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Abstract— This paper presents a methodology for de-
termining the capacity of coherently detected continuous-
phase frequency shift keying (CPFSK) modulation under
the constraints of binary coding and an ergodic channel.
Building upon the capacity results, the coded CPFSK pa-
rameters of code rate, alphabet size, and modulation index
are jointly optimized by using capacity as a cost function.
From this optimization, it is possible to determine the min-
imum Eb/N0 required for bit-interleaved coded CPFSK
to achieve an arbitrarily low error rate as a function of
spectral efficiency. Results showing this minimum Eb/N0

are presented for a range of spectral efficiencies and
several alphabet sizes in an AWGN channel.

I. INTRODUCTION

Continuous-phase frequency shift keying (CPFSK) [1]
is an attractive modulation choice due its small spectral
side-lobes and constant envelope. In order to improve
the energy efficiency, CPFSK can be combined with a
channel code. There is however a fundamental tradeoff
between the energy efficiency of the coded system and
its spectral efficiency, since coding gain typically occurs
at the expense of bandwidth.

In coded CPFSK, the power-bandwidth tradeoff is
governed by the code rate r and the CPFSK param-
eters (the alphabet size M and the modulation index
h). For CPFSK (and more generally for continuous
phase modulation (CPM)), signalling under bandwidth
constraints involves a tradeoff between r and the modu-
lation parameters. As an example, the spectral efficiency
(η) of CPFSK can be improved by placing the tones
closer together which implies reducing the value of
h. However, as h decreases, the error rate in general,
increases [1]. The resulting performance loss may be
overcome to some extent by using a code with lower
rate r, which however decreases η.

In this paper, we attempt to better understand the
above tradeoffs for coherently detected, bit-interleaved
coded CPFSK. First, we outline a method to determine
the capacity of the coded system using Monte-Carlo in-
tegration. This requires that the detector (demodulator)
be capable of producing bit-wise log-likelihood ratios
(LLRs) for the modulated symbols. From our capacity
calculations, we identify the values of h and r that

minimize the Eb/N0 required to achieve an arbitrarily
low bit error rate, for a certain M and a required η.
Thus we can determine what the minimum Eb/N0 is at
different values of η and the corresponding code rate r
and CPFSK parameters. It is important to note that the
above capacity is constrained not only by the choice of
modulation and the bit to symbol mapping, but also by
the demodulator formulation (coherent or noncoherent)
and the channel (AWGN, Rayleigh etc.).

The remainder of this paper is organized as follows.
Section II describes our system model. Since the ca-
pacity calculations require bit-LLRs from the detector, a
soft-output coherent detector similar to [2] is employed.
Section III deals with finding the constrained capacity
and Section IV with the capacity under bandwidth
constraints. Our results are presented and discussed in
Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

A. Transmitter and Channel

A vector u ∈ {0, 1}K of information bits is passed
through a linear binary encoder to produce the codeword
b′ ∈ {0, 1}N . The code rate is r = K/N . The row
vector b′ is bit-interleaved to produce b. The vector b is
arranged in a log2 M×Na matrix B with (i, k) element
Bi,k = bk log2 M+i. The number of M-ary symbols to be
transmitted is Na = dN/ log2 Me. Each column of B
is mapped to one of M symbols to produce the vector
a ∈ {0, 1, ..., M − 1}Na which represents the sequence
of coded symbols to be transmitted. This process of
concatenating a binary code with an M-ary modulator
using a bit-interleaver is known as bit-interleaved coded
modulation (BICM) [3].

Using Rimoldi’s tilted phase representation [4], the
CPFSK tilted phase during the interval nT ≤ t < (n +
1)T can be written as [4]

ϕ(t,a) = [2πhVn +
2πh

T
an(t− nT )] mod 2π, (1)

where T is the symbol period. Assuming the modulation
index is rational and irreducible of the form h =



mh/ph, Vn is

Vn =

[
n−1∑

i=0

ai mod ph

]
. (2)

According to [4], the modulator can be decomposed
into a continuous phase encoder (CPE) followed by
a memoryless modulator (MM). The CPE updates the
MM input, such that

Vn+1 = [Vn + an] mod ph. (3)

From (1), the input to the MM which specifies the
CPFSK phase during [nT , (n + 1)T ) is an = [an, Vn].
Since an can have one of phM possible values, the
CPFSK signal will be one of phM possible signals at
any symbol interval. The baseband transmitted signal
can hence be written as

x(t,an) =

√
2Es

T
exp (jϕ(t,an)) , (4)

where Es is the symbol energy.
The CPFSK signal is transmitted through an AWGN

channel whose output is

r(t,an) = x(t,an) + n(t), (5)

where n(t) is complex white Gaussian noise with zero
mean and variance N0.

B. Soft-Output Coherent Detector

Soft output demodulation is performed by running
the BCJR [5] algorithm on a trellis describing the
underlying modulation. CPFSK can be represented as
a finite state machine with ph states [4], with the state
at time instant t = nT given by Sn = Vn, and M
branches emerging out of each state. Once the trellis
is so defined, the LLR can be decomposed using the
BCJR algorithm as

Zi,n = log
∑
S(1) αn(s′)γn+1(s′, s)βn+1(s)∑
S(0) αn(s′)γn+1(s′, s)βn+1(s)

, (6)

where S(1) is the set of state transitions {Sn = s′} →
{Sn+1 = s} corresponding to Bi,n = +1, S(0) is
defined similarly for Bi,n = 0, and α, β and γ are
the metrics in the BCJR algorithm. Because [5] already
fully describes how to recursively calculate α and β
from the branch metric γ, all that remains to completely
describe the demodulator is a derivation of γ.

Because the interleaved code bits are equally likely,
the metric γn+1(s′, s) is defined as [5],

γn+1(s′, s) = P [r(t,an)|(Sn → Sn+1) = (s′ → s)]

= P [r(t,an)|xs→s′(t, cn)] , (7)

where xs′→s(t, cn) is the CPFSK signal corresponding
to the state transition {Sn = s′} → {Sn+1 = s} with
the corresponding MM input being cn. It is pragmatic to
use a sufficient statistic obtained from r(t,an) in order

to evaluate the conditional pdf. In coherent receivers,
the sufficient statistics may be provided by a bank of
phM correlators, sampled at the end of every symbol
duration. The output of the correlator during the nth

symbol interval is

ρn =
∫ (n+1)T

nT

r(t,an)x∗s′→s(t, cn)dt. (8)

From [2], γn+1(s′, s) evaluates to

γn+1(s′, s) ≈ exp (Re{ρn}/ N0). (9)

Once the metrics are determined for every branch in the
trellis, the demodulator executes the BCJR algorithm
and using (6) produces the LLR Zi,n for each bit i of
each symbol n. The LLRs are then placed into a row
vector z such that zn log2 M+i = Zi,n. The vector is
then deinterleaved and the resulting sequence z′ fed to
the channel decoder for soft-decision decoding.

III. BICM CAPACITY OF COHERENT CPFSK

Let X and Y be random variables denoting the input
and output of a channel, respectively. The (Shannon)
channel capacity is defined as the mutual information
between X and Y , maximized over all possible input
distributions pX(x)

C = max
pX(x)

I(X; Y ). (10)

I(X;Y ) is the (average) mutual information between
X and Y which can be written as [6]

I(X;Y ) =
∫ ∫

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
dxdy, (11)

where pX,Y (x, y) is the joint density function between
X and Y and pY (y) is the marginal density function of
Y . As in [7], we define the mutual information random
variable

i(X; Y ) = log
1

pX(X)
+ log pX|Y (X|Y ), (12)

where pX|Y (X|Y ) is the conditional pdf of X given Y .
When X is discrete, the pdfs in the above expressions
are replaced with the corresponding probability mass
functions (pmfs).

The mutual information (11) can also be written as
the expectation

I(X;Y ) = E [i(X; Y )] . (13)

An important consequence of writing the mutual infor-
mation as an expectation is that it can now be accurately
estimated using Monte Carlo integration with a large
number of trials. This allows us to find I(X; Y ) and
hence C even in cases where they cannot be evaluated
in closed form.

The mutual information in (10) is maximized when
X is Gaussian. In a practical system however, the input



distribution is constrained by the choice of the modu-
lation. Hence the capacity under practical modulation
constraints is simply

C = I(X;Y ), (14)

where pX(x) is now constrained by the choice of
modulation.

As discussed in [3], BICM transforms the composite
channel into log2 M parallel binary-input, continuous-
output channels, which we call BICM subchannels.
With a sufficiently large and random bit interleaver
between the encoder and modulator, these subchannels
will be independent. Because the capacity of parallel
channels adds, the capacity of the overall BICM system
is

C =
log2 M∑

i=1

Ci, (15)

where Ci is the capacity of the ith BICM subchannel.
The capacity Ci is the mutual information between
input b′i ∈ {0, 1} and the corresponding LLR z′i at the
output of the demodulator,

Ci = E[i(b′i; z
′
i)]. (16)

Using (12) and the fact that b′ is discrete, we get

i(b′; z′) = log
1

P [b′]
+ log P [b′|z′], (17)

From [8], (17) evaluates to

i(b′; z′) = log 2−max ∗(0, z′(−1)b′), (18)

where max ∗(x, y) = log(ex + ey) as defined in [9].
Substituting (18) into (15) gives the expression for the
BICM capacity

C =
log2 M∑

i=1

(
log 2− E

[
max ∗(0, z′i(−1)b′i)

])
, (19)

which is in units of nats per channel use. To convert to
bits (19) must be divided by log 2.

Fig. 1 shows C as a function of Es/N0 for 2-CPFSK
at different h, in AWGN. Monte Carlo integration with
2 million symbols per Es/N0 were used to evaluate
C. It is also possible to plot the information-theoretic
minimum Eb/N0 required for reliable signalling as a
function of the code rate r = C since Eb/N0 =
Es/N0(r log2 M). Fig. 2 shows the minimum required
Eb/N0 as a function of r for the same CPFSK param-
eters and channel as in Fig. 1. It is interesting to note
from Fig. 2 that going to a lower r does not necessarily
improve energy efficiency, this is a characteristic of
CPFSK (and CPM in general) with BICM. One can
see that for each choice of h, there is a particular value
of r that minimizes the required Eb/N0. Furthermore,
the results shown in Figs. 1 and 2 are for M = 2 and
would have to be repeated for all other M . Intuitively,
the CPFSK design point that achieves capacity by
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Fig. 1. Capacity versus Es/N0 for coherent CPFSK in AWGN with
M = 2 and modulation indices h = {1/10, 1/7, 1/3, 1/2, 2/3}.
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Fig. 2. Minimum Eb/N0 required for coherent CPFSK to achieve an
arbitrarily low error rate versus code rate r in AWGN with M = 2
and modulation indices h = {1/10, 1/7, 1/3, 1/2, 2/3}.

maximizing the average mutual information is h = 1
and M → ∞. This is not a practical design because
the infinite value of M will result in unbounded system
complexity and the simultaneous use of orthogonal
modulation will result in unbounded bandwidth.

Finally, it must be pointed out that the minimum
Eb/N0 obtained from the capacity is a very practical
indicator of system performance due to the availability
of “off-the-shelf” capacity-approaching, binary codes.
Fig. 3 shows the bit error rate (BER) of bit-interleaved
coded 2-CPFSK at modulation indices {1/10, 1/7, 1/2}
using a rate 1/2 CDMA-2000 turbo code [10], after 10
decoder iterations with an interleaver length of 12282
bits, in AWGN. The vertical lines denote the informa-
tion theoretic thresholds to achieve an arbitrarily low
BER for the particular modulation index at r = 1/2.
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Fig. 3. Bit error rate in AWGN for bit-interleaved coded, 2-CPFSK
with h = {1/10, 1/7, 1/2} using a rate 1/2 CDMA 2000 code after
10 turbo decoder iterations. The vertical lines denote the information
theoretic Eb/N0 in dB to achieve an arbitrarily low BER for the
respective h and r = 1/2. The interleaver size is 12282 bits.

IV. CAPACITY UNDER BANDWIDTH CONSTRAINTS

The first step in quantifying the energy-bandwidth
tradeoff is computing the bandwidth of the CPFSK
signal. The power spectral density (PSD) Φx(f) of the
CPFSK signal x(t) is given in Section 4.4.2 of [11].
Using the PSD, the 99% power bandwidth B99 of x(t)
is defined as

∫ B99/2

−B99/2

Φx(f)df = 0.99
∫ ∞

−∞
Φx(f)df. (20)

This bandwidth is a function of M , h, and the symbol
rate Rs = 1/T . The normalized bandwidth is de-
fined to be B(M, h) = B99Tb Hz/baud, where Tb =
T/ log2 M . We can then define the spectral efficiency
η = r/B(M,h), which has units of bits-per-second-
per-Hz (bps/Hz).

Next, one must determine the minimum value of
Eb/N0 for a desired spectral efficiency η. Due to the
bandwidth constraint, the range of r that may be con-
sidered is restricted such that the threshold r′ on code
rate is given by

r′ = ηB(M,h), (21)

where r ∈ [r′, 1]. It is obvious that rates r < r′

cannot be considered because for the particular h and
M , as the spectral efficiency will be lower than η.
Under tight bandwidth constraints, the optimal r is
equal to the threshold value r′, but in looser bandwidth
constraints the optimal r might be higher due to the
non-monotonous nature of the Eb/N0 versus r curves.

V. RESULTS AND DISCUSSION

Eb/N0 versus r curves were generated for M =
{2, 4, 8, 16} in AWGN for modulation indices ranging
from 0.1 to 0.9. For non-binary modulation, natural and
gray labelling were considered. Next, for these CPFSK
parameters, the minimum rate r′ was determined from
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Fig. 4. Minimum Eb/N0 required for coherent CPFSK to achieve an
arbitrarily low error rate versus modulation index h in AWGN with
M = 2 for spectral efficiencies η = {0, 1/3, 1/2, 2/3, 3/4, 1}. For
fixed h, the minimum Eb/N0 increases with η.

(21). For example, when M = 2 and η = 1/2 bps/Hz,
the minimum values of r are 0.4, 0.59, 0.85 and 0.93 for
h = 1/5, 1/2, 2/3 and 3/4, respectively. Since B(M =
2, h = 1) = 2.1309 > 1/η, no code of rate r ≤ 1
can be used at this η when h = 1 and thus orthogonal
modulation cannot be considered. Next, the minimum
Eb/N0 was found by inspecting the curve over the range
of possible rates r ∈ [r′, 1]. For a given η and M , this
procedure was repeated for each value of h over a range
(0, h′), where h′ = maxh≤1 : B(M, h) ≤ 1/η is a
maximum modulation index. At low spectral efficiency,
h′ = 1 but at high spectral efficiency, values of h >
h′ cannot be used because the bandwidth requirement
cannot be met for any code rate r ≤ 1. The minimum
Eb/N0 over possible values of h was determined. As
an example, Fig. 4 shows the minimum Eb/N0 versus
the corresponding h for M = 2 in AWGN and several
values of η (the η = 0 case corresponds to having no
bandwidth constraint).

Fig. 4 reveals that for each value of η there is an
optimal choice of h that minimizes Eb/N0. For the
unlimited bandwidth case (η = 0), the optimal h tends
to 1, but as η increases, the optimal value of h decreases.
The combination of η and the Eb/N0 minimized over
h is the constrained channel capacity for that value
of M , channel (AWGN), and coherent detection. It is
interesting to note that the popular MSK (2-CPFSK,
h = 1/2) is not the optimum choice at any spectral
efficiency. A plot of minimum Eb/N0 versus h for all
M ≤ 16 and η = 1/2 is shown in Fig. 5 for the AWGN
channel.

By finding the minimum value of Eb/N0 with respect
to h for each M over a wide range of η, one can finally
determine the capacity of CPFSK. Capacity can now
be plotted in terms of spectral efficiency η versus the
corresponding minimum Eb/N0, as shown for different
M and η ≤ 1 in Fig. 6 in AWGN. Note that as expected,
the minimum Eb/N0 in dB increases with η. While there



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

8

9

10

11

h

M
in

im
um

 E
b/

N
0 

in
 d

B


Natural labelling
Gray labelling
M =2
M =4
M =8
M =16

Fig. 5. Minimum Eb/N0 required for coherent CPFSK to achieve
an arbitrarily low error rate versus modulation index h in AWGN for
modulation orders M = {2, 4, 8, 16} and spectral efficiency η =
1/2.
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Fig. 6. Minimum Eb/N0 required for coherent CPFSK to achieve
an arbitrarily low error rate versus spectral efficiency η in AWGN for
modulation orders M = {2, 4, 8, 16}.

is a benefit to increasing M at very low η, these benefits
diminish as η is increased. There appears to be little
benefit to using M > 4 at higher spectral efficiencies.
Also, Gray labelling is preferable to natural labelling
under tight bandwidth constraints.

VI. CONCLUSION

We have investigated the problem of designing bit-
interleaved coded CPFSK systems under bandwidth
constraints. A methodology has been outlined for solv-
ing the above problem using the constrained capacity
as the cost function. Monte Carlo integration with a
large number of trials is used to reliably determine the
capacity over several modulation indices and alphabet
sizes. The constrained capacity also takes into account
the detector design.

Because many “off-the-shelf” codes are binary, it is
convenient to use bit-interleaved coded modulation. The

key issue when extending BICM to nonorthogonal FSK
is that the performance will be sensitive to how bits
are mapped to symbols. Hence the optimization would
have to be performed over all bit-to-symbol labelling.
In this paper, we have limited ourselves to natural and
gray labelling. Our results indicate at high spectral
efficiencies, it is advantageous to use M = 4 and gray
labelling, whereas at low spectral efficiencies, there is a
slight benefit of using a larger alphabet size and natural
labelling.

The soft-output coherent detector has excellent en-
ergy efficiency. However, its main drawback is the
high complexity involved in accurately estimating the
signal phases at the receiver. The detector complexity
also increases as h is reduced. Furthermore, trellis
representation constrains the modulation index be a
rational number [4], which restricts our design space.
Noncoherent [12] and differential phase detectors [13]
provide low complexity alternatives, albeit at the ex-
pense of energy efficiency.

An alternative approach to coded CPFSK design is
to match the code alphabet to the modulation alphabet.
The resulting scheme is known as coded modulation
(CM), which due to the data processing inequality, has
a higher capacity than BICM. Determining the CM
capacity for coherent CPFSK is an open problem and a
topic for future research. We have previously found the
optimal parameters for noncoherently detected CPFSK
using coded modulation in [12].
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