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A Review of Mutual Information Introduction

Motivation

Shannon Channel Capacity

Gives reliable rate for communication at specific SNR.
Requires infinite-length codewords.
In practice, codes are restricted to finite lengths.

Predicting Performance of Finite-Length Codes

Several bounds based on blocklength exist, but are non-trivial to
calculate.
Want information-theoretic metric which is a function of blocklength.
Information-outage probability used previously with block fading
channels.
Apply information-outage probability based on the mutual information
rate.
Compare with coded performance and alternative bounds.
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A Review of Mutual Information Mutual Information

Mutual Information

Let X be input complex Gaussian process to an AWGN channel

Y = X +N

where N is complex AWGN process, and Y is channel output.

If x and y are samples of the processes X and Y , we can write the
mutual information between the random variables, x and y as

i(x; y) = log
fX,Y (x, y)
fX(x)fY (y)

.

The average mutual information is the expectation of the mutual
information random variable

I(X;Y ) = E [i(X;Y )]
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A Review of Mutual Information Mutual Information

Mutual Information of AWGN Channel

Mutual information can also be expressed as

i(x; y) = log
fY |X(y|x)
fY (y)

Both of these distributions are known.

Substituting pdf for Y |X and Y

i(x; y) = log
(

1 +
Es
No

)
+

|y|2

Es +N0
− |y − x|

2

N0
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A Review of Mutual Information Ergodic Capacity

Relationship between Capacity and MI

We can find the average mutual information by taking the
expectation of the mutual information random variable

I(X;Y ) = E [i(X;Y )]

= log
(

1 +
Es
N0

)
+
E
[
|y|2
]

Es +N0
−
E
[
|y − x|2

]
N0

= log
(

1 +
Es
N0

)
This is also known as the ergodic capacity of the channel.

Assumption that codeword length goes to infinity.
What if this is not the case?
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A Review of Mutual Information Mutual Information Rate

Mutual Information Rate

Let x be a vector of n samples of the input process X

Mutual information between input sample vector x and output sample
vector y is

i(x; y) =
1
n

log
fX,Y(x,y)
fX(x)fY(y)

=
1
n

n∑
k=1

i (xk; yk)

Also known as mutual information rate.

Expressions equivalent due to i.i.d. channel inputs and white noise.

We know mutual information for single input sample; now need to
find average of n samples.
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A Review of Mutual Information Mutual Information Rate

Distribution of Mutual Information

Let Zn be the mutual information rate between the channel input and
output vectors, x and y

Zn = log
(

1 +
Es
N0

)
+Wn

where Wn is the average of n i.i.d. Laplacian random variables
[Laneman, 2006], each with zero mean and variance

σ2
W =

2Es
Es +N0

.

Wn is a Bessel-K random variable with pdf given by:

fWn(w) =
21−n

√
πΓ(n)σW

(√
2|w|
σW

)n− 1
2

Kn− 1
2

(√
2|w|
σW

)
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A Review of Mutual Information Approximating the Mutual Information

Gaussian Approximation

The Central Limit Theorem tells us that the sum of n i.i.d. random
variables with finite mean and variance will approach a Gaussian
distribution as n→∞
Exact Bessel-K distribution will approach a Gaussian distribution as
blocklength increases.

We introduce a Gaussian approximation to the mutual information
rate.

Z̃n ∼ N
(

log
(

1 +
Es
N0

)
,

2Es
n (Es +N0)

)
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A Review of Mutual Information Approximating the Mutual Information

Distribution Comparison
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Information-Outage Probability Exact IOP

Defining Information-Outage Probability

Let R2 = k/n represent the code rate in bits per symbol.
Re = log(2)R2 is the equivalent rate in nats per symbol.

Blocklength, n, is finite, so mutual information rate is random.

An outage occurs when the mutual information rate is less than the
code rate.

Therefore the outage probability is defined as

Po = P [Zn ≤ Re] = FZn (Re)

= P

[
log
(

1 +
Es
N0

)
+Wn ≤ Re

]
= FWn

(
Re − log

(
1 +
Es
N0

))
We need the CDF of the random variable Wn to calculate the
information-outage probability.
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Information-Outage Probability CDF Comparison

Exact and Approximate CDFs

Recall that Wn is a Bessel-K random variable, which has CDF

FWn(w) = 1−
n−1∑
l=0

Γ(n+ l)Γ(n− l,
√

2w/σ)
Γ(n)Γ(n− l)Γ(l + 1)

2−n−l

for w ≥ 0 and

FWn(w) =
n−1∑
l=0

Γ(n+ l)Γ(n− l,−
√

2w/σ)
Γ(n)Γ(n− l)Γ(l + 1)

2−n−l

for w < 0.

Alternatively, the CDF of the Gaussian approximation can be found
by using the Q-function

FZ̃n
(z) = Q

 log
(

1 + Es
N0

)
− z√

2Es
n(Es+N0)

 .
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Information-Outage Probability CDF Comparison

IOP Comparison
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Bounding the Achievable Error Probability Capacity-Approaching Codes

Turbo Code Performance

Information-outage probability as a predictor of performance.

How does IOP compare to an existing capacity-approaching code?

UMTS LTE (long term evolution) turbo code

Supports 188 distinct values of information block size, k, in bits.
Codeword blocklength defined as n = 3k + 12.
Simulated with QPSK, binary rate given by

R2 = 2
k

n
=

2k
3k + 12

≈ 2/3
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Bounding the Achievable Error Probability Capacity-Approaching Codes

IOP vs. LTE
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Bounding the Achievable Error Probability A Discussion of Alternative Bounds

Alternative Bounds

Feinstein’s Lemma, [Feinstein, 1954].
Bound on maximal codeword error rate, based on mutual information
rate.
States that a code exists that can achieve a specific codeword error
probability.
Codes may exist that perform better than bound.

Sphere-Packing Bound, [Shannon, 1959].
Lower bound on codeword-error probability based on n-dimensional
Euclidian space.
Sphere in n-dimensional space is packed with M = 2k cones.

Random Coding Bound, [Shannon, 1959].
Bound on the ensemble average word-error probability.
Averaged over all possible (n, k) codes from randomly selected set of
2k codewords.
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Bounding the Achievable Error Probability A Discussion of Alternative Bounds

IOP vs. Feinstein
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Bounding the Achievable Error Probability A Discussion of Alternative Bounds

IOP vs. Sphere-Packing Bound
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Bounding the Achievable Error Probability Bound Comparison

Bound Comparison
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Conclusion

Conclusion

Distribution of Mutual Information Rate

Exact: Mean-shifted Bessel-K distribution.
Approximation: Gaussian distribution.
As blocklength increases,

Exact distribution becomes increasingly difficult to calculate as
numerical stability becomes a factor.
However, exact distribution approaches Gaussian approximation.

Information-Outage Probability

Useful predictor of error performance.
Calculation using Gaussian approximation is trivial compared to other
previously derived bounds.
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Conclusion

Thank You.
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