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Abstract—A robust frequency-hopping system with noncoherent
detection, iterative turbo decoding and demodulation, and channel
estimation is presented. The data modulation is the spectrally
compact nonorthogonal continuous-phase frequency-shift keying,
which strengthens the frequency-hopping system against multiple-
access interference and multitone jamming. An analysis based on
information theory provides the optimal values of the modulation
index when there is a bandwidth constraint. The channel estima-
tor, which is derived by applying the expectation-maximization
algorithm, accommodates both frequency-selective fading and
interference. Simulation experiments demonstrate the excellent
system performance against partial-band interference.

I. INTRODUCTION

This paper describes and analyzes a robust frequency-
hopping system with noncoherent detection, iterative turbo de-
coding and demodulation, and channel estimation. The system
is designed to be effective not only when operating over the
additive white Gaussian noise (AWGN) and fading channels
but also in environments with multiple-access interference and
multitone jamming.

Noncoherent or differentially coherent demodulation has
practical advantages and is often necessary because of the
difficulty of phase estimation after every frequency hop. A com-
mon choice of modulation is orthogonal frequency-shift keying
(FSK). With FSK, there is a trade-off between the bandwidth
Bu of each frequency channel and the energy efficiency. For
the AWGN and fading channels, the energy efficiency can be
improved by increasing the alphabet size q [1], which is equal
to the number of possible transmit frequencies in the signal set.
The problem is that a large Bu reduces the number of frequency
channels available when the hopping is over a spectral region
with fixed bandwidth W . This reduction makes the system more
vulnerable to both multiple-access frequency-hopping signals
and multitone jamming [2]. A reduction in Bu is obtained by
using nonorthogonal continuous-phase frequency-shift keying
(CPFSK).

As an example of the importance of Bu, consider multitone
jamming of a frequency-hopping system with q-ary CPFSK in
which the thermal noise is absent and each jamming tone has
its carrier frequency within a distinct frequency channel. The
uncoded symbol-error probability is approximately [2]

Ps =
(

q − 1
q

)
BuTb

( Eb

It0

)−1

, BuTb ≤ Eb

It0
≤ WTb (1)

where Eb is the energy per bit, Tb is the bit duration, It0W is the
total jamming power, and Bu is the uncoded bandwidth. This
equation indicates the significant benefit of a small bandwidth
in reducing the effect of multitone jamming.

Robust system performance is provided by using nonorthog-
onal CPFSK, a turbo code, bit interleaved coded modulation
(BICM), iterative decoding and demodulation, and channel
estimation. The bandwidth of q-ary CPFSK decreases with
reductions in the modulation index h. Although the lack of
orthogonality when h < 1 will cause a performance loss for
the AWGN and fading channels, the turbo decoder makes this
loss minor compared with the gain against multiple-access in-
terference and multitone jamming. To implement BICM, which
mitigates fading, a binary encoder is followed by a bitwise
interleaver prior to performing the q-ary modulation [3]. The
demodulator exchanges information with both the turbo decoder
and the channel estimators. Frequency-selective fading changes
the fading amplitude from hop to hop, and the partial-band and
multiple-access interference change the interference and noise
during some hop dwell intervals. Consequently, estimates of the
fading amplitude and the spectral density of the interference
and noise are computed for a block size N that is smaller than
or equal to the number of symbols in the hop dwell interval.
The decoder feeds a priori information (in the form of bit
likelihoods) back to the demodulator and channel estimator,
in accordance with the turbo principle.

Frequency hopping with binary orthogonal FSK, a turbo
product code, and perfect channel information has been exam-
ined in [4]. Frequency hopping with differential q-ary phase-
shift keying, iterative decoding, and channel estimation has
been analyzed in [5], [6]. The proposed system with non-
coherent, nonorthogonal CPFSK has the following primary
advantages relative to the existing systems with differential
detection or orthogonal modulation.

1. No extra reference symbol and no estimation of the phase
offset in each dwell interval are required.

2. It is not necessary to assume that the phase offset is
constant throughout a dwell interval.

3. The channel estimators are much more accurate and can
estimate an arbitrary number of interference and noise spectral
density levels.

4. The compact spectrum during each dwell interval allows
more frequency channels and, hence, enhances performance
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Fig. 1. Architecture of receiver for frequency-hopping system with turbo code.
Π = interleaver; Π−1 = deinterleaver.

against multiple-access interference and multitone jamming.

II. SYSTEM MODEL

In the transmitter of the proposed system, encoded message
bits are interleaved and then placed into a matrix B with
m = log2 q rows and Nd columns. B is then transformed
into a length-Nd vector d with elements di ∈ {1, 2, ..., q}.
Element di of d is found from column bi of B through a
Gray mapping. The vector d represents the sequence of tones
that are frequency-translated by the carrier frequency of the
frequency-hopping waveform during a signaling interval. The
modulated signal passes through an AWGN or fading channel
with partial-band interference.

As shown in Figure 1, the receiver front-end dehops the
signal. The dehopped signal passes through a bank of q matched
filters, each of which is implemented as a quadrature pair [1],
[2]. The output of each matched filter is sampled at the symbol
rate to produce a sequence of complex numbers. Assuming that
symbol synchronization exists, the complex samples are then
placed into an q×Nd matrix Y whose ith column represents the
outputs of the matched filters corresponding to the ith received
symbol.

The channel estimator is derived under the assumption that
blocks of N contiguous symbols within a dwell interval ex-
perience the same fading amplitude and the same interference
and noise spectral density, either or both of which could vary
from one block to the next in an arbitrary manner. If there are
N symbols per block, then there will be L = �Nd/N� blocks
per codeword. The matrix Y can be partitioned according to
Y = [Y1,Y2, ...,YL], where the q×N submatrix Y� contains
the received signal vectors corresponding to the �th fading
block.

III. DEMODULATOR METRICS

The complex envelope of a unit-energy q-ary CPFSK symbol
waveform with zero initial phase offset is

sl(t) =
1√
Ts

ej2πlht/Ts , 0 ≤ t ≤ Ts , l = 1, 2, . . . , q (2)

where Ts is the symbol duration and h is the modulation
index. Suppose that symbol i of a codeword uses unit-energy
waveform sdi

(t), where the integer di is a function of the
codeword. If this codeword is transmitted over a channel with

fading and additive Gaussian noise, the received signal for
symbol i can be expressed in complex notation as

ri(t) = Re
[
ai

√
2Essdi

(t)ej2πfct+θi

]
+ ni(t), 0 ≤ t ≤ Ts

i = 1, 2, . . . , Nd (3)

where ni(t) is independent, zero-mean, white Gaussian noise
with two-sided power spectral density N0i/2, fc is the carrier
frequency, θi is the phase, Es is the signal energy, and ai

accounts for the fading amplitude. The phase θi is the phase
due to the contributions of the CPFSK constraint, the fading,
and the frequency offset of the receiver. One might consider
exploiting the inherent memory in the CPFSK when computing
the metric transferred from the demodulator to a trellis decoder,
as described in [7]. However, phase stability over several sym-
bols is necessary, and the demodulator functions as a rate-one
inner decoder. More design flexibility exists if the demodulator
metrics are computed on a symbol-by-symbol basis, and the
memory in the turbo code is exploited rather than the memory
in the modulation.

Matched-filter k, which is matched to sk(t), produces the
output samples

yk,i =
√

2
∫ Ts

0

ri(t)e−j2πfcts∗k(t)dt ,

i = 1, 2, . . . , Nd, k = 1, 2, . . . , q. (4)

The substitution of (3) into (4) and the assumption that each
of the {sk(t)} has a spectrum confined to |f | < fc yields

yk,i = ai

√
Ese

jθiρdi−k + nk,i (5)

where

nk,i =
√

2
∫ Ts

0

ni(t)e−j2πfcts∗k(t)dt (6)

and

ρl =
sin(πhl)

πhl
ejπhl. (7)

Since ni(t) is zero-mean and white and the spectra of the
{sk(t)} are confined, it follows that each nk,i is zero-mean,

E[nk,in
∗
l,i] = N0iρl−k (8)

and the {nk,i} have circular symmetry:

E[nk,inl,i] = 0. (9)

Since ni(t) is a Gaussian process, the real and imaginary
components of nk,i are jointly Gaussian, and the set {nk,i}
comprises complex-valued jointly Gaussian random variables.

Let yi = [y1,i . . . yq,i]T denote the column vector of the
matched-filter outputs corresponding to symbol i, and let
n = [n1,i . . . nq,i]T . Then given that the transmitted symbol is
di, the symbol energy is Es, the fading amplitude is ai, the
noise spectral density is N0i, and the phase is θi, yi = yi +n,
where yi = E[yi|di, Es, ai, N0i, θi]. Equation (5) indicates that
the kth component of yi is

yk,i = ai

√
Ese

jθiρdi−k. (10)



The covariance matrix of yi is

R = E[(yi − yi)(yi − yi)
H | di, ai

√
Es, N0i, θi]

= E[nnH ] (11)

and its elements are given by (8). It is convenient to define the
matrix K = R/N0i with components

Kkl = ρl−k. (12)

We can represent the conditional probability density function of
yi given that the transmitted symbol is di, the symbol energy
is Es, the fading amplitude is ai, the noise spectral density is
N0i, and the phase is θi as

p(yi|di, ai

√
Es, N0i, θi)

=
1

πqNq
0i detK

exp
[
− 1

N0i
(yi − yi)

HK−1(yi − yi)
]
(13)

where K is independent of (di, Es, ai, N0i, θi).
An expansion yields

Qi = (yi − yi)
HK−1(yi − yi)

= yi
HK−1yi + yi

HK−1yi − 2Re(yi
HK−1yi).

(14)

Equations (10) and (12) indicate that yi is proportional to the
dith column of K :

yi = ai

√
Ese

jθiK:,di
. (15)

Since K−1K = I, only the dith component of the column
vector K−1yi is nonzero and

Qi = yi
HK−1yi + a2

i Es − 2ai

√
Es Re(ydi,ie

−jθi). (16)

For noncoherent signals, it is assumed that each θi is uniformly
distributed over [0, 2π). Substituting (16) into (13), expressing
ydi,i in polar form, and integrating over θi, we obtain the
probability density function

p(yi|di, ai

√
Es, N0i) =

exp
(
−yi

HK−1yi+a2
iEs

N0i

)
πqNq

0i detK

× I0

(
2ai

√Es |ydi,i|
N0i

)
(17)

where I0( ) is the modified Bessel function of the first kind
and order zero. Since the white noise ni(t) is independent
from symbol to symbol, yi with the density given by (17) is
independent of yl, i �= l.

Let Â and B̂ denote the estimates of A = N0 and B =
2a

√Es, respectively, for a dwell interval of N symbols during
which ai = a and N0i = N0 are constants. Let bk,i denote
bit k of symbol i. Let Z denote the m × Nd matrix whose
element zk,i is the log-likelihood ratio for bk,i computed by
the demodulator. The matrix Z is reshaped into a row vector
and deinterleaved, and the resulting vector z′ is fed into the
turbo decoder. The extrinsic information v′ at the output of the

decoder is interleaved and reshaped into a m × Nd matrix V
containing the a priori information:

vk,i = log
p(bk,i = 1|Z\zk,i)
p(bk,i = 0|Z\zk,i)

. (18)

where conditioning on Z\zk,i means that the extrinsic infor-
mation for bit bk,i is produced without using zk,i. Since V is
fed back to the demodulator,

zk,i = log
p(bk,i = 1|yi, γ

′
�i/N�,vi\vk,i)

p(bk,i = 0|yi, γ′
�i/N�,vi\vk,i)

. (19)

where γ′ = {Â, B̂}. To calculate (19) for bit k, first partition
the set of symbols D = {1, ..., q} into two disjoint sets D(1)

k

and D(0)
k , where D(b)

k contains all symbols labelled with bk = b.
The extrinsic information can then be expressed as

zk,i = log

∑
d∈D(1)

k

p(d|yi, γ
′
�i/N�,vi\vk,i)∑

d∈D(0)
k

p(d|yi, γ′
�i/N�,vi\vk,i)

. (20)

From Bayes’ rule,

p(d|y, γ′,v\vk) =
p(y|d, γ′,v\vk)p(d, γ′,v\vk)

p(y, γ′,v\vk)
. (21)

After conditioning on d and γ′, y is independent of v and thus
p(y|d, γ′,v\vk) = p(y|d, γ′). From the definition of condi-
tional probability, p(d, γ′,v\vk) = p(d|γ′,v\vk)p(γ′,v\vk).
After conditioning on v\vk, d is independent of γ′, and
thus p(d|γ′,v\vk) = p(d|v\vk). Gathering all these factors,
inserting them into (20), and cancelling common factors yields

zk,i = log

∑
d∈D(1)

k

p(yi|d, γ′
�i/N�)p(d|vi\vk,i)∑

d∈D(0)
k

p(yi|d, γ′
�i/N�)p(d|vi\vk,i)

. (22)

This expression clearly delineates the contribution of the chan-
nel observation y and channel estimate γ′, which influence
only the p(y|d, γ′) term, and the contribution of the a priori
information passed to the demapper from the decoder, which
affects only the p(d|v\vk) term.

The term p(d|v\vk) in (22) is only computed for those d ∈
D(b)

k , in which case p(bk = b|v\vk) = p(bk = b) = 1. Thus,
under the assumption of independent code bits (achieved by
proper interleaving), the probability of d given the a priori
input v is

p(d|v\vk) =
m∏

j=1
j �=k

p(bj(d)|vj), d ∈ D(b)
k (23)

where bj(d) is the value of the jth bit in the labelling of symbol
d. The a priori input is interpreted by the demapper to be v =
log[p̂/(1 − p̂)], where p̂ is the decoder’s most recent estimate
of the probability that the corresponding code bit is a one.
Inverting the logarithm and solving for p̂ yields p̂ = ev/(1 +
ev), which the demapper uses for p(b = 1|v). Similarly, the



demapper uses 1 − p̂ = 1/(1 + ev) for p(b = 0|v). Since
b = {0, 1}, we obtain

p(d|v\vk) =
m∏

j=1
j �=k

evjbj(d)

1 + evj
, d ∈ D(b)

k . (24)

Substituting (17) and (24) into (22) and cancelling common
factors, we obtain

zk,i = log

∑
d∈D(1)

k

I0

(
γ�i/N�|ydi,i|

)∏m
j=1
j �=k

exp (bj(d)vj,i)∑
d∈D(0)

k

I0

(
γ�i/N�|ydi,i|

)∏m
j=1
j �=k

exp (bj(d)vj,i)

(25)
where only the ratio γ = B̂/Â is needed rather than the
individual estimates.

IV. CHANNEL ESTIMATORS

Since under block fading and time-varying interference, A
and B can change on a block-by-block basis, each block is
processed separately and in an identical fashion. To maintain
robustness, the estimators make no assumptions regarding the
distribution of the quantities to be estimated, nor do they make
any assumptions regarding the correlation from block to block.
The estimators directly use the channel observation for the �th

block, Y�, while the observations of the other blocks are used
indirectly through feedback of extrinsic information from the
decoder. Since the form of the estimation algorithm is the same
for each block, in the following discussion we assume that
� = 1 and without ambiguity omit the dependence on �. Thus in
this section, Y is a generic q×N received block, d = [d1, ...dN ]
is the corresponding set of transmitted symbols, and {Â, B̂} is
the corresponding set of channel estimators.

Rather than solving the ML problem directly, the
expectation-maximization (EM) algorithm can be used as an
iterative approach to solving this problem [9]. The EM algo-
rithm consists of two steps per iteration, the expectation step
(E-step) and the maximization step (M-step). Let {Y,d} denote
the complete data set. The log-likelihood of the complete data
set is

L(A,B) = log p(Y,d|A,B)
= log p(Y|d, A,B) + log p(d)
∼ log p(Y|d, A,B). (26)

In the last step, the log p(d) have been removed from the
likelihood because it is independent of A and B and therefore
does not affect the maximization.

Since yi and yl are independent for i �= l, (17) implies that

p(Y|d, A,B)

=
exp

[
−D

A − NB2

4A +
∑N

i=1 log I0

(
B|ydi,i|

A

)]
(πqAq detK)N

(27)

where

D =
N∑

i=1

yi
HK−1yi. (28)

After dropping irrelevant constants, (27) and (28) yield

L(A,B) ∼ −qN log A− D

A
− NB2

4A
+

N∑
i=1

log I0

(
B |ydi,i|

A

)
.

(29)
The form of this equation indicates that the parameters A and
B must both be estimated rather than just the ratio B/A.

Let r denote the EM iteration number, and Â(r), B̂(r) the
estimates of A,B during the rth iteration. Applying the E- and
M-steps with (29) in a similar manner to that in [10], it is found
that

Â(r) =
1

qN

(
D − N(B̂(r))2

4

)
(30)

B̂(r) =
2
N

N∑
i=1

q∑
k=1

p
(r−1)
k,i |yk,i|F

(
4qNB̂(r)|yk,i|

4D − N(B̂(r))2

)
.

(31)

where

p
(r−1)
k,i = α

(r−1)
i I0

(
B̂(r−1)|yk,i|

Â(r−1)

)
p(di = k) (32)

α
(r−1)
i is the normalization factor forcing

∑q
k=1 p

(r−1)
k,i = 1,

i.e.
α

(r−1)
i =

1∑q
k=1 I0

(
B̂(r−1)|yk,i|

Â(r−1)

)
p(di = k)

(33)

and p(di = k) is the probability that di = k estimated by the
decoder.

While a closed form solution to (31) is difficult to obtain, it
can be found recursively [11]. The recursion involves initially
replacing B̂(r) on the right-hand side of (31) with B̂(r−1)

from the previous EM iteration. To select an initial estimate
for B, consider what happens in the absence of noise. Without
noise, (5) implies that either |yk,i| = a

√Es (when k = di) or
|yk,i| = 0 (otherwise). Thus, an estimate for a

√Es = B/2 can
be achieved by taking the maximum |yk,i| over any column of
Y. To account for the possibility of noise, the average can be
taken across all columns in the block, resulting in

B̂(0) =
2
N

N∑
i=1

max
k

|yk,i| . (34)

The initial estimate of A is found from B̂(0) by evaluating (30)
for r = 0. After the initial values Â(0) and B̂(0) are calculated,
the initial probabilities {p(0)

k,i} are calculated from (32) and (33).
The EM algorithm terminates when B̂(r) converges to some
fixed value, typically in fewer than 10 EM iterations.

V. SELECTION OF MODULATION INDEX

Let Bmax denote the maximum bandwidth of the CPFSK
modulation such that the hopping band accommodates enough
frequency channels to ensure adequate performance against
multiple-access interference and multitone jamming. We seek



to determine the values of h, q, and code-rate R of the turbo
code that provide a good performance over the fading and
AWGN channels in the presence of partial-band interference.
For specific values of the modulation parameters h and q,
the code rate is limited by the bandwidth requirement. Let
BuTb denote the normalized, uncoded, 99-percent power band-
width of the CPFSK modulation. This value can be found for
nonorthogonal CPFSK by numerically integrating the power-
spectrum equations [1] and will be valid for frequency-hopping
signals provided that the number of symbols per dwell interval
is large [2]. When a code of rate R is used, the bandwidth
becomes Bc = Bu/R. Since Bc ≤ Bmax is required, the
minimum code rate that achieves the bandwidth constraint is
Rmin = Bu/Bmax.

Guidance in the selection of the best values of h, q, and R ≥
Rmin is provided by information theory [12]. For specific values
of h and q, we evaluate the capacity C(γ) as a function of
γ = Es/No under a bandwidth constraint for both the Rayleigh
and AWGN channels. Since the noncoherent demodulator will
include channel estimation, perfect channel-state information
is assumed. Symbols are drawn from the signal set with equal
probability. With these assumptions, a change of variables with
u = yi/

√Es, and (17), the capacity for the fading channel may
be expressed as [3]

C(γ) = log2 q − 1
q

q∑
ν=1

∫ ∫
p(a)p(u|ν, a)

× log2

q∑
k=1

I0 (2aγ |uk|)
I0 (2aγ |uν |) duda (35)

where p(a) is the density of the fading amplitude, the (2q +
1)−fold integration is over all values of a and the 2q real and
imaginary components of u, and

p(u|ν, a) =
γq exp[−γ(uHK−1u + a2)]

πq detK
I0 (2aγ |uν |) . (36)

Equation (35) is numerically integrated by the Monte Carlo
method. To determine the minimum Eb/No necessary to main-
tain C(γ) above the code rate R, we use the relationship
Es = REb log2 q and solve the equation

R = C(REb log2 q/No) (37)

for all code rates such that Rmin ≤ R ≤ 1. For noncoherent
systems under severe bandwidth constraints, the R that min-
imizes Eb/No will typically be R = Rmin, but under loose
bandwidth constraints the R that minimizes Eb/No could pos-
sibly be larger than Rmin (in which case the actual bandwidth
is less than Bmax).

Figures 2 and 3 show plots of the minimum Eb/No versus
h for 2 ≤ q ≤ 32, BmaxTb = 2, and BmaxTb = ∞. When
BmaxTb = 2, the curves are truncated because there is a
maximum value of h beyond which no code exists that satisfies
the bandwidth constraint. Figure 2 is for the AWGN channel,
and Figure 3 is for the Rayleigh fading channel. For each of the
five values of q and two channel types, capacity curves were
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Fig. 2. Minimum Eb/No versus h for the AWGN channel, 2 ≤ q ≤ 32,
BmaxTb = 2, and BmaxTb = ∞.
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Fig. 3. Minimum Eb/No versus h for the Rayleigh channel, 2 ≤ q ≤ 32,
BmaxTb = 2, and BmaxTb = ∞.

generated for values of h ranging from h = 0.01 to h = 1 in
increments of 0.01. Thus a total of 1, 000 capacity curves were
generated and each curve was created using at least 2 million
simulated symbols per SNR point in the range of interest.
Altogether, nearly 1 trillion symbols were simulated, and it
is estimated that this task would have taken about one year
to complete on a single PC computer. To speed the run time,
simulations were executed on a virtual private grid computer
powered by the idle capacity of 30 workstations located in the
teaching laboratories at the last author’s institution1. The entire
simulation scenario took just two weeks to complete on the
grid computer.

1Job scheduling was performed online via the Global Grid Exchange
(g2ex.com) which runs the Frontier Grid Platform developed by Parabon
Computation (parabon.com).



For each value of q, in each figure there is an optimal value
of h that gives the smallest value of the minimum Eb/No.
This smallest value decreases with q, but there are diminishing
returns and the implementation complexity increases rapidly
for q > 8. Let fe denote the offset in the estimated carrier
frequency at the receiver due to the Doppler shift and the
frequency-synthesizer inaccuracy. The separation between adja-
cent frequencies in a CPFSK symbol is hfb/R log2 q, where fb

denotes the information-bit rate. Since this separation must be
much larger than fe if the latter is to be negligible as assumed
in (4),

fe <<
hfb

R log2 q
(38)

is required. Since the optimal h decreases while R log2 q
increases with q, (38) is another reason to prefer choose q ≤ 8.
For q = 4 in Figure 3, h = 0.46 is the approximate optimal
value when BmaxTb = 2, and the corresponding code rate
is approximately R = 16/27. For q = 8, h = 0.32 is
the approximate optimal value when BmaxTb = 2, and the
corresponding code rate is approximately R = 8/15. For both
q = 8 and q = 4, (38) is satisfied if fe << 0.2fb. At the
optimal values of h, the plots indicate that the loss is less than
1 dB for the AWGN channel and less than 2 dB for the Rayleigh
channel relative to what could be attained with the same value
of q, h = 1 (orthogonal CPFSK), and an unlimited bandwidth.

VI. SIMULATION RESULTS

Simulation experiments were conducted to assess the perfor-
mance of frequency-hopping systems with quaternary CPFSK
(q = 4) and octal CPFSK (q = 8) under the bandwidth
constraint BmaxTb = 2. The approximate optimal values of
h and R determined from the bandwidth constraint and infor-
mation theory are used. The interference signal is modeled as
partial-band noise interference that introduces It0/µ additional
interference spectral density in an interfered frequency channel,
where µ is the fraction of the hopping band with interference
and It0 is the spectral density when µ = 1. Thus, the total
interference power is conserved as µ varies. The simulated
system uses the turbo code from the UMTS specification [13]
with 2048 information bits and the specified code-rate matching
algorithm. The receiver executes no more than 20 iterations, as
an early halting routine stops the iterations once the data is
correctly decoded. The figures display the minimum value of
Eb/No necessary to obtain a bit error probability equal to 10−3

versus µ for Rayleigh fading, Ricean fading with factor K = 10
dB, and the AWGN channel. A block coincides with a dwell
interval, and the parameter A represents the spectral density due
to the noise and the interference during a dwell interval. The
symbols of a dwell interval undergo the same fading amplitude,
and the fading amplitudes are independent from block to block,
which models the frequency-selective fading that varies after
each hop. The bandwidth is assumed to be sufficiently small
that the fading is flat within each frequency channel.

Figures 4 and 5 plot the results for quaternary CPFSK
and octal CPFSK, respectively, when there are 32 hops per
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Fig. 4. Minimum required Eb/No of frequency-hopping system with qua-
ternary CPFSK, h = 0.46, 32 hops per codeword, partial-band interference,
Eb/It0 = 10 dB, and bit error probability = 10−3.
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Fig. 5. Minimum required Eb/No of frequency-hopping system with octal
CPFSK, h = 0.32, 32 hops per codeword, partial-band interference, Eb/It0 =
10 dB, and bit error probability = 10−3.

codeword and 64 information bits per hop, and Eb/It0 = 10 dB.
For quaternary CPFSK, there are 3456 code bits in a codeword,
108 code bits per hop, and 54 code symbols per hop. For octal
CPFSK, there are 3840 code bits in a codeword, 120 code bits
per hop, and 40 code symbols per hop. For quaternary CPFSK,
h = 0.46 and R = 16/27, whereas for octal CPFSK, h = 0.32
and R = 8/15. Comparison of these two figures indicates that
octal CPFSK has a nearly 2 dB advantage in Eb/No relative to
quaternary CPFSK for Ricean fading and AWGN, and much
more for Rayleigh fading. Both figures indicate that µ = 1 or
interference over the entire hopping band is the worst case for
Rayleigh and Ricean fading. For the AWGN channel, a smaller
value of µ is worst. The use of the EM channel estimators is
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Fig. 6. Minimum required Eb/No of frequency-hopping system with
quaternary CPFSK, h = 0.46, Rayleigh fading, partial-band interference,
Eb/It0 = 13 dB, and bit error probability = 10−3. N is the number of
code symbols per hop.

shown to produce a negligible loss relative to perfect channel-
state information (CSI).

If the hop rate increases, the increase in the number of
independently fading dwell intervals per codeword implies that
more diversity is available in the processing of a codeword.
However, the shortening of the dwell interval makes the channel
estimation less reliable by providing the estimator with fewer
samples. Figures 6 and 7 show the results for quaternary
CPFSK and octal CPFSK, respectively, when the hop rate is
varied so that there are 16, 32, or 64 hops per codeword.
Independent Rayleigh fading occurs during each dwell interval,
Eb/It0 = 13 dB, and the information-bit rate is maintained.
For quaternary CPFSK, there are N = 108, 54, or 27 code
symbols per hop. For octal CPFSK, there are N = 80, 40, or
20 code symbols per hop. For quaternary CPFSK, h = 0.46
and R = 16/27, whereas for octal CPFSK, h = 0.32 and
R = 8/15. Comparison of these two figures indicates that for
Ricean fading and AWGN, octal CPFSK maintains its nearly 2
dB advantage in Eb/No relative to quaternary CPFSK. Despite
the slow decline in the accuracy of the EM channel estimates,
the diversity improvement is sufficient to produce an improved
performance as the number of code symbols per hop decreases.
However, decreasing to fewer than 20 code symbols per hop
will begin to broaden the spectrum significantly [2] unless the
parameter values are changed.

Simulation experiments have confirmed the major perfor-
mance advantage of the proposed frequency-hopping system
against multiple-access interference. However, because of space
limitations, an explicit demonstration is deferred to a subse-
quent paper.

VII. CONCLUSIONS

A noncoherent frequency-hopping system with nonorthog-
onal CPFSK has been designed to be highly robust in en-
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Fig. 7. Minimum required Eb/No of frequency-hopping system with octal
CPFSK, h = 0.32, Rayleigh fading, partial-band interference, Eb/It0 = 13
dB, and bit error probability = 10−3. N is the number of code symbols per
hop.

vironments including frequency-selective fading, partial-band
interference, multitone jamming, and multiple-access interfer-
ence. The robustness is due to the iterative turbo decoding and
demodulation, the channel estimator based on the expectation-
maximization algorithm, and the spectrally compact modula-
tion.
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