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Abstract

A constellation labeling map is the assignment of a bit
pattern to each symbol in a signal-set constellation. In a
system with bit-interleaved coded-modulation and iterative
decoding and demodulation (BICM-ID), the error floor of
the bit error rate is highly dependent on the labeling map.
A simple class of labeling maps that significantly lower the
error floors is presented. Examples show the applications
of the proposed mapping to phase-shift keying (PSK),
quadrature amplitude modulation (QAM), and continuous-
phase frequency-shift keying (CPFSK). Simulation results
indicate that the proposed labeling maps are comparable
to or better than other labeling maps in providing a low
error floor. A major advantage of the proposed labeling
maps is that they are easily generated.

I. INTRODUCTION

Bit-interleaved coded-modulation (BICM) increases the
time diversity of a communication system and, hence, im-
proves its performance over a fading channel by using bit
interleaving instead of symbol interleaving [1]. As a result,
BICM has become a standard feature in cellular, satellite,
and wireless network systems. In a system with BICM and
iterative decoding and demodulation (BICM-ID), soft-decision
information is exchanged between the demodulator and the
decoder [2], [3], which itself may be internally iterative. The
iterative decoding and demodulation minimizes any perfor-
mance degradation experienced by BICM over the AWGN
channel.

Plots of the bit error rate for BICM-ID systems generally
exhibit a waterfall region, which is characterized by a rapid
decrease in the bit error rate as the signal-to-noise ratio
increases, and an error-floor region, in which the bit error rate
decreases much more slowly. The choice of the labeling map
has a major impact on both regions. In this paper, we present
a simple method for constructing labeling maps that produce
low error floors for an arbitrary constellation and error-control
code. A low error floor may be important for radio-relay
communications, space-ground communications, or when an
automatic-repeat request is not feasible because of the variable
delays.

Methods for generating good labeling maps for low error
floors have been previously described [4], [5], [6]. These
methods entail computer searches based on approximate upper
bounds on the bit error rate. The new labeling maps presented
in this paper are based on the Euclidean distances in the signal-
set constellations and are much simpler to generate. Simulation
results indicate that these labeling maps produce an error floor
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at least as low as those produced by other proposed labeling
maps.

In addition to a suitable choice of the labeling map, there
are several independent strategies for lowering the error floor.
One can lower the error floor by strengthening or appropriately
selecting the code. As examples, one can use a turbo code
instead of a convolutional code or more powerful component
codes within the turbo code. One can use a regular low-density
parity-check (LDPC) code instead of a comparable irregular
one to lower the error floor. Bit interleavers that ensure the
unequal protection of bits can be designed to provide low
error floors for both bit-interleaved turbo-coded systems [7]
and LDPC-coded systems [8]. The new labeling maps can
supplement any of the other methods of lowering the error
floor and lower it further.

A Gray labeling map minimizes the number of bit errors that
occur if an adjacent symbol of a received symbol is assigned
the highest likelihood or largest metric by the decoder. Thus, a
Gray labeling map will provide an early onset of the waterfall
region, but produces a relatively high error floor primarily
determined by the minimum Euclidean distance of the symbol
set. In contrast, the new TV labeling map described in Section
IT lowers the error floor at the cost of an adversely shifted
waterfall region.

II. LABELING MAPS

The major components of a BICM-ID system are dia-
grammed in Fig. 1. In the transmitter, message bits are
encoded, bit-interleaved, and then applied to the modulator.
A constellation labeling or labeling map is the mapping
of a bit pattern to each symbol or point in a signal-set
constellation. Each set of m = log, ¢ consecutive bits in the
input b = {bg,...,b;m—1} € [0,1]™ is mapped into a g-ary
symbol s =u(b), where p(b) is the labeling map, and the
set of constellation symbols has cardinality ¢. In the receiver,
the demodulator converts the received signal into a sequence
of received symbols. A demapper within the demodulator
processes each received symbol to produce a vector of bit
metrics. This vector provides extrinsic information that is
interleaved and passed to the decoder. The demapper and
decoder exchange extrinsic information until bit decisions are
made.
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Fig 1. BICM-ID system. II denotes an interleaver, and

TI! denotes a deinterleaver.

The Euclidean distance is a measure of the separation
between two constellation points. An adjacent constellation
symbol of symbol ¢ is one at the minimum Euclidean distance
de1 (%) from symbol i. A second closest constellation symbol
of symbol i is one at the second shortest Euclidean distance
des (i) from symbol i. A symbol is said to be selected if the
bits of its label are the decoder output bits. A set of bits is said
to be essentially known if the decoder has assigned them very
high likelihood ratios that are fed back to the demodulator.

Due to its larger Euclidean distance, a second closest symbol
has a lower probability of incorrect selection by the decoder
than an adjacent symbol when all the bits are unknown.
When the SNR is high enough and there are enough decoder
iterations, some bits are essentially known by the decoder. The
symbols that include the essentially known bits constitute a
subset A of the constellation. Consider a demodulator iteration
after receiving extrinsic information produced by the decoder.
Let y =as + n denote an arbitrary received symbol, where s
is the transmitted symbol, « is the fading amplitude, and n is
complex Gaussian noise with variance Ny/2 per component.
Let s;, 1 <4 < g, denote symbol 7 of the constellation, and
bi(s;) denote bit k of s;. If a bit is essentially known, the
bit metric produced by the demodulator for that bit no longer
significantly affects the computation of the decoder metric.
However, if a bit is unknown, then the demodulator bit metric
has a significant effect on the decoder bit metric produced by
the next decoder iteration. The demodulator metric for bit k
is [9], [10]
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where D,gb) = {s; : bi(s;) = b} contains all symbols labeled
with by, = b, and v; is the extrinsic log-likelihood ratio for
bit j that is produced by the decoder and fed back to the
demodulator. When bit & is unknown, then in both summations
in (1), any term for which s; ¢ A is negligible compared with

terms for which s; € A. Therefore, for an unknown bit &,

Z p(ylsi) [T 20 explb;(si)v;]

D](Cl)ﬁA j?ék
zr = log — . ()
> plyls) T expl(s:)us
DI(CO)OA J#

If a labeling map can ensure that the set A does not
include symbols that are adjacent in the constellation, then
(2) indicates that z; for unknown bit k is independent of
adjacent symbols at the minimum distance d.;(¢) and, hence,
the effective minimum distance for the demodulator iteration
is at least d.2(¢). Thus, subsequent decoder iterations are less
likely to result in a symbol or bit error, and the error floor is
lower for this labeling map than for the Gray labeling map. A
TV labeling map is defined as a labeling map for symbol sets
with m > 3 such that adjacent symbols are absent from any
set of symbols with x known bits if 2 < x <m — 1.

Proposition 1: A labeling map for a constellation with
m > 3 is a TV labeling map if and only if the minimum
Hamming distance d,,(¢) from a constellation symbol ¢ to its
adjacent ones is at least m — 1.

Proof: Necessity. Assume that a labeling map is such that
some symbol ¢ is at Hamming distance d,(¢) < m—2 from one
or more adjacent ones. Therefore, at least two bits are common
to the symbol ¢ and one or more of its adjacent symbols. If
the common bits are known, symbol ¢ and one or more of
its adjacent symbols are members of the set of symbols with
the two known bits. Thus, the labeling map cannot be a TV
labeling map. Sufficiency. Assume that a labeling map has
d,(i) > m — 1 for any symbol i. Let dz (i, A) denote the
Hamming distance between symbol ¢ and another member of
a set A of symbols with x known bits. If 2 < kx < m — 1,
then do (i, A) < m —k < m—1 < d,(¢) for any symbol 3.
Since ds (i, A) < dg(i), set A cannot include both symbol i
and its adjacent symbols. [ ]

The proposition implies that a TV labeling map can be
constructed by assigning bit patterns to symbols such that
the Hamming distance to adjacent symbols always is at least
m — 1. In the following labeling algorithm, the symbols are
labeled sequentially. After each symbol labeling, the unused
bit patterns are called the remaining labels.

Labeling Algorithm: Two tables are associated with each
symbol i. The adjacent-symbol table S(i) is a list of symbols
that are adjacent to symbol i. The adjacent-label table L(i) is
a list of labels that could be used by adjacent symbols. This
table is initially empty. After symbol i is labeled, L(i) is a
list of remaining labels that are at Hamming distance m — 1
or m from the label of symbol i. As successive symbols are
labeled, L(7) is shortened. One symbol is selected to be the
first labeled symbol and is labeled arbitrarily.

Using the adjacent-symbol tables, arbitrarily select one of
the unlabeled symbols that have the largest number of labeled
adjacent symbols. This selected symbol is labeled with one
of the remaining labels that is common to all the adjacent-
label tables of its labeled adjacent symbols. If there is more



than one such label, one of them is chosen arbitrarily. The
process terminates when every symbol has been labeled. If
at any step, no further symbol labeling is possible, then the
algorithm returns to the last arbitrary choice, erases all labels
subsequent to this choice, makes a different choice, and then
continues with the sequential labeling. [J

A TV labeling map exists only if every constellation symbol
has m + 1 or fewer adjacent symbols. Many TV labeling
maps exist for most practical constellations. If an m-digit
binary number is modulo-2 added to all the bit labels of one
TV labeling map, then another TV labeling map is produced.
Furthermore, rotated and reflected versions of a TV labeling
map can be constructed.

Example 1: For multiple phase-shift keying (MPSK), let
s; = exp(j2mi/q), i = 0,1,...,q — 1, denote the complex
value of constellation symbol %, where j = /—1 and ¢ = 2™.
For the small alphabet with m = 3, some previously described
labeling maps [3], [6] belong to the class of TV labeling maps.
For m = 3, a TV labeling map is the following.

symbol | bit label | symbol | bit label
0 010 4 110
1 001 5 101
2 100 6 000
3 011 7 111

The minimum Hamming distance between symbols 0 and
7 and all other adjacent symbols is equal to or greater than 2.
Suppose that the first two bits of the map are essentially known
to be 10. Then the decoder will use the demodulator metrics
for symbol 2 and symbol 5, which are not adjacent symbols,
to make a decision on the third bit. For m = 4, a TV labeling
map is the following.

symbol | bit label | symbol | bit label
0 0000 8 1010
1 1111 9 0101
2 0001 10 1011
3 1110 11 0100 O
4 1001 12 0011
5 0110 13 1100
6 1000 14 0010
7 0111 15 1101

Example 2: In Fig. 2 for quadrature amplitude modulation
(QAM), the bit labels of a TV labeling map for the 16-
QAM constellation are expressed in a decimal format. The
complex-valued symbols have 2, 3, or 4 adjacent symbols. The
application of the labeling algorithm is illustrated by its first
few steps. The constellation symbols are denoted by 0, 1, ..., 15
from left to right and from top to bottom starting in the upper
left corner of the figure. Symbol 0 is labeled 0000. Table L(0)
lists the labels 1111, 1110, 1101, 1011, and 0111. Since both
S(1) and S(4) list symbol 0, symbol 1 is arbitrarily selected to
be the next labeled symbol, and 1101 (13) is arbitrarily chosen
from L(0) as its label. This label is deleted from L(0). Symbol
4 is arbitrarily selected to be the next labeled symbol, and 0111
(7) is arbitrarily chosen from L(0) as its label. Symbol 5 is

the only unlabeled symbol with 2 labeled adjacent symbols,
so it is the next labeled symbol. Since 1010 is the only label
common to both L(1) and L(4), symbol 5 is labeled 1010
(10). The labeling algorithm is continued until we obtain the
TV labeling map of Fig. 2.
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Fig. 2. Labeling map for

16-QAM constellation.

The "D5 mapping" of [11], which is proposed as an ap-
proximation of an anti-Gray map, belongs to the class of TV
labeling maps for 64-QAM. In Fig. 3, the bit labels of a TV
labeling map for the 64-QAM constellation are expressed in
a decimal format. [
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Fig. 3. Labeling map for 64-QAM constellation.

Example 3: Consider a noncoherent g-ary continuous-
phase frequency-shift keying (CPFSK) system with modu-
lation index h > 0 that does not exploit the memory due
to the continuous phase of the signal. Then the signal-set
constellation consists of g symbols representing the signals
si(t) =2t/ T\ /T 0<t<T,1=1,2,...,q, where T
is the signal duration. The square of the Euclidean distance
between symbols ¢ and j is

T
Pi—j) = / lsi(t) — s;(0) e

where &; is the signal energy, and the Euclidean distance is a



function of |i — j| because sinx/x is an even function of x.

If 0 < h <1, an adjacent symbol corresponds to the signal
closest in frequency to the signal associated with a speci-
fied symbol, which is true because the minimum Euclidean
distance of the constellation is d(1) < d(k) for any integer
k > 2. The latter follows from the fact that sin hw/hm >
sin khr/khm, 0 < h < 1, for k > 2, which may be proved by
showing that ksin hmr —sinkhm > 0,0 < h < 1, for k > 2.
The proof is by mathematical induction. Assume that 0 < h
< 1. Since sin 2hm = 2sin hr cos hr, the inequality is true
for k = 2. Assume that & sin hm—sin khm > 0 is true for some
k > 2. Using this inequality, we obtain (k+1) sin hw —sin(k+
Dhr = (k4 1)sin hr — sin khw cos hw — sin b cos khr >
sin hm(k + 1 — k cos hw — cos khm) > 0, which completes the
proof. Since d(1) is the minimum Euclidean distance of the
constellation, each constellation symbol has either one or two
adjacent symbols.

The TV labeling map for m = 3 in example 1 is applicable
to noncoherent CPFSK with ¢ = 8. Symbol ¢ has adjacent
symbols ¢ — 1 and 7+ 1, 1 < 4 < 6, symbol 0 has adjacent
symbol 1, and symbol 7 has adjacent symbol 6. Symbols 0 and
7 are not adjacent. Since symbol 6 is the only symbol adjacent
to symbol 7, the labeling map indicates that d,(7) = 3. O

If all the bits in a symbol are known except one, then the
dominant influence on the bit error probability is the minimum
Euclidean distance between the two constellation symbols that
differ in that one bit [1], [2]. Thus, the asymptotic error floor
of the bit error probability is determined by the minimum
Euclidean distance D. between constellation symbols that
differ in a single bit of their labels. The asymptotic error
floor with its extremely low bit error probability is unlikely
to be reached by most practical communication systems. The
error floor that is reached when at least two decoded bits are
essentially known is a more realistic goal. The latter error floor
is minimized by the TV labeling map.

Consider a TV labeling map and constellation symbols s;
and s, that differ in a single bit and that do not differ in m —1
identical bits. Let 8 denote the number of branches in a path
from s; to s, that passes through successive adjacent symbols.
For example, starting from the symbol labeled 0 in Fig. 2, the

symbol labeled 1, which differs in a single bit of its label,
can be reached by passing through the 3 successive adjacent
symbols labeled 13, 6, and 1.

Proposition 2: If m is an even number and the TV labeling
map has adjacent symbols that differ in exactly m — 1 bits,
then 8 > m — 1. Furthermore, a square QAM constellation

has
2 1/2
D, > dg, <m—m+1)

. @)

where d.; is the Euclidean distance between adjacent symbols.

Proof: Each of the identical bits must change an even
number of times as the path between symbols s; and s, that
differ in a single bit is traversed. If 5 is an odd number, each
of the m — 1 identical bits must be unchanged in traversing at
least one branch of the path. Since adjacent symbols separated
by a branch have at most one bit that is unchanged, 5 > m—1.
Suppose that m is an even number and the TV labeling map
has adjacent symbols that differ in exactly m —1 bits. The total
number of bit changes in a path from s; to so must be an odd
number and also must equal (m — 1) 5. Therefore, 5 must be
an odd number, and hence 5 > m — 1. For a square QAM
constellation with m even, the minimum Euclidean distance
for a path with 5 = m—1 occurs when there are m/2 branches
in one direction and m/2 — 1 branches in the orthogonal
direction. Since 8 > m — 1, the Pythagorean theorem implies
4). ]

A TV labeling map may have relatively low values of (3
and D.. However, if m is an even number, the constrained
labeling algorithm prevents the occurrence of this undesirable
feature by constraining each adjacent-channel table L(i) to
have labels only at Hamming distance m — 1 from the symbol
i.

Example 4: Consider the 16-QAM constellation. For the
TV labeling map in Fig. 2, D, = v/5d.1, which is the lower
bound of (4). The SGHB map proposed by Schreckenbach,
Gortz, Hagenauer, and Bauch [4] and the HR map proposed by
Huang and Ritcey [5] have D, = 2d., and the Gray map has
D, = d.;. Therefore, the TV labeling map provides a lower
asymptotic error floor for 16-QAM than these other maps. [J
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Fig. 4. Labeling for 256-QAM constellation.




Example 5: The TV labeling map of Fig. 3 for the 64-QAM
constellation has D, = v/13d,;. One of the TV labeling maps
for the 256-QAM constellation with D, = 5d.; is displayed
in Fig. 4. The bit labels are expressed in a decimal format and
the constellation points are not shown for simplicity.

III. SIMULATION EXAMPLES

The TV labeling maps are designed to increase the effective
Euclidean distance once at least two bits are essentially known.
Therefore, they are expected to be increasingly advantageous
as the number of bits per symbol increases. The subsequent
simulation results confirm this characteristic. The TV labeling
map maximizes the number of bits that differ between adjacent
symbols. Thus, the error floor will be low, but the onset of
the waterfall region will be adversely shifted relative to other
labeling maps.

To illustrate the effects of the TV labeling maps, simulations
were conducted to generate plots of the bit error rate (BER)
of several systems as a function of &, /Ny, where &, is the bit
energy. In Figures 5, 6, and 7, coherent QAM demodulation
and a rate-1/2 convolutional code with constraint length K = 3
and octal generators (5,7) are used. Frames comprise 200
consecutive code bits, and the transmitted QAM symbols
experience independent and identically distributed Rayleigh
fading.

Figure 5 shows the results for 16-QAM and both BICM and
BICM-ID systems. The BICM-ID plots are for 10 iterations of
the demodulator and decoder. The four labeling maps in the
figures are the TV map of Fig. 2, the SGHB map, the HR map,
and the Gray map. All but the Gray labeling map are designed
to produce a low error floor in a BICM-ID system. Although
the Gray map exhibits an advantage for BICM, it is distinctly
inferior to the other labeling maps for BICM-ID and bit error
rates below 1073. The HR and SGHB maps have almost the
same bit error rates. The bit error rates of the TV map initially
drop more slowly as &, /Ny increases but then become almost
the same near the error-floor region as the bit error rates of
the HR and SGHB maps. Since it is not feasible to simulate
bit error rates below 1073, it is not possible to distinguish
the error floors produced by the TV, HR, and SGHB labeling
maps.

Figure 6 shows the results for 64-QAM, BICM, and BICM-
ID with 12 iterations of the demodulator and decoder. The
labeling maps are the TV map of Fig. 3, the HR map, and
the Gray map. Again the Gray map exhibits an advantage for
BICM, but is inferior to the TV and HR maps for BICM-ID
and low bit error rates. The TV labeling map provides a lower
error floor and a better performance than the HR labeling map
when the bit error rate is below 10~7. The cost is a significant
degradation in the waterfall region relative to the performance
of the HR map.

The heuristic searches required by the HR and SGHB
maps are very complex and inefficient to implement for 128-
QAM and larger constellations, whereas the TV map is easily
generated for large constellations and ensures a low error floor.

Figure 7 shows the results for 256-QAM, BICM, and BICM-
ID with 14 iterations of the demodulator and decoder. The
labeling maps are the TV map of Fig. 4 and the Gray map.
The onset of the waterfall region for the TV map is greatly
delayed relative to the Gray map, but then the plot for the TV
map shows a steep descent. For BICM-ID, the plot for the TV
map crosses the plot for the Gray map at a bit error rate of
0.6 x 10~ and is still falling rapidly to a very low error floor.
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Fig. 5. Bit error rates for various 16-QAM systems.
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Fig. 6. Bit error rates for various 64-QAM systems.

Figures 8 and 9 show the bit error rates for noncoherent
CPFSK with ¢ = 8, h = 0.32, 2048 message bits, and
code symbols that experience independent and identically
distributed Rayleigh fading. In Fig. 8, a rate-1/2 convolutional
code with constraint length K = 7 and octal generators
(133,171) is used with BICM and BICM-ID, and the Gray
map, the natural map, and the TV labeling map of example 1.
For BICM-ID, there are 8 demodulator and decoder iterations.
The figure illustrates the dramatic improvement in the waterfall
region and the lowering of the error floor when the TV labeling



map is used with BICM-ID instead of BICM. For bit error
rates below 1073, the TV labeling map has an expanding
advantage that is nearly 2 dB relative to the natural labeling
map when the bit error rate is 107°.
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Fig. 8. Bit error rates for convolutionally coded CPFSK
with q=8 and constraint length K=7.

Figure 9 shows the bit error rates when rate-1/2 convolu-
tional codes with constraint lengths K =7 and K =4 and a
rate-8/15 UMTS turbo code with K = 4 are used with BICM-
ID. For the convolutional codes, there are 8 demodulator and
decoder iterations. For the turbo code, there are 16 global
demodulator and decoder iterations with one decoder iteration
per global iteration. The TV labeling map enables the K = 4
convolutional code, which has octal generators (13, 15), to
track the performance of the turbo code for bit error rates
above 103 despite the fact that the convolutional code is
much simpler and less expensive to implement.
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Fig. 9. Bit error rates for CPFSK with g=8, BICM-ID, and
turbo and convolutional codes.

IV. CONCLUSIONS

The class of TV labeling maps for signal-set constellations
and BICM-ID has been derived and applied to a variety of
specific communication systems that operate in the presence
of ergodic Rayleigh fading. Simulation results indicate that
the TV labeling maps are at least as good as other proposed
labeling maps in providing a low error floor. The cost is an
adverse shift in the onset of the waterfall region of the bit
error rate. A major advantage of the TV labeling maps is that
they are easily generated.
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