSK to achieve an
arbitrarily low error rate versus modulation index h in AWGN with M = 2 for
several spectral efficiencies η = {0, 1/3, 1/2, 1}. For fixed h, the minimum
Eb/N0 increases with η.

optimal r is typically equal to its minimum value ηB(M, h),
but in looser bandwidth constraints the optimal r might be
higher due to the noncoherent combining penalty.

The determination of the minimum Eb/N0 for each choice
of M , h, and η requires that the curve showing Eb/N0 versus
r be generated, as it was in Fig. 2. Next, the minimum
rate r′ is determined. For example, when M = 2 and
η = 1/2 bps/Hz, the minimum values of r are 0.39, 0.55, 0.64,
and 0.96 for h = 0.2, 0.4, 0.6, and 0.8, respectively. Since
B(M = 2, h = 1) = 2.1309 > 1/η, no code of rate r ≤ 1
can be used at this η when h = 1 and thus orthogonal
modulation cannot be considered. Next, the minimum Eb/N0

is found by inspecting the curve over the range of possible
rates r ∈ [ηB(M, h), log2 M ]. For a given η and M , this
procedure is repeated for each value of h over a range (0, h′),
where h′ = maxh≤1 : B(M,h) ≤ (log2 M)/η is a maximum
modulation index. At low spectral efficiency, h′ = 1 but at
high spectral efficiency, values of h > h′ cannot be used
because the bandwidth requirement cannot be met for any code
rate r ≤ log2 M . The minimum Eb/N0 for each possible h can
then be plotted as a function of h. An example is shown in
Fig. 3 for M = 2 in AWGN and several values of η (the η = 0
case corresponds to having no bandwidth constraint).

As can be seen in Fig. 3, for each value of η there is an
optimal choice of h that minimizes Eb/N0. For the unlimited
bandwidth case (η = 0), the optimal h = 1, but as η
increases, the optimal value of h decreases. The combination
of η and the Eb/N0 minimized over h is the constrained
channel capacity for that value of M , channel (AWGN), and
noncoherent detection.

A plot of minimum Eb/N0 versus h for all M ≤ 64 and
η = {0, 1/2} is shown in Fig. 4 for the AWGN channel and
in Fig. 5 for the Rayleigh fading channel. For each of the
six values of M and two channel types, capacity curves were
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Fig. 5. Minimum Eb/N0 required for noncoherent CPFSK to achieve an
arbitrarily low error rate versus modulation index h in Rayleigh fading for
several modulation orders M = {2, 4, 8, 16, 32, 64} and spectral efficiencies
η = {0, 1/2}.

generated for values of h ranging from h = 0.01 to h = 1 in
increments of 0.01. Thus a total of 1, 200 capacity curves were
generated and each curve was created using at least 2 million
simulated symbols per SNR point in the range of interest.
Altogether, over 1 trillion symbols were simulated, and it is
estimated that this task would have taken about one year to
complete on a single PC computer. To speed the run time,
simulations were executed on a virtual private grid computer
powered by the idle capacity of 30 workstations located in
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Fig. 6. Minimum Eb/N0 required for noncoherent CPFSK to achieve an
arbitrarily low error rate versus spectral efficiency η in AWGN for several
modulation orders M = {2, 4, 8, 16, 32, 64}. For fixed η the minimum
Eb/N0 decreases with increasing M . The values at η = 0 correspond to
the orthogonal FSK capacity.

the teaching laboratories at the first author’s institution1. The
entire simulation scenario took just two weeks to complete on
the grid computer.

From these curves, it can be seen that the minimum h
decreases with increasing M . Interestingly, the minimum
Eb/N0 decreases with increasing M even when the bandwidth
is constrained. By finding the minimum value of Eb/N0 with
respect to h for each M over a wide range of η, one can finally
determine the capacity of CPFSK. Capacity can now be plotted
in terms of spectral efficiency η versus the corresponding
minimum Eb/N0, as shown for several M and η ≤ 1 in Fig.
6 for AWGN and Fig. 7 for Rayleigh fading. Note that the
minimum Eb/N0 in dB increases roughly linearly with η. The
minimum Eb/N0 decreases with increasing M . The minimum
Eb/N0 at η = 0 is achieved with h = 1 for each M , and
therefore these values are identical to the ones for orthogonal
FSK modulation given in [2]. While there is a benefit to
increasing M at very low η, these benefits begin to disappear
as η is increased. For both the AWGN and Rayleigh fading
channels, there is no benefit to using M > 16 for spectral
efficiencies η > 0.3 since the curves for M = {16, 32, 64}
merge at these higher spectral efficiencies. Furthermore, in
AWGN the curves for M = {8, 16, 32, 64} begin to merge as
η > 0.5, indicating that there is no benefit to using M > 8 in
AWGN when η > 0.5.

V. CONCLUSION

This paper outlines a methodology for finding the coded
modulation (CM) capacity of CPFSK with noncoherent de-
tection. By optimizing over both the modulation index h and

1Job scheduling was performed online via the Global Grid Exchange
(g2ex.com) which runs the Frontier Grid Platform developed by Parabon
Computation (parabon.com).
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code rate r, the capacity analysis is able to determine the
minimum value of Eb/N0 as a function of spectral efficiency
η and number of tones M . The values of the optimizing h and
r and the resulting minimum Eb/N0 are channel dependent,
and thus the values for AWGN will be different than the
values for Rayleigh fading. For high spectral efficiency, it
is generally better to use smaller values of h and allow the
channel code to overcome the resulting increased inter-tone
interference. While performance improves with increasing M ,
there is no significant benefit from using M > 8 when the
spectral efficiency is sufficiently high.

There are several limitation of the system considered in this
paper. First, since it is concerned with CM capacity, the code
and modulation alphabets must be matched. Because many
“off-the-shelf” codes are binary rather than M-ary, it may
be more convenient to use bit-interleaved coded modulation
(BICM) [3]. Extending the capacity analysis to encompass
BICM is fairly straightforward and has already been consid-
ered for orthogonal FSK in [2]. The key issue when extending
BICM to nonorthogonal FSK is that, unlike in the orthogonal
case, performance will be sensitive to how bits are mapped to
symbols. Thus the determination of BICM capacity requires
an additional optimization over all symbol labellings.

Another limitation is that the demodulator is noncoherent
in the sense that it is agnostic to the received phase offset, yet
it requires knowledge of the channel state information (CSI)
in the form of the fading amplitudes a and the average SNR
Es/N0. Alternatively, the receiver could be designed to work
without knowledge of the a’s by marginalizing the joint pdf
(14) with respect to the pdf of a. The formulation of such a
receiver and its capacity for orthogonal signalling is discussed
in [1] and [2], though the value of Es/N0 must still be known.

Another option is to estimate the value of a
√Es/N0 as we

propose in [8]. Besides the noncoherent detection considered
in this paper, the signal could be detected using coherent or
differential techniques, and the corresponding capacities are
open problems.

The CPFSK modulation in this paper is a special case of
the more general class of continuous phase modulation (CPM)
[9]. Because the signals defined in (1) are zero outside the
symbol epoch [0, Ts), the CPFSK modulation in this paper
is full-response. More generally, partial response signaling
may be used, as may more elaborate pulse shapes such
as in Gaussian frequency shift keying (GFSK). When the
signaling is partial response, there will be modulation induced
intersymbol interference (ISI). If left unmitigated, the ISI is
likely to severely degrade capacity and offset any advantages
due to the more compact spectrum. However, more elaborate
reception techniques can compensate for the ISI, albeit at the
cost of increased complexity (e.g. a larger trellis).

While the CPFSK modulation described in this paper can
be used for a variety of applications, it is especially attractive
for frequency hopping spread spectrum (FHSS) systems [10].
Because FHSS systems are characterized by short dwell times,
there is typically insufficient time to acquire the carrier and
perform coherent detection, and thus its ability to be noncoher-
ently detected is a key benefit of using CPFSK. On the other
hand, FHSS systems should use modulation that is spectrally
efficient so that more hopping frequencies can be supported
by a fixed system bandwidth. Thus the combination of high
spectral efficiency and ability to be noncoherently detected
make nonorthogonal CPFSK an attractive choice for FHSS
systems [11].
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