The Capacity of Noncoherent Continuous-Phase Frequency Shift Keying

Shi Cheng1 Rohit Iyer Seshadri1 Matthew C. Valenti1 Don Torrieri2

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

2US Army Research Lab

March 14, 2007
Outline

1 Motivation
2 Noncoherent CPFSK
3 Capacity Analysis under Bandwidth Constraint
4 Application
5 Conclusion
Motivation

Bandwidth Efficiency

\[x_i(t) = \frac{1}{\sqrt{T_S}} e^{j \frac{\pi (2k - (M-1)) t}{T_S}}, \quad k = 0, 1, \ldots, M - 1 \]

- **Orthogonal FSK**
 - Known to achieve Gaussian capacity when the number of tones \(M \) goes to infinity
 - Adjacent frequency tones are at least \(1/T_S \) apart.

- **Nonorthogonal FSK**
 - Nonorthogonal FSK saves the bandwidth by using modulation index \(h < 1 \). Adjacent frequency tones are \(h/T_S \) apart.
 - Full response CPM with rectangular pulse shape, also called CPFSK
 - Partial response CPM has more compact bandwidth, but leads to complex signal processing
Motivation

Bandwidth Efficiency

\[x_i(t) = \frac{1}{\sqrt{T_S}} e^{j\left(\frac{h\pi(2k-(M-1))t}{T_S} + \phi\right)}, \quad k = 0, 1, \ldots, M - 1 \]

- **Orthogonal FSK**
 - Known to achieve Gaussian capacity when the number of tones \(M \) goes to infinity
 - Adjacent frequency tones are at least \(1/T_S \) apart.

- **Nonorthogonal FSK**
 - Nonorthogonal FSK saves the bandwidth by using modulation index \(h < 1 \). Adjacent frequency tones are \(h/T_S \) apart.
 - Full response CPM with rectangular pulse shape, also called CPFSK
 - Partial response CPM has more compact bandwidth, but leads to complex signal processing

Shi Cheng et al. (Lane Department of Computer Science and Electrical Engineering, West Virginia University, US Army Research Lab)

The Capacity of Noncoherent CPFSK

March 14, 2007
Bandwidth of CPFSK

The Capacity of Noncoherent CPFSK

Motivation

Shi Cheng et al. (Lane Department of Computer Science and Electrical Engineering, West Virginia University, US Army Research Lab)

March 14, 2007
CPFSK Detection

- **Coherent Detection**
 - Decoding through trellis
 - h needs to be rational
 - Phase synchronization

- **Noncoherent Detection**
 - Symbol by symbol noncoherent detection
CPFSK Detection

- **Coherent Detection**
 - Decoding through trellis
 - \(h \) needs to be rational
 - Phase synchronization

- **Noncoherent Detection**
 - Symbol by symbol noncoherent detection
CPFSK Detection

- **Coherent Detection**
 - Decoding through trellis
 - h needs to be rational
 - Phase synchronization

- **Noncoherent Detection**
 - Symbol by symbol noncoherent detection
Noncoherent CPFSK Discrete Time Model

\[y = ae^{j\theta} \sqrt{E_s} x + n \]

- \(n \) is colored noise, with \(E(nn^H) = N_0 K \)
- \(x \) is chosen from columns of \(K = [k_0, k_1, \cdots, k_{M-1}] \)
- \(p(y|x = k_\nu) \propto I_0 \left(2 \frac{a \sqrt{E_s}}{N_0} |y_\nu| \right) \)
A Binary Example: Minimum Shift Keying (MSK)

- MSK: $M = 2, h = 1/2$
- The normalized correlation matrix for n is
 \[
 K = \begin{bmatrix}
 1 & -0.6366j \\
 0.6366j & 1
 \end{bmatrix}
 \]
- The modulator selects the columns of K, depending on the M-ary input d.

<table>
<thead>
<tr>
<th></th>
<th>$d = 0$</th>
<th>$d = 1$</th>
</tr>
</thead>
</table>
| x | $\begin{bmatrix}
 1 \\
 -0.6366j
 \end{bmatrix}$ | $\begin{bmatrix}
 0.6366j \\
 1
 \end{bmatrix}$ |
Noncoherent CPFSK Detector Diagram

\[
\int \cos(2\pi f_0 t) \cdot dt \\
\int \sin(2\pi f_0 t) \cdot dt \\
\int \cos(2\pi f_{M-1} t) \cdot dt \\
\int \sin(2\pi f_{M-1} t) \cdot dt \\
\int \log I_0() \\
\int \cos(2\pi f_{M-1} t) \cdot dt \\
\int \sin(2\pi f_{M-1} t) \cdot dt \\
\int \log I_0()
\]
Capacity Calculation

- **Instantaneous capacity**

\[
i(x; y) = \log M - \log \frac{\sum_{x' \in S} p(y|x')}{p(y|x)}.
\]

- **Capacity**

\[
l(x; y) = \log M - E_x \left[\log \frac{\sum_{x' \in S} p(y|x')}{p(y|x)} \right].
\]

- **Monte Carlo simulation**
Capacity Calculation

- **Instantaneous capacity**
 \[
 i(x; y) = \log M - \log \frac{\sum_{x' \in S} p(y|x')}{p(y|x)}.
 \]

- **Capacity**
 \[
 I(x; y) = \log M - E_x \left[\log \frac{\sum_{x' \in S} p(y|x')}{p(y|x)} \right].
 \]

- **Monte Carlo simulation**
Capacity Calculation

- **Instantaneous capacity**

\[
i(x; y) = \log M - \log \frac{\sum_{x' \in S} p(y|x')}{p(y|x)}.
\]

- **Capacity**

\[
l(x; y) = \log M - E_x \left[\log \frac{\sum_{x' \in S} p(y|x')}{p(y|x)} \right].
\]

- **Monte Carlo simulation**
Binary Noncoherent CPFSK Capacities in AWGN

(a) channel capacity versus \mathcal{E}_S/N_0

(b) minimum \mathcal{E}_b/N_0 versus coding rate
Binary Noncoherent CPFSK Capacities in AWGN under Bandwidth Constraint

η (bits/s/Hz) is the Bandwidth Efficiency

η = 0
η = 1/3
η = 1/2
η = 1
η (bits/s/Hz) is the Bandwidth Efficiency
Noncoherent CPFSK Capacities in AWGN Channel

Shi Cheng et al. (Lane Department of Computer Science and Electrical Engineering, West Virginia University, US Army Research Lab)

The Capacity of Noncoherent CPFSK Capacities

March 14, 2007
Noncoherent CPFSK Capacities in AWGN Channel

The Capacity of Noncoherent CPFSK

Shi Cheng et al. (Lane Department of Computer Science and Electrical Engineering West Virginia University, US Army Research Lab)

March 14, 2007 13 / 20
Noncoherent CPFSK Capacities in Rayleigh Channel

M = 2

Minimum Eb/No in dB

η = 1/2 (solid lines)
η = 0 (dashed lines)
Noncoherent CPFSK Capacities in Rayleigh Channel

\[\text{Minimum } \frac{E_b}{N_0} \text{ in dB} \]

- M=64
- M=32
- M=16
- M=8
- M=4
- M=2

\[\eta \text{ in bps/Hz} \]

Shi Cheng et al. (Lane Department of Computer Science and Electrical Engineering, West Virginia University, US Army Research Lab)

March 14, 2007
FH Network Scenario

- Multiple access interference
- Tradeoff on the bandwidth of each sub-channel and the possibility of interference
- Equal received average SNR, Rayleigh fading, Interference nodes subject to log normal shadowing $\sigma = 8 dB$
FH Network Scenario

- Total bandwidth $W = \frac{2000}{T_u}$

<table>
<thead>
<tr>
<th>h</th>
<th>M</th>
<th>Coding rate</th>
<th>Number of channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2048/6144</td>
<td>315</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>2048/6144</td>
<td>244</td>
</tr>
<tr>
<td>0.46</td>
<td>4</td>
<td>2048/3456</td>
<td>1000</td>
</tr>
<tr>
<td>0.32</td>
<td>8</td>
<td>2048/3840</td>
<td>1000</td>
</tr>
</tbody>
</table>

- All users use the same modulation and coding strategy

- Channel estimator using EM algorithm, the same as the one of orthogonal FSK
Noncoherent CPFSK FH Network against MAI

SNR collected at BER = 10^{-4}

UMTS turbo code

32 hops
This paper outlines a methodology for finding the coded modulation (CM) capacity of CPFSK with noncoherent detection. For a specific number of tones M and spectral efficiency η, the minimum required E_b/N_0 can be optimized over the modulation index h and coding rate r. For a fixed spectral efficiency, it is better to use a higher order M and smaller h. However, when the spectral efficiency is sufficiently high, the benefit is small by using $M > 8$.
Thank you