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A Review of Mutual Information Introduction

Motivation

@ Shannon Channel Capacity

o Gives reliable rate for communication at specific SNR.

e Requires infinite-length codewords.

e In practice, codes are restricted to finite lengths.

@ Predicting Performance of Finite-Length Codes

o Several bounds based on blocklength exist, but are non-trivial to
calculate.

e Want information-theoretic metric which is a function of blocklength.

o Information-outage probability used previously with block fading
channels.

o Apply information-outage probability based on the mutual information
rate.

o Compare with coded performance and alternative bounds.
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A Review of Mutual Information Mutual Information

Mutual Information

@ Let X be input complex Gaussian process to an AWGN channel
Y = X+N

where IV is complex AWGN process, and Y is channel output.

o If x and y are samples of the processes X and Y, we can write the
mutual information between the random variables, z and y as

o fxy(z,y)
fx (@) fy(y)

@ The average mutual information is the expectation of the mutual
information random variable

i(z;y) = lo

I(X;Y) = Efi(X;Y)]
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A Review of Mutual Information Mutual Information

Mutual Information of AWGN Channel

@ Mutual information can also be expressed as

(w) = lo fyx (ylz)
iwy) = log fy (y)

@ Both of these distributions are known.
@ Substituting pdf for Y| X and Y

' € yI? -
i(r;y) = log <1+NS> +g ‘-JNO _ N,
o S
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Relationship between Capacity and M

@ We can find the average mutual information by taking the
expectation of the mutual information random variable

I(X;Y) = Ei(X;Y)]

N\ EllP| Elly—af
B 1°g<1+1%>+63[+z\f1_ [No |

Es
= log <1 + N0>

@ This is also known as the ergodic capacity of the channel.

e Assumption that codeword length goes to infinity.
e What if this is not the case?
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A Review of Mutual Information Mutual Information Rate

Mutual Information Rate

@ Let x be a vector of n samples of the input process X

@ Mutual information between input sample vector x and output sample
vector y is

o B og xy(x,y)
iay) = le ARG

Z Tk Yk)
"=

@ Also known as mutual information rate.
@ Expressions equivalent due to i.i.d. channel inputs and white noise.

@ We know mutual information for single input sample; now need to
find average of n samples.
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A Review of Mutual Information Mutual Information Rate

Distribution of Mutual Information

o Let Z, be the mutual information rate between the channel input and
output vectors, x and y

Es
Z, = 1 1+ — n
0g<+NO>+W

where W, is the average of n i.i.d. Laplacian random variables
[Laneman, 2006], each with zero mean and variance

b2 - 2%
W 55+N0

o W, is a Bessel-K random variable with pdf given by:

1-n w "3 w
fnw) = —— (ﬁ' ‘) Koy (m)

Val(n)ow \ ow ow
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Gaussian Approximation

@ The Central Limit Theorem tells us that the sum of n i.i.d. random
variables with finite mean and variance will approach a Gaussian
distribution as n — oo

@ Exact Bessel-K distribution will approach a Gaussian distribution as
blocklength increases.

@ We introduce a Gaussian approximation to the mutual information
rate.

~ Es 2&,
7, o~ log (14 55), =
N<Og< +N0> n(55+N0)>
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Apre- e e Me) imEies
Distribution Comparison

15 . T . . . v .
— Exact
***** Approx

f,(@
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Eres: (BF
Defining Information-Outage Probability

o Let Ry = k/n represent the code rate in bits per symbol.
o R. =log(2)Ry is the equivalent rate in nats per symbol.

o Blocklength, n, is finite, so mutual information rate is random.

@ An outage occurs when the mutual information rate is less than the
code rate.

@ Therefore the outage probability is defined as
PD = P [Zn S Re] = FZn (Re)

Es
= Pl 1+ — n < R
[0g<+NO>+W_R]

Es
= Fw, (Re — log <1 + N0>>

@ We need the CDF of the random variable W,, to calculate the
information-outage probability.
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RIS el
Exact and Approximate CDFs

@ Recall that W,, is a Bessel-K random variable, which has CDF

T+ D(n—1,vV2w/o) .,
Fy, (w 2
prs F(n)I'(n -1+ 1)
for w > 0 and
— I'(n + l F(n —1l,—2w/o) .,
Fy, ( 2
3 — JT(n—0DT(+1)
for w < 0.

@ Alternatively, the CDF of the Gaussian approximation can be found
by using the Q-function

log<1+]%>—z

7 (2) = Q =
n(€S+N0)
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Information-Outage Probability CDF Comparison

|OP Comparison

10° ; ; ;
Exact (Laplace)
***** Approx (Gaussian)
10} R,=2/3 1
10%} 1
o
o
10°} E
10} .
10°L s i
-2 0 2 4 6 8 10 12 14 16

E,/N, in dB

Buckingham and Valenti |OP of Finite-Length Codes March 19, 2008 13 /21



Copmeia-Appiezdiiing Codes
Turbo Code Performance

@ Information-outage probability as a predictor of performance.
o How does IOP compare to an existing capacity-approaching code?
e UMTS LTE (long term evolution) turbo code

e Supports 188 distinct values of information block size, k, in bits.
o Codeword blocklength defined as n = 3k + 12.
o Simulated with QPSK, binary rate given by

k 2%
= 2— =
Re=20 =37 1s

~2/3
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Bounding the Achievable Error Probability

IOP vs. LTE

Capacity-Approaching Codes
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[SITINTC AT AN IVEL M ST IO LEGITAA A Discussion of Alternative Bounds

Alternative Bounds

@ Feinstein's Lemma, [Feinstein, 1954].
e Bound on maximal codeword error rate, based on mutual information

rate.
e States that a code exists that can achieve a specific codeword error
probability.

o Codes may exist that perform better than bound.
@ Sphere-Packing Bound, [Shannon, 1959].
e Lower bound on codeword-error probability based on n-dimensional
Euclidian space.
o Sphere in n-dimensional space is packed with M = 2* cones.
e Random Coding Bound, [Shannon, 1959].
e Bound on the ensemble average word-error probability.

o Averaged over all possible (n, k) codes from randomly selected set of
2% codewords.
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Bounding the Achievable E

IOP vs. Feinstein

Probability

A Discussion of Alternative Bounds
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Bounding the Achievable Error Probability

|OP vs. Sphere-Packing

A Discussion of Alternative Bounds
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Bounding the Achievable Error Probability Bound Comparison

Bound Comparison
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Conclusion

@ Distribution of Mutual Information Rate

o Exact: Mean-shifted Bessel-K distribution.
e Approximation: Gaussian distribution.
o As blocklength increases,

o Exact distribution becomes increasingly difficult to calculate as
numerical stability becomes a factor.
@ However, exact distribution approaches Gaussian approximation.
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Conclusion

@ Distribution of Mutual Information Rate

o Exact: Mean-shifted Bessel-K distribution.
e Approximation: Gaussian distribution.
o As blocklength increases,

o Exact distribution becomes increasingly difficult to calculate as
numerical stability becomes a factor.
@ However, exact distribution approaches Gaussian approximation.
@ Information-Outage Probability
o Useful predictor of error performance.
o Calculation using Gaussian approximation is trivial compared to other
previously derived bounds.
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Conclusion

Thank You.
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