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ABSTRACT

Over the past several years, the military has grown increasingly reliant upon the use of unattended aerial vehicles
(UAVs) for surveillance missions. There is an increasing trend towards fielding swarms of UAVs operating as
large-scale sensor networks in the air.1 Such systems tend to be used primarily for the purpose of acquiring sensory
data with the goal of automatic detection, identification, and tracking objects of interest. These trends have
been paralleled by advances in both distributed detection,2 image/signal processing and data fusion techniques.
Furthermore, swarmed UAV systems must operate under severe constraints on environmental conditions and
sensor limitations. In this work, we investigate the effects of environmental conditions on target detection and
recognition performance in a UAV network. We assume that each UAV is equipped with an optical camera, and
use a realistic computer simulation to generate synthetic images. The detection algorithm relies on Haar-based
features while the automatic target recognition (ATR) algorithm relies on Bessel K features. The performance of
both algorithms is evaluated using simulated images that closely mimic data acquired in a UAV network under
realistic environmental conditions. We design several fusion techniques and analyze both the case of a single
observation and the case of multiple observations of the same target.
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1. INTRODUCTION

Recent advances in wireless communication, signal processing, and distributed control made large-scale sensor
networks of UAVs a potentially most reliable machinery for surveillance missions. There is an increasing trend
towards fielding swarms of UAVs operating as large-scale sensor networks in the air.1 These systems are intended
to be used primarily for the purpose of surveillance or search of disaster areas and thus for acquiring sensory
data. The data are further processed using state-of-the art detection, recognition, and tracking algorithms. The
challenge that swarmed UAV systems face is that they must operate under severe communication constraints,
varying environmental conditions and sensor limitations. In this paper, we place the emphasis on the environ-
mental and sensor limitations and explore a possibility to improve detection and recognition performance by
means of data fusion.

We focus on the case where the acquired sensory data are in the form of optical images. Traditionally,
optical cameras are low in cost and small in size, which makes them a high preference imagery sensors for a
variety of military and civilian applications. The major limitation of optical cameras is their inability to deal
with environmental conditions and imperfect camera set ups which lowers fidelity of the results in detection
and recognition tasks. In this work, we investigate the influence of environmental and camera effects on the
performance of selected detection and recognition algorithms. We use a realistic computer simulation to generate
synthetic images. The detection algorithm relies on Haar-based features while the automatic target recognition
(ATR) algorithm relies on Bessel K features. The performance of both algorithms is evaluated using simulated
images that closely mimic data acquired in a UAV network under realistic environmental conditions. We further
implement data fusion techniques and demonstrate detection and recognition performance improvements due to
data fusion.
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1.1. Literature Review

The literature contains a large number of detection, recognition, and data fusion algorithms applied to optical
data. While it is impossible to list here all published works, we choose to characterize a few.

Detection of a possible object of interest is one of the most critical steps in object recognition problems,
since the results of postprocessing depend on this step. Target detection approaches can be classified into three
categories: feature invariant approaches, template matching methods and appearance-based methods. In feature
invariant approaches, the algorithms aim to find structural features such as edges,3 textures, etc. that exist even
when the pose, viewpoint, or lighting conditions vary, and then use the features to locate targets. In template
matching methods, several standard patterns of a target are stored to describe the target. The correlations
between an input image and the stored patterns are computed for detection. In contrast to template matching,
the models (or templates) in appearance-based methods4 are learned from a set of training images which should
capture the representative variability of target appearance. These learned models are then used for detection.
In this work, we will use a local Haar filter-based detection method which is very popular in the field of face
recognition.

Based on encoded information, ATR algorithms are broadly classified into three categories: shape-based,
appearance-based, and Computer Aided Design (CAD)-based methods. In shape-based recognition, the contour
of the object is extracted, and then the shape templates are used to match the extracted contours. In appearance-
based (or view-based) approach, the 2D intensity templates of 3D target acquired from different viewpoints are
stored as a model. Some view-based methods use statistical techniques to analyze the distribution of the target
image vectors in the vector space, and derive an effective representation (feature space) according to different
applications. Other methods design distortion-invariant filters to perform a correlation matching between the
model view and the input image. In CAD-based ATR, an explicit 3D model of a target is generated and
subsequently used in target recognition employing imagery acquired by a variety of sensors.

Multi-sensor data fusion system can be characterized by levels:5 signal, pixel, feature and decision-level. The
first level (called signal level) concerns with the aggregation of raw data provided directly from sensors, without
any transformation. Pixel or image level fusion creates new images that are more suitable for the purposes
of object detection and recognition. The next fusion method is feature level fusion. The raw data are first
encoded (features are extracted) before being aggregated. Finally, the highest abstraction level corresponds to
the decision fusion. It is reduced to combining decisions proposed by classifiers/detectors.

Most of the algorithms summarized above assume good quality data for training and performance evaluation.
However, in practice these algorithms would be subject to highly distorted and noisy data. This work strives to
investigate the limitations of two state-of-the art (detection and recognition) algorithms.

2. DATA DESCRIPTION

2.1. Simulated Optical Data

An ATR Training Tool provided by Augusta Systems Inc. was used to build a simulated database. The tool is
capable of generating prospective projections of 18 distinct objects projected at different orientation and elevation
angles and sampled at distinct resolutions. The objects can be manually superimposed onto a background to
simulate various ground conditions. The camera parameters such as position, azimuth, declination and distance
can be varied to simulate an UAV flight. The resolution of captured images can be adjusted from 512 × 384
to 1152 × 864. A snapshot of the Graphical User Interface (GUI) of the tool is shown in Fig. 1. Every image
generated by the 3D optical tool is first processed by a target detector and then fed into a recognition system.
Prior to recognition, a potential target is located and placed in a canonical (or object-centered) reference frame
suitable for recognition. In our experiments, we use three target types: tank, truck, and tractor. Sample images
used for recognition are shown in Fig. 2. Each 3D target is projected using discrete orientation angles spaced 5
degree apart and elevation angles from 0 to 45 spaced 15 degree apart.



Figure 1. The GUI of the ATR training tool.
Figure 2. Sample targets for recognition
from simulated ATR database.

2.2. Simulated Environmental and Camera Effects

Apart from generated images of objects as described in the previous section, we expand the dataset by adding six
distorted versions of each original image. These simulate various camera and environmental effects that can occur
in real world images. The distorted images include one of the following factors: Gaussian noise, illumination
effect, varying contrast, motion blur and defocus blur. By controlling the value of the parameters, different levels
of noise in images can be generated. The details of generation procedures are summarized below.

1. Images contaminated by Gaussian noise contain additive white noise with zero mean and variance σ2.
The variance σ2 takes values in the range from 0.005 to 0.02 spaced 0.005 apart for Level 1 to Level 4,
respectively.

2. The images are brightened or darkened by increasing or decreasing the intensities. This procedure simulates
illumination effect. Denote by β the parameter that controls the level of illumination. We first normalize
image intensities to (0, 1), then brighten images by raising to the power of a number less than one, that
is, (1 − β, β ∈ (0, 1)) or darken images by raising to the power of a number larger than one, that is,
( 1

β+1 , β ∈ (−1, 0)). The parameter β is set to be −0.8 and −0.4 at Levels 1 and Level 2 for dark images
and is set to be 0.4 and 0.8 at Levels 3 and 4 for brightening images.

3. We model contrast change by linear mapping the normalized histogram to a new one. If the histogram is
“squeezed,” then the new image will have low contrast. The more compression, the lower the contrast is.
The range is determined by parameter 1 − 2TOL with TOL taking values in the range from 0.15 to 0.35
spaced 0.05 for Level 1 to Level 4, respecftively.

4. A linear relative motion of an optical camera or an object is simulated by convolving images with a two
parameters point spread function (PSF).6 Length L in pixels and angle θ in degrees correspond to motion
in specific direction with predefined camera velocity. L takes values in the range from 2 to 8, 2 units apart
for Levels 1 through 4, respectively. The parameter θ follows uniform distribution on [0, 360◦] for all levels.

5. The images are filtered by a two-dimensional circular averaging filter to generate defocus blur.6 Defocus
level corresponds to the radius r of the averaging filter. r takes values from 2 to 8 with the step 2 units
for Levels 1 through 4, respectively.

The samples of distorted images from the tractor are displayed in Fig. 3.

3. SINGLE- AND MULTI-FRAME TARGET DETECTION AND RECOGNITION

In this work we adopt Haar feature-based detection algorithm. The algorithm was originally developed as a face
detector.4 Its robust performance and computational efficiency when applied to optical images motivated us to



Figure 3. Distorted images of the tractor. From left to right: the image with additive Gaussian noise, the image
characterized by a low illumination, a low contrast image, motion-blurred image and defocused image.

use the algorithm in this work. Detected regions within images are further subjected to recognition method based
on Bessel K forms. Previously Bessel K forms were successfully used to perform analysis of natural images.7

Since UAV network may contain multiple image copies of the same target, we develop data fusion techniques for
improved detection and recognition.

3.1. Detection based on a single frame

The employed target detector framework is a modified version of the Viola-Jones face detector.4 A software copy
of the algorithm is available through the Open Computer Vision Library.

The rapid target detection scheme is based on the idea of a boosted classifier cascade4 but extends the original
feature set and offers different boosting variants for learning. The classifier cascade is trained on a set of positive
images (targets) and a set of negative images (non-targets). For each training image, an over-complete set of
Haar-like feature pool is calculated and AdaBoost algorithm of Schapire and Singer8 is used to build a stage
classifier. After the classifier cascade is trained, the detection algorithm is applied to a query image. A search
window is sled over the query image. At each window location and scale the content of the window is classified
as target or non-target.

In each round of boosting, a weak learning algorithm is applied to select a single rectangle feature which best
separates the positive and negative samples. For each feature, the weak learner determines the optimal threshold
classification function, such that the minimum number of examples are misclassified. Thus, a weak classifier
hj(·) is a binary valued function obtained by comparing the j-th feature value fj(·) with a threshold θj :

hj(x) =
{

αj if fj(x) > θj

βj otherwise
(1)

Here x is a sub-window of an image. The value of the feature is equal to weighted differences of integrals over
rectangular subregions. αj and βj are positive or negative votes of each feature set by AdaBoost during the
learning process. θj is the optimal threshold obtained by the weak learner.

The form of the final stage classifier returned by AdaBoost is a thresholded linear combination of weak
classifiers (see Fig. 4). The stage classifier is given by:

C(x) =
{

1, if
∑

j hj(x) > T,

0, otherwise,
(2)

where T is the stage threshold set by AdaBoost during the learning process.

In order to improve computational efficiency and also reduce the false positive rate, a sequence of increasingly
more complex classifiers called cascade is used. A cascade of classifiers is a degenerated decision tree where at
each stage almost all objects of interest are detected while only a certain fraction of the non-object patterns are
rejected. The more an input window looks like an object, the larger the number of classifiers are evaluated on
it and the longer it takes to classify the window. Since most windows of an image do not look like objects, they
are quickly discarded as non-objects. Fig. 5 illustrates a cascade.

To evaluate detection performance, we involve Receiver Operating Characteristic (ROC) curves. The de-
tection threshold is selected as the threshold of the final classifier stage. Adjusting the threshold to +∞ will
yield a detection rate of 0.0 and a false positive rate of 0.0. Adjusting the threshold to −∞, however, increases
both the detection rate and false positive rate, but only to a certain point. In fact, a threshold of −∞ in the



Figure 4. Stage classifier. Figure 5. Cascade of classifiers.

final layer is equivalent to removing that layer. Further increasing the detection and false positive rates requires
decreasing value of the threshold of the next classifier in cascade. Thus, in order to construct a complete ROC
curve, classifier layers are removed one by one. We use the number of false positives as opposed to the rate of
false positive to label the x-axis. The false positive rate can be calculated by simply dividing the number of false
positives by the total number of scanned sub-windows.

3.2. Recognition based on a single frame
Comprehensive studies7 of natural scenes have shown that the distributions of pixel intensities in linearly filtered
images are described by a family of Bessel K distribution functions. This constitutes a basis for the implemented
recognition algorithm.

Bessel K forms is a stochastic model that can be used to measure image variability. This parametric family
is applied to model lower order probability densities of pixel values resulting from bandpass filtering of images.
The main idea of the recognition algorithm based on Bessel K forms is to select the critical features of each
object class by passing an image through a bank of linear filters and then analyzing statistics of the filtered
images. As shown by Grenander and Srivastava,7 Bessel K forms parameterized by only two parameters: (1) the
shape parameter p, p > 0, and (2) the scale parameter c, c > 0, may provide a good statistical fit to empirical
histogram distributions of filtered images.

Denote by I an image and by F a filter, then the filtered image I = I ∗ F , where ∗ denotes 2-dimensional
convolution operation. Under the conditions stated in,7 the probability density function of the random variable
I(·) can be approximated by

fK(x; p, c) =
2

Z(p, c)
|x|p−0.5K(p−0.5)(

√
2
c
|x|), (3)

where Kν(x) is the modified Bessel function of the second kind, and Z(p, c) is the normalization given by

Z(p, c) =
√

πΓ(p)(2c)0.5p+0.25.

Given J filters, the image I can be represented using 2J Bessel parameters.

To approximate the empirical density of the filtered image by a Bessel K form, the parameters p and c are
estimated from the observed data using

p̂ =
3

SK(I) − 3
and ĉ =

SV (I)
p̂

, (4)

where SK is the sample kurtosis and SV is the sample variance of the pixel values in I. Since the moment-based
estimate of p in (4) is sensitive with respect to outliers, in our computations we replace it with an estimate based
on empirical quartiles given by

p̂ =
3

ˆSK(I) − 3
, with ˆSK(I) =

q0.995(I) − q0.005(I)
q0.75(I) − q0.25(I)

,

where q(·) is the quartile function that returns the x quartile of a set of samples. This method provides reasonable
fit. As shown in Fig. 6, the histogram (dashed line) of images filtered by Gabor filters9 closely follows the
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Figure 6. The marginal densities. The empirical histogram distributions are marked in dashed line. The Bessel K form
approximations are shown in solid lines.

estimated Bessel K forms (solid line). To quantify the difference between two filtered images based on their
distributions, two distance measures: (1) a pseudo-metric introduced by Srivastava7 and (2) the K-measure10

between two Bessel K forms, are used. The pseudo-metric is defined as

dI(I1, I2) =

√∫ +∞

−∞
(fK(x; p1, c1) − fK(x; p2, c2))

2
. (5)

The closed form of dI(I1, I2) for the case of p1, p2 > 0.25, c1, c2 > 0 is given by:

dI(I1, I2) =
[
Γ(0.5)
2
√

2π

(G(2p1)√
c1

+
G(2p2)√

c2
− 2G(p1 + p2)√

c1

(
c1

c2

)
p2H

)] 1
2

,

where G(p) = Γ(p−0.5)
Γ(p) and H = H

(
p1 + p2 − 0.5, p2; p1 + p2; 1 − c1

c2

)
. The function H is the hypergeometric

function. In cases where p̂ < 0.25 for an image-filter combination, we compute the pseudo-metric numerically
using the quadrature integration.

The K-measure is defined as

dKL(I1, I2) = D (fK(x; p1, c1)‖fK(x; p2, c2)) + D (fK(x; p2, c2)‖fK(x; p1, c1)) , (6)

where D (fK(x; p1, c1)‖fK(x; p2, c2)) is the relative entropy between two distribution functions fK(x; p1, c1) and
fK(x; p2, c2) given by

D (fK(x; p1, c1)‖fK(x; p2, c2)) =
∫ +∞

−∞
log
(

fK(x; p1, c1)
fK(x; p2, c2)

)
fK(x; p1, c1)dx.

In the above expressions fK(·) is the Bessel K probability density function introduced in (3).

Given two images {I1, I2} and a bank of filters {Fj, j = 1, 2, · · · , J}, we evaluate a set of filtered images
{I(n,j) = In ∗Fj, n = 1, 2; j = 1, · · · , J}. After estimating the parameter p(n,j) and c(n,j), each image is mapped
to J points in the density space. The distance between two images are calculated by

dI(I1, I2) =
J∑

j=1

dI(I(1,j), I(2,j)), (7)

and

dKL(I1, I2) =
J∑

j=1

dKL(I(1,j), I(2,j)), (8)

where dI(I(1,j), I(2,j)) and dKL(I(1,j), I(2,j)) are defined in (5) and (6).

The purpose of using the two distance measures is to balance accuracy and computational efficiency. K-
measure is an accurate measure of similarity of two probability density functions. However, it cannot be obtained



in closed form for Bessel K forms. Numerical evaluation of K-measure is computationally expensive. The pseudo-
metric (5) has closed form for Bessel K forms, which means that the computation cost is relatively low. The
major drawback of the pseudo-metric is its low precision. To measure the difference between two histograms
fast and with relatively high precision, we combine these two distance measures. First, we use the fast method,
the pseudo-metric, to evaluate the distance between the input image and all templates in the database. If the
pseudo-metric has multiple minima close in their values, there will be a potential misclassification. The precise
metric, the K-measure, is then used to re-calculate the distances and make the final decision. By setting threshold
properly, we obtain relatively fast and reliable result.

3.3. Data fusion for improved detection

In this section, we motivate and describe two data fusion methods for improved detection performance.

Consider a scenario where a set of UAVs perform an area search. UAVs monitor the ground continuously
at a slow rate (for instance, 2-5 frames per second). We assume that an UVA while passing a target is capable
of acquiring only a few (1-4 frames) containing this target. Now, if a UAV detects a potential target within a
frame, it may appeal to its neighbors to perform additional monitoring of the area. Thus, this scenario may
result in collecting a relatively large number of optical frames containing information about a target.

If a target image is acquired at a low resolution (due to high altitude flight or absence of zoom), a single
frame-based detection provides poor results. However, if a set of frames containing information about the same
target are available, the detection performance may be improved considerably due to use of a super-resolution
(SR) technique.

We also explore data fusion techniques for images with a sufficient resolution. For this we use a score-level
data fusion technique.

3.3.1. Image-level data fusion for improved detection

In our swarmed UAV system, when a moderate amount of scene motion exists between frames, low-resolution
images can be fused to yield an image of a higher resolution compared to any original low resolution frames.
The literature describes a variety of approaches that exploit SR techniques.11 We implement a modified version
of the algorithm proposed by Hardie et al.12 This technique is fast and well suited for our ATR purpose.

To generate a high-resolution (HR) image, low-resolution (LR) images are first registered relative to a specific
reference frame. We involve a two step procedure for automatic registration of frames. In the first step, we use
optical flow to extract similar features in different frames and then apply purely geometric matching procedure.13

In the second step, sub-pixel image registration is achieved by a gradient-based registration technique12 and a
non-uniform liner interpolation method14 is used to generate high-resolution grid. The results demonstrating
the effect of SR on detection performance are provided in Sec. 4.3.

3.3.2. Score-level data fusion for improved detection

Consider now the case when frames contain targets represented by a large number of pixels sufficient for successful
detection. However, the images may be of poor quality. We apply a two-step data fusion procedure at the score-
level and demonstrate improved detection performance.

First, the fames containing information about the same target are registered with respect to a reference frame
using the control-point based image registration method.13 Then the single-frame object detector described in
Sec. 3.1 is applied to the combined registered overlapping image areas. The scores produced by the stage
classifiers (2) applied to different image frames are combined to generate the final detection results. Kittler et
al.15 summarize on classes of combination strategies at the score level. We choose Sum Rule and Majority Vote
Rule because of their simplicity and computational efficiency.

The Sum Rule is described by the following equation:

C(x1)fused =
{

1 if 1
N

∑N
n=1

∑
j hj(xn) > T

0 otherwise,
(9)



where x1 is the specified reference image frame and xn is a sub-window of image n among the N (N ≥ 2) frames
of registered images.

The Majority Vote Rule is given by:

C(xn) =
{

1 if
∑

j hj(xn) > T

0 otherwise
(10)

C(x1)fused =
{

1 if
∑

n C(xn) > N
2

0 otherwise,
(11)

where x1 is the specified reference image frame and xn is a sub-window of image n among the N (N ≥ 3) frames
of registered images.

3.4. Data fusion for improved recognition

In this section we describe a multivariate Bessel K form for improved recognition.

The multivariate Bessel K forms can be formed as a mixture of Gaussian variables, where the mixing variable
is a scaled Gamma distributed random variable with parameters p and c. Multivariate Bessel K forms are a
special case of a larger family, namely, the generalized hyperbolic distributed family (see Barndorff-Nielson et
al16 for details). Denote by v a d-dimensional random vector following Guassian distribution with zero mean
and identity covariant matrix. Let z be a random variable following Gamma distribution with parameters p and
c. Form

x =
√

zΓ
1
2 v.

Then x is a d-dimensional random vector following Bessel K distribution with parameters p, c and Γ. The
probability density function of x is given by

fK(x; p, c, Γ) =
2

ZM (p, c)

(√
q(x)

)p− d
2

K(p−0.5)

(√
2
c
q(x)

)
, (12)

where q(x) = xT Γ−1x and ZM (p, c) is the normalization given by

ZM (p, c) = π
d
2 Γ(p)(2c)0.5p+0.25d.

When d = 1, (12) reduces to (3).

As illustrated in Fig. 7, the pair of images I(α1) and I(α2) are taken from the same object but at different
poses. They can be jointly represented by 3J sets of parameters.

Figure 7. Representation of a pair of images I(α1) and I(α2) by 3J Bessel parameters.



To estimate the parameters p, c and Γ, we first find the mean and covariance matrix as

µ̂ =
1
N

N∑
i=1

xi and Γ̂ =
Ĉ(

det Ĉ
) 1

d

,

where N is the sample size and Ĉ = 1
N

∑N
i=1(xi − µ̂)(xi − µ̂)T . Then we generate a new random vector yi =

Γ̂− 1
2 (xi − µ̂), which follows d-dimensional Bessel K distribution with zero mean, identity covariance matrix, the

shape parameter p and the scale parameter c. The marginal distribution of yki, k = 1, · · · , d follows univariate
Bessel K form. So we can estimate p and c as p̂ = 1

d

∑d
k=1 p̂k and ĉ = 1

d

∑d
k=1 ĉk, where p̂k and ĉk are the

estimates from the kth projection.

We use the K measure to qualify the distance between two pairs of images.

4. NUMERICAL RESULTS

In this section, we use the simulated dataset described in Sec. 2 to evaluate the influence of environmental and
camera effects on detection and recognition performance. We further analyze detection and recognition results
from a single and multiple frames.

Both detection and recognition algorithms operate in two modes: training and testing. To train our detection
algorithm, we compile sets of positive and negative training images. The set of positive training images contains
cropped projections of single targets at different orientations and elevations. The set of negative images is
composed of cropped images of non-targets. To test the detection algorithm, that is, to evaluate the detection
performance, we used the 3-D ATR Training Tool. A number of 3-D scenes were generated by placing targets
and non-targets on a background (grass, sand, etc.). The projections of scenes acquired at different orientations
and elevations were treated as testing images.

To train and test recognition algorithm, we used cropped images of targets. The undistorted images of all
targets at orientations 0, 15, 30, · · · , 345 and elevation 15 degree form the training set. The remaining undistorted
images are used to evaluate the recognition performance for single frame and multi-frame cases. Distorted images
are used to test the influence of environmental and camera effects on recognition performance. To process data,
we used a bank of 38 filters including Gaussian filters, Laplacian of Gaussian filters and Gabor filters.

4.1. Influence of Environmental and Camera Effects on Detection Performance

In our evaluations of detection capabilities of Haar feature-based algorithm we use a dataset consisting of 277
grayscale images generated using ATR training tool. These images contain 440 targets parameterized by varying
type, location, orientation, and camera elevation angle. We further generate 5 distorted images per each original
“clean” image. The distorted images include illumination variations, contrast variations, Gaussian noise, defocus
blur and motion blur. The effects are generated individually and tested separately. For each effect, the distortion
is increased from low level to high level in which level 0 corresponds to the case when no distortion is imposed.
For the illumination changes, levels below 0 indicate darker images and levels above 0 indicate brighter images
compared to the original images. The results of detection performance evaluation are shown in Fig. 8(a)-(e).

From the ROC curves, we can conclude that illumination and contrast variations do not affect the detection
performance significantly. This is because the Haar feature-based detector implements a light correction proce-
dure prior stage classification. To be more specific, prior to stage classification all test windows are normalized
to minimize the effect of different lighting conditions. The procedure of normalization is as follows:

I−(x, y) =
I(x, y) − µ

cσ
, c εR+, (13)

where I(x, y) is the pixel value within the sub-window during detection scanning. µ and σ are the mean and the
standard deviation of I(x, y).

On other effects, both blur and noise degrade detection performance: the number of false alarms in detection
increases with increased level of effects.
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(a) Illumination
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(b) Contrast
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(c) Gaussian Noise
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(d) Defocused Blur
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(e) Motion Blur
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Figure 8. (a)-(e) Detection and (f) Recognition performance as functions of various environmental and camera effects.

4.2. Influence of Environmental and Camera Effects on Recognition Performance

Each effect is tested individually. To evaluate the influence of an environmental or camera effect on recognition
performance, we generate a number of distorted images parameterized by varying distortion level: from lowest
level to highest level. The average correct recognition rate as a function of distortion level parameterized by
various effects are shown in Fig. 8(f). Level 0 corresponds to the case when no distortion is added.

From Fig. 8(f) we conclude that the average recognition performance decreases when distortion level increases,
except the illumination and contrast effects. These two effects are compensated prior to evaluation of the
recognition performance (see the image normalization step in (13)).

4.3. Detection Performance: Single and Multi-frames cases

To evaluate improvement in detection performance due to involvement of multiple frames, we consider two fusion
scenarios: fusion at image level and fusion at the score-level. The first scenario will be beneficial in the case
of low resolution images or partially occluded images. The other scenario results in performance improvement
under a broad range of conditions.

4.3.1. Detection Performance: Image-level Data Fusion

We use superresolution12 as a method of fusing data at the image level. High-resolution (HR) images are
constructed from artificially-generated, low-resolution (LR) images. To generate the HR image, the LR images
are registered relative to a specific frame of reference. Following this registration, available LR pixels are used
to sparsely populate a HR image grid, and non-uniform interpolation techniques are applied to the remaining
gridpoints to generate an estimate of the HR image.

We train two detectors on the same set of positive images but at different image resolutions. The high-
resolution detector is trained on positive samples of 30 × 30 pixels. The low-resolution detector is trained on
positive samples of 15× 15 pixels. The size of positive samples is determined by the minimum size of targets in
images submitted for detection. The summary of parameters is provided in Table 1.



Table 1. Summary on High Resolution and Low Resolution Detectors used in our experiments

LR Detector HR Detector
Number of Postive samples 180 180
Number of Negative samples 500 500

Stages 11 13
Width × Height/pixels 15 × 15 30 × 30

The two detectors were tested using 3 datasets: low-resolution(LR), high-resolution(HR) and super-resolved
(SR) test datasets. LR images are generated by randomly translating and rotating images in HR dataset and
then downsampling by a factor of 2 in each dimension. SR images are generated using K LR frames. The
performances of the detector trained on HR images is tested on a number of SR datasets constructed from
K = 2, 4 and 8 frames of LR images. In the ideal case of perfect half-pixel displacement, one needs only 4 LR
images to obtain a HR estimate. However, since displacements are random (both translations and rotations), a
larger number of LR images is needed for accurate reconstruction.

The testing results are shown in Fig. 9. The performance of LR detector on LR test database is poor
indicating that LR images lack important details for successful recognition. In this case, HR detector considerably
outperforms SR detector.

4.3.2. Detection Performance: Score-level Data Fusion

For score-level data fusion, we employ Sum Rule (9) to performance data fusion. Two image sequences of the
same scene containing several targets are captured from different view angles and distances by the ATR Training
Tool to simulate surveillance tasks performed by two independent UAVs. Each sequence consists of 40 frames
of images and 160 targets. The testing results are shown in Fig. 10. The experiments show the score-level data
fusion technique can reduce false alarms and keep high detection rate.
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Figure 9. Image-level Data Fusion Results.
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Figure 10. Score-level Data Fusion Results.

4.4. Recognition Performance: Single and Multi-frames cases

In this experiment, we involve only the original images generated using the ATR Training Tool. We assume that
the relative rotation angle between the test image pair is known. Two different relative angles are tested, 5- and
10-degree. For each angle, there are 24 sets of multivariate Bessel K parameters describing each object.

Since images are generated at 4 different elevation angles, the total number of testing pairs is 4 × 4 × 72
per target. Table 2 summarizes the results of testing of the multivariate Bessel K recognition algorithm. The
correct recognition and error rates are presented in the form of a confusion matrix for single and two-frame
cases (with 5 and 10 degree relative orientation). Note that multivariate Bessel K forms result in considerably
improved performance when the relative orientation between two images is 10 degrees, that is, when data are
less correlated compared to the case with the relative orientation of 5 degree.



Table 2. Recognition Performance using Single and Two images.

Single Two (5 degree) Two (10 degree)

Confusion Matrix

⎡
⎣ 0.9545 0 0.0114

0 0.9811 0
0.0455 0.0189 0.9886

⎤
⎦

⎡
⎣ 0.9931 0.0642 0

0 0.9358 0
0.0069 0 1

⎤
⎦

⎡
⎣ 0.9991 0.0069 0

0.0009 0.9931 0
0 0 1

⎤
⎦

5. CONCLUSIONS

In this work, we staged a potential scenario for optical data acquisition by a UAV network. We analyzed the
influence of environmental and camera effects on detection and recognition performance. The detection algorithm
relies on Haar-like features. The recognition algorithm is based on estimation of Bessel K forms. We further
implemented and tested a number of data fusion schemes for improved detection and recognition. The schemes
include superresolution and score-level fusion for detection and multivariate Bessel K forms for recognition.
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