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Abstract—Space-time block codes with orthogonal structures
typically provide full-diversity reception and simple receiver
processing. However, rate-1 orthogonal codes for complex con-
stellations have not been found for more than two transmit
antennas. By using a genetic algorithm, rate-1 space-time block
codes that accommodate very simple receiver processing at the
cost of reduced diversity are designed. Simulation results show
that when the spectral efficiency is specified and an efficient outer
code is used, the evolved codes provide better performance over
the Rayleigh fading channel than minimum-decoding-complexity
quasi-orthogonal space-time block codes at typical operating
signal-to-noise ratios. When the fading is more severe than
Rayleigh fading, evolved codes outperform orthogonal space-time
block codes.

I. INTRODUCTION

Space-time codes transmitted by multiple antennas improve
the performance of a communication system in a fading
environment without the need for multiple receive anten-
nas or channel-state information at the transmitter [1, 2].
An orthogonal space-time block code (STBC), such as the
Alamouti code, provides full diversity at full transmission
rate and maximum-likelihood decoding that entails only linear
processing. However, rate-1 orthogonal STBCs for complex
constellations exist only for two transmit antennas. Orthogonal
STBCs for more than two transmit antennas require a code rate
that is less than unity [2, 3], which implies a reduced spectral
efficiency.

When used with rotated constellations, quasi-orthogonal
(QO) [4–6] and coordinate-interleaved [7] STBC can provide
full diversity at full rate but require more complex decoding
than the decoupled decoding of each real-valued symbol that
is possible with orthogonal STBCs. In this paper, rate-1 linear
dispersion codes [8] that are nearly orthogonal STBCs are
generated by a genetic algorithm. Since the evolved codes are
nearly orthogonal, simple suboptimal decoupled decoding that
would be optimal for orthogonal codes causes only a minor
reduction of diversity gain and, hence, a performance loss
only at high signal-to-noise ratios. The minimum-decoding-
complexity quasi-orthogonal (MDC-QO) STBCs [5] offer full
diversity and a maximum-likelihood decoder that can decouple
complex symbols. Compared with these codes, the evolved
codes have a simplified implementation in both the decoder
(decoupling of real symbols) and the modulator (no constel-
lation rotation). As shown subsequently, when the spectral
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efficiency is specified, an efficient outer code is used, and the
fading is severe, the evolved codes provide better performance
than both rate-1 MDC-QO and orthogonal space-time block
codes.

II. STBC REQUIREMENTS

Let NT denote the number of transmit antennas, N denote
the number of distinct transmitted constellation symbols, and
L denote the length of a space-time codeword. The space-
time code rate is N/L, the number of information symbols
conveyed per signaling interval. A transmitted symbol that
belongs to a complex signal constellation is represented as

xn = xr
n + jxi

n, 1 ≤ n ≤ N (1)

where xr
n and xi

n are the real and imaginary components
of the symbol, respectively, and j =

√
−1. Assuming that

the original constellation may be transformed, the L × NT

generator matrix representing a transmitted codeword of a
linear dispersive STBC may be expanded as

G =
N∑

n=1

anAn + j

N∑
n=1

bnBn (2)

where each an and bn is a real or imaginary component of
a symbol and the dispersion matrices An and Bn have real-
valued elements. Each space-time encoder linearly combines
weighted real and imaginary components of N symbols and
produces a sequence of L complex numbers. Each real and
imaginary component of each of these complex numbers
becomes a separate in-phase and quadrature component, re-
spectively, of a modulated carrier.

Example 1: Consider the MDC-QO rate-1 STBC that maps
N = 4 information symbols into NT = 4 antenna outputs
over L = 4 signaling intervals [5]. The coefficients in (2) are
a1 = xr

1, a2 = xr
2, a3 = xi

1, a4 = xi
2, b1 = xr

3, b2 = xr
4,

b3 = xi
3, and b4 = xi

4. The generator matrix is

G =


xr

1 + jxr
3 xr

2 + jxr
4 −xi

1 + jxi
3 −xi

2 + jxi
4

−xr
2 + jxr

4 xr
1 − jxr

3 xi
2 + jxi

4 −xi
1 − jxi

3

−xi
1 + jxi

3 −xi
2 + jxi

4 xr
1 + jxr

3 xr
2 + jxr

4

xi
2 + jxi

4 −xi
1 − jxi

3 −xr
2 + jxr

4 xr
1 − jxr

3

 .



The dispersion matrices are

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B1 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



A2 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , B2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



A3 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 , B3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



A4 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , B4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . �

Only one receive antenna is assumed for simplicity, and
the extension of the analysis to multiple receive antennas is
straightforward. The complex channel response to transmit
antenna ` at the sampled demodulator output is

h` = hr
` + jhi

`, 1 ≤ ` ≤ NT (3)

where hr
` and hi

` are the real and imaginary components of h`,
respectively. The channel responses are assumed to be known
at the receiver and constant for L symbol periods. Let zn

denote the 2L × 1 vector with its first L elements equal to
the real–parts of the responses to an, 1 ≤ n ≤ N , or bn−N ,
N + 1 ≤ n ≤ 2N, and its second L elements equal to the
imaginary-parts of the responses to an, 1 ≤ n ≤ N , or bn−N ,
N + 1 ≤ n ≤ 2N . Thus,

zn = anAnh, 1 ≤ n ≤ N (4)

zn = bn−NBn−Nh, N + 1 ≤ n ≤ 2N (5)

where h = [hr
1 hr

2 · · ·hr
NT

hi
1 hi

2 · · ·hi
NT

]T and An and Bn

are 2L× 2NT matrices. They have the forms

An =
[

An 0L×NT

0L×NT
An

]
, Bn =

[
0L×NT

−Bn

Bn 0L×NT

]
. (6)

Let d = [a1 a2 · · · aN b1 b2 . . . bN ]T . The 2L × 1 vector of
received symbols in the absence of noise is

ys =
2N∑
n=1

zn = Hd (7)

where

H = [A1h A2h · · · ANh B1h B2h · · · BNh] (8)

is the 2L× 2N channel matrix.
For full-diversity reception and simple (decoupled)

maximum-likelihood processing in the receiver, an
orthogonality condition must be satisfied:

HT H = ||h||2I2N×2N (9)

for any vector h with real-valued components, where ||h||
denotes the Euclidean norm of h. The orthogonality condition
is satisfied if and only if

AT
nAn = BT

nBn = INT×NT
, 1 ≤ n ≤ N (10)

AT
nA` + AT

` An = BT
nB` + BT

` Bn = 0NT×NT
,

n 6= `, 1 ≤ n, ` ≤ N (11)

AT
nB` = BT

` An, n, ` ≤ N. (12)

Appendix A gives a proof using linear algebra that (10)−(12)
are necessary and sufficient for the orthogonality condition.
An alternative, more complicated proof, may be derived from
the theory of amicable orthogonal designs [Appendix B of 2].
Equation (10) also ensures that the total power transmitted for
symbol-component an or bn by each transmit antenna is equal
to a2

n or b2
n, respectively. Thus, the total power transmitted by

each antenna by each transmit antenna is equal. The dispersion
matrices of Example 1 do not satisfy (11) and are therefore
not orthogonal.

Complex orthogonal designs that restrict the matrix ele-
ments to ±1 only exist for NT = L = 2 or 4. Generalized
complex orthogonal designs that restrict the elements of the
generator matrix to the alphabets {±1, 0} or {±1, ±1/

√
2}

are known, but only for code rates less than unity. A benefit
of a genetic approach to design is that the element-value
set does not need to be constrained to a finite alphabet.
For instance, the elements could be drawn from a contin-
uous distribution. The advantage of an expanded element-
value set, which is used by the genetic algorithm, is that a
good STBC may be found that is close to being orthogonal.
The approximate orthogonality may allow the low-complexity
decoupled detector for an orthogonal design to be retained
while still obtaining a satisfactory performance. In contrast
to most orthogonal STBCs, linear dispersion codes are not
restricted to complex symbols and their complex conjugates
with the same magnitudes.

Let Es denote the average energy per symbol transmitted by
all the transmit antennas. In the presence of white Gaussian
noise with spectral-density N0, the vector of received symbols
is

yr = Hd + n (13)

where n is the zero-mean noise with covariance matrix
E

[
nnT

]
= N0I and E

[
|dn|2

]
= Es/NT for each component

dn of d. If the columns of H are orthogonal, then the receiver
computes the 2N × 1 vector

y = ||h||−2HT yr = d + n1 (14)

where E
[
n1nT

1

]
= N0||h||−2I. The maximum-likelihood de-

cision for dn is separately obtained by minimizing |yn − dn| ,
n = 1, 2, . . . , 2N, and hence is decoupled from the other com-
ponent decisions. If the columns of H are not orthogonal, then
the computation of ||h||−2HT yr is suboptimal and produces
y = d + z + n1, where z is inter-symbol and same-symbol



interference that reduces the diversity gain. This interference
diminishes as H approaches orthogonality.

The evolved codes are decoded using the same decoupled
decoder used with orthogonal codes, and therefore enjoy the
same low complexity. As an example, consider a rate-1 code
for NT = 4 antennas using square quadrature amplitude
modulation (QAM) with M symbols. The decoupled decoder
independently detects each of the 2L = 8 real-valued symbols,
and each decision requires the comparison of a real value
against

√
M hypotheses. The decoder for a quasi-orthogonal

code [6] independently detects two pairs of complex symbols,
and each decision requires the comparison of a pair of complex
values against M2 hypothesis. Thus, quasi-orthogonal codes
requires a factor of M

√
M more real-valued comparisons than

the proposed evolved codes. The MDC-QO codes [4, 5] allow
the L = 4 complex symbols to be independently detected,
and each decision requires the comparison of a complex value
against M hypothesis. Thus, the MDC-QO code requires a
factor of

√
M more real-valued comparisons than the evolved

codes.

III. DESCRIPTION OF THE GENETIC ALGORITHM

One of the most critical factors in designing a genetic
algorithm [9] is the choice of the cost or fitness function. To
optimize the set of dispersion matrices {An,Bn}, the cost
function was defined as

C = c1

N∑
n=1

[∥∥AT
nAn − I

∥∥2
+

∥∥BT
nBn − I

∥∥2
]

+c2

N∑
n=1

N∑
`=1
` 6=n

[∥∥AT
nA` + AT

` An

∥∥2
+

∥∥BT
nB` + BT

` Bn

∥∥2
]

+c3

N∑
n=1

N∑
`=1

∥∥AT
nB` −BT

` An

∥∥2
(15)

where ‖ · ‖ denotes the Frobenius norm, and c1, c2, and c3

are constants. This cost function penalizes STBC designs with
matrices that do not satisfy the orthogonality conditions of
(10)− (12).

The algorithm is initialized with a random population of
K individuals X = {x1, ...,xK}. Each xk is a string of
genes that specifies the entries of the {An,Bn} matrices of
a particular STBC. The entries of {An,Bn} may be drawn
from a continuous alphabet or a discrete alphabet. If drawn
from a continuous alphabet, then each gene of xk corresponds
to one entry of a An or Bn matrix, and therefore there are
2NNT L genes in a string. If drawn from a discrete alphabet,
then each gene of xk corresponds to an entire column of a
An or Bn matrix, and therefore there are only 2NNT genes
in a discrete-alphabet string.

Strings are normalized to force each column of the
{An,Bn} matrices have unit norm. For continuous-alphabets,
this normalization is performed by multiplying each element of
a column by an appropriately chosen scaling factor. The nor-
malization occurs when the string is first randomly generated
or whenever it evolves. For discrete-alphabets, normalization

is accomplished by constraining the set of allowable genes to
only those columns that have unit norm.

In the continuous-alphabet case, each xk is generated such
that its entries are independent and uniformly distributed over
(−1,+1) and then the columns are normalized. In the discrete-
alphabet case, the xk are generated by selecting each column
from the set of unit-norm columns with equal probability. The
cost of each member of the initial population is determined
according to (15), and the population is sorted in ascending
order of cost.

During each generation, two parents xj and xk, k > j, are
selected. Four parent selection strategies are considered: (1)
random selection, (2) preferred parenting, (3) eugenic selec-
tion, and (4) alpha-male selection. With random selection, two
distinct individuals are picked at random from the population.
With preferred parenting, xk is picked at random from the
entire population except for the best (i.e., 2 ≤ k ≤ K), while
xj is selected at random from those mappings that are better
than the first (i.e., 1 ≤ j ≤ k). With eugenic selection, the
best two individuals are selected: xj = x1 and xk = x2.
With alpha-male selection, the first parent is the best individual
xj = x1, while the second parent xk is selected at random
from the rest of the population (i.e., 2 ≤ k ≤ K).

The two selected parents breed a pair of children {x̃j , x̃k}.
Each child has a direct ancestor, which is the parent with
the same index, and an indirect ancestor, which is the other
parent. The genes of each child are identical to those of its
direct ancestor except at randomly chosen crossover positions,
where the genes are equal to those of its indirect ancestor.
The crossover positions are chosen at random such that
crossovers are independent and occur with probability px. In
the continuous-alphabet case, columns are normalized after
breeding.

After breeding, Q mutants are created for each child. The
genes of a mutant are identical to that of the child from which
it is derived except at randomly chosen mutation positions,
where the gene of the child is discarded and replaced with
a randomly generated gene. The mutation positions are inde-
pendent and occur with probability pm. The random genes are
uniformly distributed over (−1, 1) in the continuous-alphabet
case or over the set of unit-norm columns in the discrete-
alphabet case. In the continuous-alphabet case, columns are
normalized after mutating.

Next, the algorithm randomly chooses between two replace-
ment strategies: normal replacement and culling. Each time an
individual is replaced, the population is re-sorted in ascending
order of cost. With normal replacement, each of the two
parents is replaced by its best offspring if that offspring has a
lower cost than its parent. When culling, the best offspring of
each parent is compared with the cost of xK , the worst of the
population. If the offspring is better than xK , then the latter
is replaced. Culling provides an opportunity to periodically
eliminate poor designs and replace them with designs that are
more fit. In the following discussion, pc is defined to be the
probability that culling is used during a particular generation.



IV. OPTIMIZATION RESULTS

The genetic algorithm was used to produce rate-1 de-
signs for NT = 3 and 4 antennas with several values of
N = L and both continuous and discrete alphabets. In
each case, the genetic algorithm was run with cost vector
c = [c1, c2, c3] = [1, 1, 1] and Q = 2 mutations per
child. When a discrete alphabet was used, the alphabet was
{0,±1,±

√
3/2,±

√
2/2,±1/2}, and the algorithm was run

with crossover probability px = 1/(2NNT ), mutation prob-
ability pm = 1/(2NNT ), culling probability pc = 0.01,
population size K = 400, and preferred parenting. When a
continuous alphabet was used, the algorithm was run with
px = 0.05, pm = 1/(2NNT L), pc = 0.1, K = 200,
and alpha-male selection. These parameters were selected
after exploring many other alternatives, and concluding that
these were the most effective parameters of those that were
evaluated. Furthermore, in the continuous-alphabet case, the
first row of A1 and B1 were constrained such that only the
first entry of the row could be nonzero while the remaining
NT−1 entries were forced to zero. This constraint is motivated
by observing that multiplication of a channel matrix H by
an orthogonal matrix gives a new channel matrix with the
same product HT H, and hence degree of orthogonality, as the
original one. Thus, there are many STBCs with the lowest cost,
and constraining either a pair of rows or a pair of columns will
not eliminate all of the lowest-cost STBCs while significantly
reducing the search space of the genetic algorithm.

Let (a, b, c) denote a code with the parameter values N = a,
NT = b, and L = c. Fig. 1 shows the cost of the best design
per generation for a (6, 3, 6) code and a (4, 3, 4) code. The
(4, 3, 4) code was evolved using both continuous and discrete
alphabets, while the (6, 3, 6) code was evolved only using a
continuous alphabet because a good design with a discrete
alphabet could not be found. After 1 million generations,
the cost of the (4, 3, 4) code converged to 12.01 with the
continuous alphabet and 12.00 with the discrete alphabet,
and the cost of the (6, 3, 6) code converged to 18.00. The
dispersion matrices for the discrete-alphabet (4, 3, 4) code and
the (6, 3, 6) code after 1 million generations of evolution are
given in Appendix B. Although the discrete-alphabet used by
the genetic algorithm in generating the (4, 3, 4) code has 9
symbols, only 7 of these symbols appear in the dispersion
matrices of Appendix B. Despite not appearing in the final
design, the 2 missing symbols appeared in designs as late as
400,000 generations.

Fig. 2 shows the bit error rate (BER) performance for
the discrete-alphabet (4, 3, 4) code by simulating it over
a Rayleigh fading channel with quadriphase shift keying
(QPSK). The simulated fading coefficients are constant for
blocks of L symbols, but independent from block to block
and have zero-mean, unit-variance, complex Gaussian dis-
tributions. The figure shows the BER performance of both
maximum-likelihood (ML) and decoupled decoding for the
best designs obtained after 100 thousand and 1 million gener-
ations.
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Fig. 1. Cost as a function of generation of evolved (4, 3, 4) and (6, 3, 6)
codes.

Also shown in Fig. 2 is the performance of the (4, 3, 4)
linear dispersion code presented in [8]. As can be seen,
the reference code outperforms the evolved code when ML
decoding is used. The reason is that the cost function of
(15) is not designed to optimize ML performance. However,
when the reference code is detected with the simple decoupled
decoder, performance is poor and exhibits a relatively high
error floor. The reason is that the cost of the reference code
is C = 64c2, which is significantly higher than the costs
of the evolved designs. The designs obtained during early
generations of the genetic algorithm also exhibit an error floor
with decoupled decoding. However, as the design becomes
more highly evolved, the decoupled-decoding error floor is
lowered. After 1 million generations, the performances of ML
and decoupled decoding are identical down to at least a BER
of 10−6. While the decoupled performance improves as the
design becomes more highly evolved, the ML performance
actually degrades as the design evolves.

Fig. 3 shows the BER of the continuous-alphabet (6, 3, 6)
code with QPSK over a Rayleigh fading channel after 10
thousand, 100 thousand, and 1 million generations. Also
shown is the (6, 3, 6) reference linear dispersion code from
[8]. Similar to the (4, 3, 4) case, the decoupled-performance
of the (6, 3, 6) code improves as the code evolves. Meanwhile,
the ML performance degrades as it evolves. After 1 million
generations, the ML and decoupled performance are identical
for the range of BER that was simulated.

Fig. 4 compares the BERs over a Rayleigh fading channel
of the (4, 3, 4) and (6, 3, 6) evolved codes listed in Appendix
B against a rate-3/4 orthogonal (3, 3, 4) code presented in
[2] and the MDC-QO (4, 3, 4) code created by deleting the
last columns of the dispersion matrices given in Example 1.
In order to provide a fair comparison, the spectral efficiency
is maintained at 3 bits/s/Hz by using 8-phase shift keying
(8-PSK) for the rate-1 codes and 16-QAM for the rate-
3/4 orthogonal code. For the MDC-QO code, the 8-PSK
constellation is rotated by 5.915 degrees, which minimizes
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Fig. 3. BERs over a Rayleigh fading channel for ML and decoupled decoding
of the (6, 3, 6) evolved code after different numbers of generations. The
(6, 3, 6) code from [8] is the “reference code”.

the symbol error rate [4]. As can be seen, the evolved rate-1
codes with 8-PSK are better than the orthogonal code with
16-QAM for Es/N0 < 18.5 dB and BER > 3 × 10−3,
which indicates that full diversity is advantageous primarily
for high signal-to-noise ratios. The two evolved codes have
nearly identical performance, suggesting that the (4, 3, 4) code
would be a more appropriate choice since its shorter length
requires less processing, incurs less latency, and can be used
over a more rapidly fading channel. Furthermore, the evolved
rate-1 codes outperform the MDC-QO code for Es/N0 < 37
dB and BER > 10−6.

Space-time codes were also evolved using continuous al-
phabets and NT = 4 transmit antennas. Fig. 5 shows the
performance over a Rayleigh fading channel of (4, 4, 4) and
(8, 4, 8) codes with 8-PSK. These codes were each evolved for
10 million generations and attained costs of 32.01 and 64.00,
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Evolved (6,3,6)
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Fig. 4. BERs over a Rayleigh fading channel of (4, 3, 4) and (6, 3, 6) codes
with 8-PSK and orthogonal (3, 3, 4) code with 16-QAM.
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Fig. 5. BERs over a Rayleigh fading channel of evolved (4, 4, 4) and (8, 4, 8)
codes and (4, 4, 4) MDC-QO code with 8-PSK and orthogonal (3, 4, 4) code
with 16-QAM.

respectively. Two additional (4, 4, 4) codes were evolved using
discrete alphabets and attained costs of 32.00. However, these
codes exhibited a high BER floor when simulated.

The (8, 4, 8) code evolved in parallel on a cluster of four
computers. Each computer was seeded with the same initial
population and was allowed to evolve using its own gene pool.
Periodically, the populations were compared and if there was
one individual that was superior to the best designs attained
on the other computers, then that individual was copied to the
other computers to become part of the other gene pools. This
process of cloning and immigration from one gene pool to
another was a key to attaining a low cost.

Fig. 5 also shows the performance of the (4, 4, 4) quasi-
orthogonal code of [6] with 8-PSK, the (4, 4, 4) MDC-QO
code from Example 1 with 5.915-degree rotated 8-PSK, and a
rate-3/4 (3, 4, 4) orthogonal code from [2] with 16-QAM. The
evolved codes outperform the MDC-QO code for BER >



10−5 and outperform the orthogonal code for BER > 10−2.
The evolved codes show a loss relative to the quasi-orthogonal
code, but are far simpler to decode since the latter requires
pairs of complex symbols to be jointly decoded [6].

By comparing the performance of the (3, 4, 4) orthogonal
code with that of the (3, 3, 4) orthogonal code shown in Fig.
4, it is apparent that the extra antenna provides more diversity
in Rayleigh fading when orthogonal codes are used. However,
the evolved codes do not show the increase in diversity. The
performance of the full-rate system with 4 transmit antennas is
nearly identical to that achieved with 3 transmit antennas and
also to that achieved with 2 transmit antennas and the full-rate
(2, 2, 2) Alamouti orthogonal code [2].

While the evolved designs cannot exploit the added potential
diversity when the fading is Rayleigh, they still outperform
the orthogonal systems when the fading is more severe than
Rayleigh [10] and an outer turbo code is used. Fig. 6 shows
the coded performance of the evolved full-rate (4, 4, 4) STBC
with 8-PSK modulation, the rate-3/4 orthogonal (3, 4, 4) STBC
with 16-QAM, and the full-rate orthogonal Alamouti (2, 2, 2)
STBC with 8-PSK modulation. The fading is either Rayleigh
or the more severe Nakagami-m [1] with m = 1/2. The outer
code is a rate-1/2 turbo code specified by the UMTS third-
generation cellular standard [11]. The data message is 4500
bits long, and the channel gains are assumed to be constant
for the duration of one space-time codeword of L signaling
intervals but independent from one codeword to the next. The
turbo code is decoded using 14 iterations of the log-MAP
algorithm [1]. The turbo decoder uses soft decisions produced
by the decoupled STBC decoder in the form of the conditional
density p(xn|y), where xn and y are given by (1) and (14),
respectively.

As seen in the figure, the full-rate codes both provide a gain
of at least 1.4 dB over the rate-3/4 orthogonal codes when the
fading is Rayleigh. This gain occurs because the turbo code
allows operation at Es/N0 lower than the 18.5 dB breakpoint
where the rate-3/4 orthogonal designs become superior to the
full-rate designs. Simulations of many designs generated by
the genetic algorithm indicate that it is highly probable that
regardless of the SNR and outer code, no rate-1 STBC with
decoupled decoding exists such that its BER is lower over the
Rayleigh channel than that of the Alamouti (2, 2, 2) STBC.
However, the figure indicates that over the Nakagami-1/2
channel, the evolved (4, 4, 4) STBC outperforms the Alamouti
and the rate-3/4 orthogonal STBCs by 0.7 dB and 1.5 dB,
respectively.

V. CONCLUSIONS

A genetic algorithm has been designed to produce rate-1
space-time block codes optimized for three or more transmit
antennas and decoupled decoding in the receiver. Although
the evolved codes do not have orthogonal generator matrices
and the decoding is simple, excellent performance at practical
signal-to-noise ratios is obtained in a fading environment.
When the spectral efficiency is specified and an efficient outer
code is used, evolved codes provide improved performance

(3,4,4) Nakagami
(2,2,2) Nakagami
(4,4,4) Nakagami
(3,4,4) Rayleigh
(2,2,2) Rayleigh
(4,4,4) Rayleigh
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Fig. 6. BERs of turbo-coded 8-PSK-modulated (4, 4, 4) and (2, 2, 2) codes
and 16-QAM-modulated (3, 4, 4) codes. The fading is Rayleigh or Nakagami-
1/2. The rate-1/2 turbo code has message length 4500.

relative to minimum-decoding-complexity quasi-orthogonal
space-time codes at typical operating signal-to-noise ratios.
When the fading is more severe than Rayleigh fading, evolved
codes outperform orthogonal space-time block codes.

The genetic algorithm uses several novel methods that
proved invaluable in finding effective space-time block codes.
Both alpha-male parenting and parallel execution using
cloning and immigration are likely to be useful methods in
genetic algorithms for other applications.

APPENDIX A
ORTHOGONALITY CONDITION

Let R(S) and N(S) denote the range space and nullspace
of matrix S, respectively. Let x⊥y denote the orthogonality of
vectors x and y, and S⊥ denote the orthogonal complement
of subspace S.

Proposition: Equations (10) − (12) are necessary
and sufficient for the satisfaction of the orthogonality
condition defined by (9). Proof: Substitution of (8)
into HT H indicates that (9) is satisfied if and only
if hTAT

nAnh =||h||2, hTBT
nBnh =||h||2, hTAT

nA`h = 0,
hTBT

nB`h = 0, hTBT
nA`h = 0, n, ` = 1, 2, . . . , N, n 6= `,

for any vector 2N × 1 h with real-valued components. Let
h = [hT

1 hT
2 ]T , where h1 and h2 are N × 1 vectors. Sub-

stitution of (6) into these equations and the use of matrix
algebra indicate that the orthogonality condition defined by
(9) is satisfied if and only if

hT
1 (AT

nAn − I)h1= 0, n = 1, 2, . . . , N (16)

hT
1 (BT

nBn − I)h1= 0, n = 1, 2, . . . , N (17)

hT
1 AT

nA`h1= 0, n, ` = 1, 2, . . . , N, n 6= ` (18)

hT
1 BT

nB`h1= 0, n, ` = 1, 2, . . . , N, n 6= ` (19)

hT
1 (AT

nB` −BT
` An)h2= 0, n, ` = 1, 2, . . . , N, n 6= `

(20)



A1 =
1

2

 −1 −1 2
1 −1 0
−1 1 0
1 −1 0



B1 =
1
√

2

 1 0 −1
0 −1 1
0 0 0
1 −1 0



A2 =
1
√

2

 1 −1 0
0 1 −1
0 0 0
1 0 −1



B2 =
1

2

 0 −1 1
−2 1 1
0 −1 1
0 −1 1



A3 =
1
√

2

 0 0 0
−1 0 1
−1 1 0
0 1 −1



B3 =
1

2

 0 1 −1
0 1 −1
−2 1 1
0 −1 1



A4 =
1

2

 −1 1 0
−1 1 0
1 1 −2
1 −1 0



B4 =
1
√

2

 −1 1 0
0 0 0
0 −1 1
1 0 −1


Fig. 7. Dispersion matrices for the evolved (4, 3, 4) code drawn from a discrete alphabet.

A1 =


+0.2628 −0.1397 +0.1164
+0.2237 −0.0495 +0.1744
+0.6018 −0.7709 −0.1711
+0.1061 −0.5859 −0.4770
−0.6665 −0.0380 −0.7050
+0.2514 +0.1977 +0.4497



A4 =


+0.2400 −0.3611 −0.1223
−0.1040 +0.5662 +0.4619
−0.4319 +0.1831 −0.2463
+0.7325 +0.0151 +0.7482
−0.3318 +0.2130 −0.1156
−0.3136 +0.6855 +0.3713



B1 =


+0.2434 −0.1222 +0.1157
−0.3793 +0.2355 −0.1451
−0.0638 +0.1675 +0.1073
−0.3258 −0.5548 −0.8808
+0.1321 +0.2799 +0.4102
−0.8180 +0.7179 −0.0994



B4 =


−0.3271 +0.7113 +0.3825
+0.3398 −0.0157 +0.3284
−0.0627 +0.0700 +0.0095
+0.3964 −0.3490 +0.0455
−0.6012 +0.4930 −0.1048
−0.5049 −0.3523 −0.8560



A2 =


−0.6671 +0.5250 −0.1421
−0.0218 −0.1765 −0.1992
−0.0524 +0.3647 +0.3075
+0.4333 −0.5554 −0.1249
−0.0211 +0.4631 +0.4445
+0.6029 +0.1933 +0.7952



A5 =


−0.0529 +0.4248 +0.3716
−0.7724 +0.1832 −0.5864
−0.1966 −0.4856 −0.6840
−0.3587 +0.4929 +0.1345
−0.4629 +0.5540 +0.0900
+0.1378 +0.0193 +0.1547



B2 =


+0.0397 +0.2093 +0.2505
−0.0515 −0.3432 −0.3925
−0.9318 +0.2431 −0.6877
+0.2863 −0.5082 −0.2238
+0.2113 −0.7215 −0.5101
+0.0285 −0.0198 +0.0039



B5 =


−0.6338 +0.1644 −0.4700
−0.3817 +0.8396 +0.4592
−0.2334 +0.3890 +0.1551
−0.5177 +0.1069 −0.4074
−0.3230 −0.2919 −0.6146
+0.1607 −0.1417 +0.0213



A3 =


+0.4024 +0.4910 +0.8934
−0.5319 +0.7043 +0.1722
+0.3950 −0.0106 +0.3836
+0.3414 −0.1950 +0.1432
+0.4783 −0.4387 +0.0366
+0.2317 −0.1796 +0.0568



A6 =


−0.5133 +0.3909 −0.1229
−0.2431 −0.3410 −0.5857
+0.5039 −0.0559 +0.4479
+0.1384 +0.2594 +0.3980
−0.0460 −0.4891 −0.5316
−0.6343 +0.6491 +0.0176



B3 =


+0.3109 +0.4283 +0.7393
+0.6497 −0.2846 +0.3615
−0.2556 +0.4719 +0.2192
−0.6129 +0.5428 −0.0724
−0.1991 +0.0232 −0.1748
+0.0230 +0.4666 +0.4889



B6 =


+0.5778 −0.4744 +0.1010
−0.4125 −0.2013 −0.6126
−0.0630 +0.7305 +0.6660
+0.1039 −0.0776 +0.0286
−0.6578 +0.2688 −0.3903
+0.2204 −0.3502 −0.1332


Fig. 8. Dispersion matrices for the evolved (6, 3, 6) code drawn from a continuous alphabet.

for any N×1 vectors h1 and h2 with real-valued components.
By direct substitution, it is verified that (10) and (12) imply
(16) , (17) , and (20) . Substitution of (11) indicates that
0 = hT

1 AT
nA`h1 −

(
hT

1 AT
nA`h1

)T = 2hT
1 AT

nA`h1, which
implies (18). Similarly, (11) implies (19) . Thus, (10)− (12)
are sufficient for the satisfaction of the orthogonality condition.
For the necessity, observe that (18) and (19) require that
hT

1 (AT
nA` +AT

` An)h1= 0 and hT
1 (BT

nB` +BT
` Bn)h1= 0,

n, ` = 1, 2, . . . , N, n 6= `. Thus, (16) − (19) each requires
that hT

1 Sh1= 0 for a symmetric matrix S and every N × 1
vectors h1. If S 6= 0, then there exists some h1 /∈ N(S), and
Sh1 ∈ R(S). Since h1⊥Sh1 and R(S)⊥ = N(ST ) = N(S),
h1 ∈ N(S). This contradiction proves that S = 0. Thus, the
orthogonality condition implies the necessity of (10) and (11).
Equation (20) has the form hT

1 Sh2= 0 for a matrix S and
every h2, which implies that every h1⊥R(S). Thus, every
h1 ∈ R(S)⊥ = N(ST ), which implies that S = 0, and hence
(12) is necessary. �

APPENDIX B
DISPERSION MATRICES

The dispersion matrices for the (4, 3, 4) code that evolved
after 1 million generation are given in Fig. 7, and the disper-
sion matrices for the (6, 3, 6) code that evolved after 1 million
generation are given in Fig. 8.
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