The Impact of an Antenna Array in a Relay Network

Ramachandran Rajagopalan, Daryl Reynolds, Matthew C. Valenti, and Brian Woerner

Lane Department of Computer Science and Electrical Engineering West Virginia University Morgantown, WV U.S.A.

mvalenti@wvu.edu

June 25, 2007

Outline

1 Information Outage Probability

- 2 The Relay Channel
- 3 The MIMO Channel
- The MIMO-Relay Channel
- **5** Conclusion

Information Outages in Direct SISO Links

 $\bullet\,$ The unconstrained capacity of a link with SNR γ is

$$C = \log_2(1+\gamma).$$

- Information outage
 - Since γ is random, so is C.
 - If C < R, then an information outage occurs.
- In quasi-static Rayleigh fading,
 - γ is exponential with $E[\gamma] = \Gamma$.
 - The average information outage probability is

$$P_0 = P[\log_2(1+\gamma) < R] \\ = 1 - \exp\left\{\frac{1-2^R}{\Gamma}\right\}.$$

Information Outages in Direct SISO Links

 $\bullet\,$ The unconstrained capacity of a link with SNR γ is

$$C = \log_2(1+\gamma).$$

Information outage

- Since γ is random, so is C.
- If C < R, then an information outage occurs.
- In quasi-static Rayleigh fading,
 - γ is exponential with $E[\gamma] = \Gamma$.
 - The average information outage probability is

$$P_{0} = P[\log_{2}(1+\gamma) < R] \\ = 1 - \exp\left\{\frac{1-2^{R}}{\Gamma}\right\}.$$

Information Outages in Direct SISO Links

 $\bullet\,$ The unconstrained capacity of a link with SNR γ is

$$C = \log_2(1+\gamma).$$

- Information outage
 - Since γ is random, so is C.
 - If C < R, then an information outage occurs.
- In quasi-static Rayleigh fading,
 - γ is exponential with $E[\gamma] = \Gamma$.
 - The average information outage probability is

$$P_0 = P[\log_2(1+\gamma) < R] \\ = 1 - \exp\left\{\frac{1-2^R}{\Gamma}\right\}.$$

Outage Probability in Rayleigh Fading

A Network with One Relay

- A relay can be used to increase diversity.
 - Also called *cooperative diversity*.
- The radios may each have one or more antennas.
 - This paper derives closed-form expressions for the case that there is an array at one of the radios.
- First, let's review performance with single-antenna radios.

The First Orthogonal Slot

- Time divided into two equal-length orthogonal slots.
- In first slot, source broadcasts to both relay and destination.
 - Message can be decoded by destination if

$$C_{s \to d} > 2R$$

• Message can be decoded at relay if

$$C_{s \to r} > 2R$$

The Second Orthogonal Slot

- If relay could decode, then it retransmits in the second slot.
 - Decode-and-forward with repetition coding.
- Can be decoded if

$$C_{s+r \to d} > 2R$$

where

$$C_{s+r \to d} = \log_2(1 + \underbrace{\gamma_{s \to d} + \gamma_{r \to d}}_{\text{Diversity combining}}).$$

Information Outage Probability

• The outage event is

$$\left[\underbrace{\{C_{s \to r} < 2R\}}_{\mathsf{Relay out.}} \cap \underbrace{\{C_{s \to d} < 2R\}}_{\mathsf{S}-\mathsf{D out.}}\right] \cup \left[\underbrace{\{C_{s \to r} > 2R\}}_{\mathsf{Relay decodes}} \cap \underbrace{\{C_{s+r \to d} < 2R\}}_{\mathsf{Destination out.}}\right]$$

• The average information outage probability is:

$$\begin{aligned} P_0 &= P[C_{s \to r} < 2R] P[C_{s \to d} < 2R] \\ &+ P[C_{s \to r} > 2R] P[C_{s + r \to d} < 2R] \end{aligned}$$

Outage Probability of the SISO-Relay Channel

9 / 22

Capacity of a Point-to-Point MIMO Link

• MIMO channel model

 $\mathbf{y} = \mathbf{H}\mathbf{s} + \mathbf{n}$

where **H** is a N_{tx} by N_{rx} matrix.

Capacity

$$C = \log \det \left[\mathbf{I}_{N_{rx}} + \frac{\Gamma}{N_{tx}} \mathbf{H} \mathbf{H}^{\dagger} \right]$$

Outage Probability of SIMO and MISO Links

 $\bullet\,$ The CDF of a normalized χ^2 random variable with 2L degrees of freedom is

$$F_L(x) = 1 - e^{-x} \sum_{k=0}^{L-1} \frac{x^k}{k!}.$$

• If the channel is SIMO ($N_{tx}=1)$ or MISO ($N_{rx}=1)$ then

$$P_0 = F_L(N_{tx}z)$$

where

$$z = \frac{2^R - 1}{\Gamma}$$

and

$$L = \max\left\{N_{tx}, N_{rx}\right\}$$

Rajagopalan et al.

An Array in a Relay Network

The MIMO-Relay Channel

Relay Channel with MIMO Links

• Overall outage probability can still be found using

$$\begin{split} P_0 &= P[C_{s \rightarrow r} < 2R] P[C_{s \rightarrow d} < 2R] \\ &+ P[C_{s \rightarrow r} > 2R] P[C_{s + r \rightarrow d} < 2R] \end{split}$$

- Now, must use the appropriate MIMO capacities for each of the links.
- Because of the orthogonal time slots, redefine

$$z = \frac{2^{2R} - 1}{\Gamma}$$

Rajagopalan et al

Array at Destination

• $s \to r$ is 1×1 channel.

$$P[C_{s \to r} < 2R] = F_1(z)$$

• $s \to d$ is $1 \times N_d$ channel.

$$P[C_{s \to d} < 2R] = F_{N_d}(z)$$

• $s + r \rightarrow d$ is two parallel $1 \times N_d$ channels.

$$P[C_{s+r \to d} < 2R] = F_{2N_d}(z)$$

• The above assumes $\Gamma_{s \to d} = \Gamma_{r \to d}$.

Outage Probability with Array at Destination

June 25, 2007 14 / 22

Array at Relay

• $s \to r$ is $1 \times N_r$ channel.

$$P[C_{s \to r} < 2R] = F_{N_r}(z)$$

• $s \rightarrow d$ is 1×1 channel.

$$P[C_{s \to d} < 2R] = F_1(z)$$

• $s + r \rightarrow d$ is a 1×1 channel in parallel with a $N_r \times 1$ channel.

$$P[C_{s+r\to d} < 2R] = \frac{L^L}{(L-1)!} \int_0^z x^{L-1} e^{-Lx} [1 - e^{x-z}] dx,$$

where $L = N_r$.

• The above integral can be solved in closed form using

$$\int_0^z x^n e^{ax} dx = \frac{(-1)^{n+1} n!}{a^{n+1}} + e^{az} \sum_{k=0}^n \frac{(-1)^k n! z^{n-k}}{(n-k)! a^{k+1}}$$

The MIMO-Relay Channel Array at Relay

Outage Probability with Array at Relay

June 25, 2007 16 / 22

Rajagopalan et al

Array at Source

• $s \to r$ is $N_s \times 1$ channel.

$$P[C_{s \to r} < 2R] = F_{N_s}(N_s z)$$

• $s \to d$ is $N_s \times 1$ channel.

$$P[C_{s \to d} < 2R] = F_{N_s}(N_s z)$$

• $s + r \rightarrow d$ is a $N_s \times 1$ channel in parallel with a 1×1 channel.

$$P[C_{s+r\to d} < 2R] = \frac{L^L}{(L-1)!} \int_0^z x^{L-1} e^{-Lx} [1 - e^{x-z}] dx,$$

where $L = N_s$.

Outage Probability with Array at Source

Rajagopalan et al

An Array in a Relay Network

Summary of Outage Probability

• At destination

$$P_0 = F_1(z)F_L(z) + (1 - F_1(z))F_{2L}(z)$$

• At relay

$$P_0 = F_L(z)F_1(z) + (1 - F_L(z))\frac{L^L}{(L-1)!}\int_0^z x^{L-1}e^{-Lx}[1 - e^{x-z}]dx$$

At source

$$P_0 = F_L(Lz)F_L(Lz) + (1 - F_L(Lz))\frac{L^L}{(L-1)!} \int_0^z x^{L-1}e^{-Lx}[1 - e^{x-z}]dx$$

• $L = \max\{N_s, N_r, N_d\}$

Outage Probability with Array at Different Locations

June 25, 2007 20 / 22

Conclusion

Summary

- $\bullet\,$ Diversity order increased by using Tx or Rx antenna array.
- Single-antenna relay increases diversity by one.
- Antenna array can be placed at relay instead of source handset.
- Closed form expressions can be found when just one antenna array.

• Future work

- Array at 2 or 3 terminals.
- Multiple relays.
- Code combining.
- Space-time modulation constraints.

Conclusion

Summary

- $\bullet\,$ Diversity order increased by using Tx or Rx antenna array.
- Single-antenna relay increases diversity by one.
- Antenna array can be placed at relay instead of source handset.
- Closed form expressions can be found when just one antenna array.

Future work

- Array at 2 or 3 terminals.
- Multiple relays.
- Code combining.
- Space-time modulation constraints.

Questions?