A Genetic Algorithm for Designing Constellations with Low Error Floors

Matthew C. Valenti¹, Raghu C. Doppalapudi¹, and Don Torrieri²

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

²US Army Research Lab

March 21, 2008

Outline

Introduction

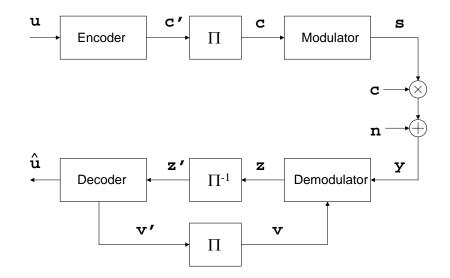
2 System Model

- 3 Low Error Floors Criteria
- 4 Label Mapping Optimization
- 5 Genetic Algorithm for Mapping Optimization
- **6** Technique for Constellation Optimization

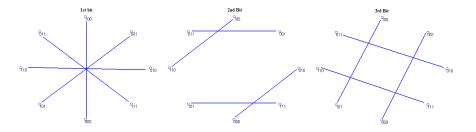
7 Results

• BICM is a standard approach for coding in modern wireless systems

- Performance of BICM system could be improved by using iterative decoding and demodulation
- Plots of BER for BICM-ID system exhibit waterfall region and error-floor region
- Performance of BER is determined by labeling map and choice of constellation
- Actual error floor can be approximated using EFF bound


- BICM is a standard approach for coding in modern wireless systems
- Performance of BICM system could be improved by using iterative decoding and demodulation
- Plots of BER for BICM-ID system exhibit waterfall region and error-floor region
- Performance of BER is determined by labeling map and choice of constellation
- Actual error floor can be approximated using EFF bound

- BICM is a standard approach for coding in modern wireless systems
- Performance of BICM system could be improved by using iterative decoding and demodulation
- Plots of BER for BICM-ID system exhibit waterfall region and error-floor region
- Performance of BER is determined by labeling map and choice of constellation
- Actual error floor can be approximated using EFF bound


- BICM is a standard approach for coding in modern wireless systems
- Performance of BICM system could be improved by using iterative decoding and demodulation
- Plots of BER for BICM-ID system exhibit waterfall region and error-floor region
- Performance of BER is determined by labeling map and choice of constellation
- Actual error floor can be approximated using EFF bound

- BICM is a standard approach for coding in modern wireless systems
- Performance of BICM system could be improved by using iterative decoding and demodulation
- Plots of BER for BICM-ID system exhibit waterfall region and error-floor region
- Performance of BER is determined by labeling map and choice of constellation
- Actual error floor can be approximated using EFF bound

BICM-ID System Model

EFF(Error Free Feedback)Pairs

• x and $g_k(x)$ form an EFF pair

EFF BOUND

Bit error probability for BICM-ID system is defined as follows

$$\log_{10} P_b \approx \frac{-d_f}{10} \left[\left(R d_h^2 \right)_{dB} + \left(\frac{\mathcal{E}_b}{N_0} \right)_{dB} \right] + \kappa_{dB}.$$

• Harmonic mean d_h^2

$$d_h^2 = \left[\frac{1}{m2^{m-1}} \sum_{k=0}^{m-1} \sum_{x' \in \mathcal{X}_k^{(1)}} ||x' - g_k(x')||^{-2}\right]^{-1}$$
(2)

- Choice of signal set \mathcal{X} and symbol labelling map μ influence
- Harmonic mean should be maximized to minimize EFF bound

EFF BOUND

Bit error probability for BICM-ID system is defined as follows

$$\log_{10} P_b \approx \frac{-d_f}{10} \left[\left(R d_h^2 \right)_{dB} + \left(\frac{\mathcal{E}_b}{N_0} \right)_{dB} \right] + \kappa_{dB}.$$

• Harmonic mean d_h^2

$$d_h^2 = \left[\frac{1}{m2^{m-1}} \sum_{k=0}^{m-1} \sum_{x' \in \mathcal{X}_k^{(1)}} ||x' - g_k(x')||^{-2}\right]^{-1}$$
(2)

- Choice of signal set \mathcal{X} and symbol labelling map μ influence
- Harmonic mean should be maximized to minimize EFF bound

EFF BOUND

Bit error probability for BICM-ID system is defined as follows

$$\log_{10} P_b \approx \frac{-d_f}{10} \left[\left(R d_h^2 \right)_{dB} + \left(\frac{\mathcal{E}_b}{N_0} \right)_{dB} \right] + \kappa_{dB}.$$

• Harmonic mean d_h^2

$$d_h^2 = \left[\frac{1}{m2^{m-1}} \sum_{k=0}^{m-1} \sum_{x' \in \mathcal{X}_k^{(1)}} ||x' - g_k(x')||^{-2}\right]^{-1}$$
(2)

- Choice of signal set \mathcal{X} and symbol labelling map μ influence harmonic mean
- Harmonic mean should be maximized to minimize EFF bound

EFF BOUND

Bit error probability for BICM-ID system is defined as follows

$$\log_{10} P_b \approx \frac{-d_f}{10} \left[\left(R d_h^2 \right)_{dB} + \left(\frac{\mathcal{E}_b}{N_0} \right)_{dB} \right] + \kappa_{dB}.$$

• Harmonic mean d_h^2

$$d_h^2 = \left[\frac{1}{m2^{m-1}} \sum_{k=0}^{m-1} \sum_{x' \in \mathcal{X}_k^{(1)}} ||x' - g_k(x')||^{-2}\right]^{-1}$$
(2)

- Choice of signal set \mathcal{X} and symbol labelling map μ influence harmonic mean
- Harmonic mean should be maximized to minimize EFF bound

Label Mapping Optimization

• Harmonic mean could be maximized by minimizing following cost function which can be formulated as an instance of QAP(Quadratic Assignment Problem)[Huang and Ritcey:2005]

$$\min_{\mu} \sum_{k=0}^{m-1} \sum_{x \in \mathcal{X}_{k}^{(1)}} ||x - g_{k}(x)||^{-2} \Leftrightarrow \min_{\mu} \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} f_{i,j} d_{\mu(i),\mu(j)}$$
(3)

• Flow and distance matrix are defined as follows

$$f_{i,j} = \begin{cases} 1, & \mathcal{X}(i), \mathcal{X}(j) \text{ form an EFF pair} \\ 0, & ext{otherwise} \end{cases}$$

$$d_{i,j} = \begin{cases} ||x_i - x_j||^{-2}, & i \neq j \\ 0, & i = j \end{cases}$$

Label Mapping Optimization

• Harmonic mean could be maximized by minimizing following cost function which can be formulated as an instance of QAP(Quadratic Assignment Problem)[Huang and Ritcey:2005]

$$\min_{\mu} \sum_{k=0}^{m-1} \sum_{x \in \mathcal{X}_{k}^{(1)}} ||x - g_{k}(x)||^{-2} \Leftrightarrow \min_{\mu} \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} f_{i,j} d_{\mu(i),\mu(j)}$$
(3)

• Flow and distance matrix are defined as follows

$$f_{i,j} = \begin{cases} 1, & \mathcal{X}(i), \mathcal{X}(j) \text{ form an EFF pair} \\ 0, & ext{otherwise} \end{cases}$$

$$d_{i,j} = \begin{cases} ||x_i - x_j||^{-2}, & i \neq j \\ 0, & i = j \end{cases}$$

Label Mapping Optimization

• Harmonic mean could be maximized by minimizing following cost function which can be formulated as an instance of QAP(Quadratic Assignment Problem)[Huang and Ritcey:2005]

$$\min_{\mu} \sum_{k=0}^{m-1} \sum_{x \in \mathcal{X}_{k}^{(1)}} ||x - g_{k}(x)||^{-2} \Leftrightarrow \min_{\mu} \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} f_{i,j} d_{\mu(i),\mu(j)}$$
(3)

Flow and distance matrix are defined as follows

$$f_{i,j} = \begin{cases} 1, & \mathcal{X}(i), \mathcal{X}(j) \text{ form an EFF pair} \\ 0, & \text{otherwise} \end{cases}$$
 (4)

$$d_{i,j} = \begin{cases} ||x_i - x_j||^{-2}, & i \neq j \\ 0, & i = j \end{cases}$$
(5)

• QAP is an NP Hard Problem

• $16! = 2.09227899 * 10^{13}$

• Different techniques evolved to solve it

- Reactive Tabu Search [R.Battiti,G.Tecchiolli:1994]
- Branch and bound technique [Br1998, Mar1999]
- Simulated Annealing [Nis:1995]
- Genetic Algorithm [Y.Wu,P.Ji:2007]
- Genetic algorithm promised to be the best way over other algorithms as the dimension of problem increased

• QAP is an NP Hard Problem

• $16! = 2.09227899 * 10^{13}$

• Different techniques evolved to solve it

- Reactive Tabu Search [R.Battiti,G.Tecchiolli:1994]
- Branch and bound technique [Br1998, Mar1999]
- Simulated Annealing [Nis:1995]
- Genetic Algorithm [Y.Wu,P.Ji:2007]
- Genetic algorithm promised to be the best way over other algorithms as the dimension of problem increased

- QAP is an NP Hard Problem
 - $16! = 2.09227899 * 10^{13}$
- Different techniques evolved to solve it
 - Reactive Tabu Search [R.Battiti,G.Tecchiolli:1994]
 - Branch and bound technique [Br1998, Mar1999]
 - Simulated Annealing [Nis:1995]
 - Genetic Algorithm [Y.Wu,P.Ji:2007]

• Genetic algorithm promised to be the best way over other algorithms as the dimension of problem increased

- QAP is an NP Hard Problem
 - $16! = 2.09227899 * 10^{13}$
- Different techniques evolved to solve it
 - Reactive Tabu Search [R.Battiti,G.Tecchiolli:1994]
 - Branch and bound technique [Br1998, Mar1999]
 - Simulated Annealing [Nis:1995]
 - Genetic Algorithm [Y.Wu,P.Ji:2007]
- Genetic algorithm promised to be the best way over other algorithms as the dimension of problem increased

Pseudo Code for GA

Begin

Choose N random mappings Sort the mappings from Best to Worst Pick first parent from anything other than Best Pick second parent that is better than first

Apply breeding to selected parents Start mutation process if children worse than parent If not culling generation

Replace worst parent with child if better else

Replace worst among the population with best child Repeat the above process for certain number of generations End

• Two Parents are chosen

|--|

Exchange cross over points from parents

X 7 X X X 3 X X X X 1 X X 5 X	Х	
-------------------------------	---	--

• Copy down the elements from direct parents

Х	7 6	Χ	2		4			6	1	Χ	2	Χ			4
---	-----	---	---	--	---	--	--	---	---	---	---	---	--	--	---

1	7	6	5	2	3	4		6	1	3	2	7	5	2

• Two Parents are chosen

7 1 6 3 2 5 4 0 6 7 1 2 5 3 0	4
-------------------------------	---

Exchange cross over points from parents

X 7 X	Х	Х	3	Х	Х
-------	---	---	---	---	---

X 1 X	X	X	5	X	X
-------	---	---	---	---	---

• Copy down the elements from direct parents

6	5	2	3	4		6	1	3	2	7	5	4

• Two Parents are chosen

7 1 6 3 2 5 4 0 6 7 1 2 5 3 0

Exchange cross over points from parents

Copy down the elements from direct parents

X 7 6 X 2 3 4 0	6 1	X 2 X	5 0	4
-----------------	-----	-------	-----	---

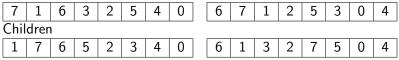
Val		

• Two Parents are chosen

7 1 6 3 2 5 4 0	6 7	1 2	5	3	0	4
-----------------	-----	-----	---	---	---	---

Exchange cross over points from parents

X 7 X X X 3 X X X X X X X X 5 X X


Copy down the elements from direct parents

X	7	6	Х	2	3	4	0		6	1	Х	2	Х	5	0	4	
---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	--

1 7 6 5 2 3 4 0	6 1 3 2 7 5 0 4
-----------------	-----------------

Before Selection

Parents

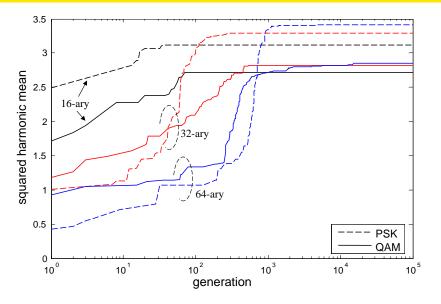
• After Selection

New Parents

7	1	6	3	2	5	4	0
---	---	---	---	---	---	---	---

1	7	6	

5	2	3	4	0
---	---	---	---	---


Mutation Process

- Do mutation by swapping two positions

Results

Mapping Optimization Results

Valenti et al.

Comparing RTS and GA

M	Modulation	d_h^2 from RTS	d_h^2 from GA	generations
16	QAM	2.7190	2.7190	103
	PSK	3.1142	3.1142	1,249
32	QAM	2.8154	2.8154	542
	PSK	3.2916	3.2916	530
64	QAM	2.8742	2.8460	15,421
	PSK	3.4102	3.4102	8,987

Except for the 64 QAM all others matched RTS results

Convergence speed of GA is similar to RTS

Comparing RTS and GA

M	Modulation	d_h^2 from RTS	d_h^2 from GA	generations
16	QAM	2.7190	2.7190	103
	PSK	3.1142	3.1142	1,249
32	QAM	2.8154	2.8154	542
	PSK	3.2916	3.2916	530
64	QAM	2.8742	2.8460	15,421
	PSK	3.4102	3.4102	8,987

Except for the 64 QAM all others matched RTS results

Onvergence speed of GA is similar to RTS

Constellation Optimization

- Mapping optimization is not the only way to get low error floors
- For a particular mapping following function is to be optimized

$$\min_{\mathcal{X},\mu} \sum_{k=0}^{m-1} \sum_{x' \in \mathcal{X}_k^{(1)}} ||x' - g_k(x')||^{-2}.$$
 (6)

- Constellation optimization search space is infinite and is very challenging
- A heuristic method was developed to generate a constellation that has low error rate.

Constellation Optimization

- Mapping optimization is not the only way to get low error floors
- For a particular mapping following function is to be optimized

$$\min_{\mathcal{X},\boldsymbol{\mu}} \sum_{k=0}^{m-1} \sum_{x' \in \mathcal{X}_k^{(1)}} ||x' - g_k(x')||^{-2}.$$
 (6)

- Constellation optimization search space is infinite and is very challenging
- A heuristic method was developed to generate a constellation that has low error rate.

Constellation Optimization

- Mapping optimization is not the only way to get low error floors
- For a particular mapping following function is to be optimized

$$\min_{\mathcal{X},\boldsymbol{\mu}} \sum_{k=0}^{m-1} \sum_{x' \in \mathcal{X}_k^{(1)}} ||x' - g_k(x')||^{-2}.$$
 (6)

- Constellation optimization search space is infinite and is very challenging
- A heuristic method was developed to generate a constellation that has low error rate.

Constellation Optimization

- Mapping optimization is not the only way to get low error floors
- For a particular mapping following function is to be optimized

$$\min_{\mathcal{X},\boldsymbol{\mu}} \sum_{k=0}^{m-1} \sum_{x' \in \mathcal{X}_k^{(1)}} ||x' - g_k(x')||^{-2}.$$
 (6)

- Constellation optimization search space is infinite and is very challenging
- A heuristic method was developed to generate a constellation that has low error rate.

Technique for constellation optimization

① Choose PSK constellation as it has best d_h^2

- ② Optimize mapping for constellation in an attempt to increase d_h^2
- ③ Pick an EFF pair that has minimum d_e , defined by

$$d_e = \min_{\substack{x' \in \mathcal{X}_k^{(1)} \\ 0 \le k \le m-1}} ||x' - g_k(x')||.$$
(7)

- () These two points are then forced to be at distance αd_e , where $\alpha \geq 1$, arbitrarily chosen as 1.01
- Senormalize the constellation
- O Above process is repeated iteratively from step 2

- Choose PSK constellation as it has best d_h^2
- **2** Optimize mapping for constellation in an attempt to increase d_h^2
- Ick an EFF pair that has minimum d_e , defined by

$$d_e = \min_{\substack{x' \in \mathcal{X}_k^{(1)} \\ 0 \le k \le m-1}} ||x' - g_k(x')||.$$
(7)

- These two points are then forced to be at distance αd_e , where $\alpha \ge 1$, arbitrarily chosen as 1.01
- Senormalize the constellation
- O Above process is repeated iteratively from step 2

- **2** Optimize mapping for constellation in an attempt to increase d_h^2
- **③** Pick an EFF pair that has minimum d_e , defined by

$$d_e = \min_{\substack{x' \in \mathcal{X}_k^{(1)} \\ 0 \le k \le m-1}} ||x' - g_k(x')||.$$
(7)

- () These two points are then forced to be at distance αd_e , where $\alpha \geq 1$, arbitrarily chosen as 1.01
- Senormalize the constellation
- O Above process is repeated iteratively from step 2

- **①** Choose PSK constellation as it has best d_h^2
- **2** Optimize mapping for constellation in an attempt to increase d_h^2
- **③** Pick an EFF pair that has minimum d_e , defined by

$$d_e = \min_{\substack{x' \in \mathcal{X}_k^{(1)} \\ 0 \le k \le m-1}} ||x' - g_k(x')||.$$
(7)

- These two points are then forced to be at distance αd_e , where $\alpha \ge 1$, arbitrarily chosen as 1.01
- Senormalize the constellation
- O Above process is repeated iteratively from step 2

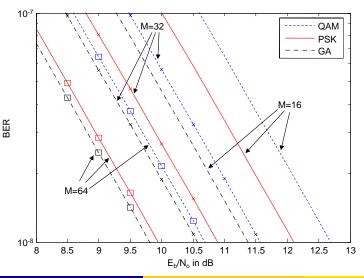
- Choose PSK constellation as it has best d_h^2
- **2** Optimize mapping for constellation in an attempt to increase d_h^2
- **③** Pick an EFF pair that has minimum d_e , defined by

$$d_e = \min_{\substack{x' \in \mathcal{X}_k^{(1)} \\ 0 \le k \le m-1}} ||x' - g_k(x')||.$$
(7)

- These two points are then forced to be at distance αd_e , where $\alpha \ge 1$, arbitrarily chosen as 1.01
- Senormalize the constellation
- Above process is repeated iteratively from step 2

- **②** Optimize mapping for constellation in an attempt to increase d_h^2
- **③** Pick an EFF pair that has minimum d_e , defined by

$$d_e = \min_{\substack{x' \in \mathcal{X}_k^{(1)} \\ 0 \le k \le m-1}} ||x' - g_k(x')||.$$
(7)

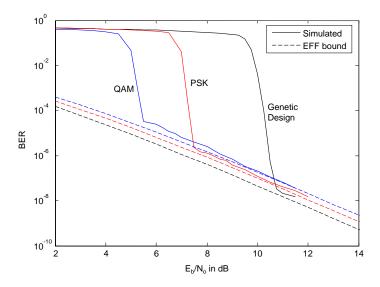

- These two points are then forced to be at distance αd_e , where $\alpha \ge 1$, arbitrarily chosen as 1.01
- S Renormalize the constellation
- Solution Above process is repeated iteratively from step 2

Optimized 16-ary constellation

M	Modulation	d_h^2	
16	QAM	2.718954	8
	PSK	3.114162	
	GA	3.684133	
32	QAM	2.815367	5715
	PSK	3.291638	
	GA	3.547659	
64	QAM	2.874222	7
	PSK	3.410212	12
	GA	3.517697	1

Results EFF Bound Plot

Improved EFF Bound on BER using (7,5) Convolutional Code



Valenti et al.

Results BE

BER Plot

Simulated BER using 16-ary modulation

Conclusion

• Genetic Algorithm can be used to optimize mapping

- New constellation can be evolved for BICM-ID with low error floors by optimizing the placement of constellation points
- Low error floors for new constellation comes at cost of shifting water-fall region to high SNR

Conclusion

- Genetic Algorithm can be used to optimize mapping
- New constellation can be evolved for BICM-ID with low error floors by optimizing the placement of constellation points
- Low error floors for new constellation comes at cost of shifting water-fall region to high SNR

- Genetic Algorithm can be used to optimize mapping
- New constellation can be evolved for BICM-ID with low error floors by optimizing the placement of constellation points
- Low error floors for new constellation comes at cost of shifting water-fall region to high SNR

Thank You