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Abstract—A multisymbol noncoherent receiver suitable for
coded continuous-phase frequency-shift keying is developed and
analyzed. Unlike coherently detected signals, the modulation
index of the waveform does not need to be rational with a small
denominator, and the oscillator only needs to be stable for the
duration of a small group of symbols. The receiver is analyzed
in terms of its symmetric information rate, demonstrating its
potential when a capacity-approaching code is used and enabling
the joint optimization of code rate and modulation index under
a bandwidth constraint. The information-theoretic results are
corroborated by bit-error-rate curves generated using a stan-
dardized turbo code in conjunction with iterative demodulation
and decoding. It is shown that, while more robust than a
system with coherent reception, the proposed system offers
superior energy efficiency compared with conventional single-
symbol noncoherent reception.

I. INTRODUCTION

Continuous-phase frequency-shift keying (CPFSK) is a type
of full-response continuous-phase modulation (CPM) that is
characterized by the use of rectangular phase-shaping func-
tions. Like other forms of CPM, CPFSK has attractive spectral
characteristics because the smooth phase transitions between
adjacent symbols minimize out-of-band power. A key benefit
of CPFSK is that it can be noncoherently detected, which can
provide significant complexity savings and improved robust-
ness relative to coherent detection. The complexity savings
of noncoherent detection are due to the fact that it does not
require a trellis. In contrast, coherent detection requires a trellis
with Q states, where Q is the denominator of the modulation
index ℎ = P/Q. While ℎ for the coherent detector must be
rational, the noncoherent detector can work for any value of
ℎ. Furthermore, unlike the coherent detector, the noncoherent
detector does not require knowledge of the initial phase or the
set of allowable phases, which permits more robust operation.

If the channel- or oscillator-induced phase shift is stable
over several symbols, a block or multisymbol noncoherent
detector can be used to exploit the phase continuity within each
block [1]. In this paper, we evaluate multisymbol noncoherent
detection from an information-theoretic perspective. In partic-
ular, we compute the symmetric information rate, which is the
modulation-constrained channel capacity under the assumption
of independent and uniformly distributed (i.u.d.) inputs. The
symmetric information rate is then used to determine the mini-
mum required ℰb/N0 when there is a bandwidth constraint. For
a particular modulation order M and channel type (AWGN or
Rayleigh fading), the minimum ℰb/N0 is found by optimizing

the symmetric information rate with respect to the modulation
index ℎ and code rate r. As one would anticipate, the minimum
required ℰb/N0 decreases with increasing block size.

The symmetric information rate of coherent CPM was
considered by Ganesan [2] and Padmanabham et al. [3]. In [4],
the symmetric information rate was used to jointly optimize
the modulation index ℎ and code rate r of coherent systems
under a bandwidth constraint and strategies for code design
were given. In [5], the symmetric information rate of CPFSK
was considered for single-symbol noncoherent reception and
the modulation index and code rate were jointly optimized.
In general, the loss due to using conventional noncoherent
reception is rather large, yet coherent receivers are difficult
to implement. The purpose of this paper is to bridge the gap
between coherent and noncoherent reception, which may be
considered as limiting cases of the multisymbol noncoherent
receiver with block lengths of either infinity or unity, respec-
tively.

The remainder of this paper is organized as follows. A
model of CPFSK is given in Section II, and the multisymbol
noncoherent receiver is derived in Section III. The symmetric
information rate of the system is discussed in Section IV, and
the system parameters are optimized in Section V with respect
to the symmetric information rate. In Section VI, simulation
results are given showing the performance of multisymbol
noncoherent detection when a turbo code is used.

II. SYSTEM MODEL

A set of K data bits is passed through a channel encoder,
which outputs a length-Nc vector q of M -ary symbols. The
code rate is r = K/Nc ≤ log2M information bits per symbol.
Instead of matching the alphabet of the encoder to that of
the modulator, it is advantageous to use bit-interleaved coded
modulation (BICM), which helps to counteract fading [6].
With BICM, the data is first passed through a binary encoder,
bitwise interleaved, and then mapped to M -ary symbols.

For each entry of q, the complex envelope of the
continuous-time modulated signal xi(t) is chosen as the qtℎi
signal of the set {sk(t), k = 0, 1, ⋅ ⋅ ⋅ ,M − 1}, where

sk(t) =
1√
Ts
e
j2�kℎt
Ts , t ∈ [0, Ts), (1)

ℎ is the modulation index, and Ts is the symbol duration. In
order to produce a more compact bandwidth, an additional
phase �i is applied so that the phase transition from symbol



to symbol is continuous. This additional phase is accumulated
as

�i = 2qiℎ� + �i−1. (2)

The signal is transmitted over a block-fading channel.
During the interval iTs ≤ t ≤ (i+1)Ts, the complex envelope
of the received signal is

yi(t) = a⌊i/L⌋e
j�⌊i/L⌋ej�i

√
ℰsxi(t) + ni(t), (3)

where ni(t) is additive white Gaussian noise (AWGN) with
noise spectral density N0, ℰs is the energy per symbol, L is
the channel block length, and ake

j�k is the complex fading
coefficient of channel block k = ⌊ iL⌋. Two types of block
channels are considered, Rayleigh fading and an AWGN
channel that allows for an unknown phase when noncoherent
detection is used. In both channels, �k is uniformly distributed
over the range [0, 2�) and independent from one block to
the next. For the AWGN channel ak = 1,∀k. In the block
Rayleigh fading channel, the ak’s are Rayleigh distributed with
equal energy and are independent from one block to the next.

The front-end of the multisymbol noncoherent detector is
a bank of M pairs of matched filters, with one pair matched
to the in-phase and quadrature components of each tone. The
matched filters are sampled at the symbol rate, producing an
M × 1 vector for the itℎ symbol period [4]

yi = a⌊i/L⌋e
j�⌊i/L⌋ej�i

√
ℰsxi + ni (4)

where xi is a signal vector and ni is a Gaussian-noise vector.
When the modulated symbol qi = �, xi is the �tℎ column of
an M ×M matrix K with (j, k)tℎ element

Kj,k =
sin(�(k − j)ℎ)

�(k − j)ℎ
ej�(k−j)ℎ. (5)

Note that the main diagonal of K is all ones. When ℎ is an
integer, the off-diagonal terms are zero and the modulation is
orthogonal. On the other hand, when ℎ is not an integer, the
off-diagonal terms are complex values representing the inter-
tone correlation. The noise vector ni has covariance matrix
R = E

[
nnH

]
= N0K and is colored when ℎ is not an

integer.
Consider a single symbol and drop the subscript i. Combine

the two phase terms in (4) into a single phase  = �+� which
represents the received phase at the start of the symbol period.
The symbol vector then becomes

y = aej 
√
ℰsx + n (6)

Since n is Gaussian, the vector y given x, a
√
ℰs, and  is

Gaussian distributed with mean aej 
√
ℰsx and covariance R.

Thus, the conditional joint probability density function (pdf)
is

p(y∣x, a
√
ℰs,  )

=
1

�Mdet(R)
exp−(y−ae

j √ℰsx)HR−1(y−aej 
√
ℰsx)

The exponent of the conditional pdf can be simplified as

−(y − aej 
√
ℰsx)HR−1(y − aej 

√
ℰsx)

= −yHR−1y − a2ℰsxHR−1x

+2Re(ae−j 
√
ℰsxHR−1y). (7)

Therefore, given x = k� , where k� represents the �tℎ column
of K, the exponent becomes

−yHK−1y + a2ℰs
N0

+ 2
a
√
ℰs

N0
Re(e−j y�). (8)

Using this as the exponent of the conditional pdf and discard-
ing terms that are common to all hypotheses, the conditional
likelihood for each postulated symbol � = {0, ...,M − 1}
becomes

p(y∣x = k� , a
√
ℰs,  ) ∝ exp

(
2
a
√
ℰs

N0
Re(e−j y�)

)
.

(9)

III. MULTISYMBOL NONCOHERENT DETECTION

When the channel block length L is sufficiently long, a
multisymbol noncoherent detector of block length N may
be used, provided that N ≤ L. Let the block of modulated
symbols be xN−10 and the block of received symbols be yN−10 .
Here, xN−10 represents the set of {x0, ⋅ ⋅ ⋅ ,xN−1}, and yN−10

is similarly defined. The multisymbol noncoherent detector
computes the probability p(yN−10 ∣xN−10 ) for each of the MN

possible xN−10 . Given the received amplitude a
√
ℰs of the

block and the initial received phase  0 at the start of the block,
the conditional probability of the block can be represented by
the chain rule as

p(yN−10 ∣xN−10 , a
√
ℰs,  0)

=

N−1∏
i=0

p(yi∣yi−10 ,xN−10 , a
√
ℰs,  0)

=

N−1∏
i=0

p(yi∣xi, a
√
ℰs,  i) (10)

where the second equality comes directly from the properties
of Markov chains, and  i is given by (2) with  i = �i + �,
where � is the channel phase for the block (assumed constant
since N ≤ L).

From (10) and (9), the conditional likelihood given the
postulated block of symbols q = [q0, ..., qN−1] is

p(yN−10 ∣q, a
√
ℰs,  0) ∝ exp

(
2
a
√
ℰs

N0
Re
{
e−j 0�(q)

})
where

�(q) =

N−1∑
i=0

yqi exp

{
−2ℎ�

i−1∑
k=0

qk

}
. (11)

The multisymbol noncoherent detector assumes  0

has a uniform distribution over [0, 2�). Marginalizing
p(yN−10 ∣q, a

√
ℰs,  0) with respect to  0 yields

p(yN−10 ∣q, a
√
ℰs) ∝ I0

(
2
a
√
ℰs

N0
∣�(q)∣

)
(12)

where I0(⋅) is the 0tℎ order modified Bessel function of the
first kind.



The multisymbol detector works as follows. For each hy-
pothesis q of the MN hypotheses, it computes the conditional
likelihood using (12) or its logarithm. A hard-decision detector
merely takes the hypothesis that maximizes the likelihood. If
a code matched to the modulation alphabet is used, then the
likelihoods are passed directly into the decoder, which must be
designed to accept such likelihoods. Alternatively, if BICM is
used, then the demodulator computes the log-likelihood ratio
for each code bit. Let b(q) = [b0, ..., b(N log2M−1)] be the
set of N log2M code bits associated with hypothetical code
symbol vector q. The LLR of the ktℎ code bit is

Λ(bk) = log

∑
q:bk(q)=1

p(yN−10 ∣q, a
√
ℰs)P [b(q)∖bk(q)]

∑
q:bk(q)=0

p(yN−10 ∣q, a
√
ℰs)P [b(q)∖bk(q)]

= log

∑
q:bk(q)=1

I0

(
2
a
√
ℰs

N0
∣�(q)∣

)
P [b(q)∖bk(q)]

∑
q:bk(q)=0

I0

(
2
a
√
ℰs

N0
∣�(q)∣

)
P [b(q)∖bk(q)]

,

(13)

where the function bk(q) returns the ktℎ entry of the vector
b(q) and P [b(q)∖bk(q)] is the a priori probability of b(q)
excluding bit bk(q). In a non-iterative BICM receiver, the a
priori probabilities are all equal and therefore may be dropped
from the logarithm. In an iterative BICM receiver (c.f. BICM-
ID [7]), then the a priori probabilities may be determined from
the extrinsic information fed back from the decoder. Note that
BICM-ID is only advantageous when the number of hypothesis
is nonbinary, i.e. when MN > 2.

IV. SYMMETRIC INFORMATION RATE

The capacity of a channel with input block X = xN−10 and
output block Y = yN−10 is

C = max
p(X)

I (X;Y) , (14)

where p(X) is the joint pdf of X, the average mutual infor-
mation is

I (X;Y) = E[i (X;Y)], (15)

and

i (X;Y) = log
p (X,Y)

p (X) p (Y)
= log

p (Y∣X)

p (Y)
(16)

Note that the expectation in (15) is with respect to the joint
pdf p (X,Y). When a base-2 logarithm is used, then (14) has
units of bits per block.

The capacity given in (14) is found by optimizing with
respect to the distribution of the input blocks X. This opti-
mization may result in a nonuniform distribution. However,
most practical systems assume a uniform distribution of chan-
nel inputs, and therefore the inputs are constrained to be
independent and uniformly distributed (i.u.d.). The capacity
under the constraint of i.u.d. inputs is called the symmetric

information rate, and is found by dropping the maximization
in (14) and assuming i.u.d. inputs when computing the average
mutual information. For brevity, we also refer to the symmetric
information rate as the i.u.d. capacity or just capacity in this
paper.

Assume equiprobable X, p(X) = 1/MN , and let S be
the set of MN possible values of X. Because p(Y) =∑

X′∈S p(Y∣X′)p(X′) = M−N
∑

X′∈S p(Y∣X′), we may
rewrite (16) as

i(X;Y) = N logM + log
p(Y∣X)∑

X′∈S p(Y∣X′)
. (17)

Substituting the conditional pdf of the multisymbol nonco-
herent detector given by (12) into (17) and (15) results in a
symmetric information rate

I (X;Y) = N logM + E

⎡⎢⎢⎣log
I0

(
2a
√
ℰs∣�(q)∣
N0

)
∑

q′∈Q
I0

(
2a
√
ℰs∣�(q′)∣
N0

)
⎤⎥⎥⎦

(18)

where Q is the set of MN possible values of q and the expec-
tation is taken over the ensemble of all possible transmitted q
and received yN−10 . The above expectation can be found using
Monte Carlo integration. To express (18) in terms of bits per
channel symbol, use a base-2 logarithm and divide the result
by N , i.e. the number of symbols per block.

As an example, Fig. 1 shows the i.u.d. capacity (in bits
per channel symbol) of multisymbol noncoherent detection
of minimum-shift keying (MSK), i.e. ℎ = 0.5 and M = 2,
for several different block sizes in AWGN. The rightmost
curve (N = 1) is the capacity of single-symbol noncoherent
detection, while the leftmost curve is the coherent capacity
[4]. By increasing N from 1 to 4, the gain at code-rate 0.5
is about 5 dB, and it is only 3.5 dB worse than coherent
detection. As N increases, the capacity continues to approach
that of coherent detection. As N →∞, we conjecture that the
multisymbol noncoherent capacity converges to the coherent
capacity since the two receivers become identical (except for
knowledge of the initial phase �0, which becomes irrelevant
for large N ).

V. BANDWIDTH-CONSTRAINED PARAMETER
OPTIMIZATION

The bandwidth of coded CPFSK is a function of the
modulation index, code rate, and modulation order. When
the bandwidth is constrained to not exceed Bmax, there is a
particular combination of these parameters that minimizes the
value of ℰb/N0 required to achieve an arbitrarily low bit error
rate. While one could search for the optimal combination of
parameters by exhaustively simulating every possible choice
of parameters with an actual capacity-approaching code, a
more efficient way to search would be to leverage the capacity
analysis discussed in the previous section. The benefit of using
capacity analysis is that it provides a fairly accurate prediction
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Fig. 1. Symmetric information rate of MSK over an AWGN channel with
either N -symbol noncoherent detection or coherent detection.

of the performance that can be achieved with a capacity-
approaching code without requiring that the code actually
be simulated. Of course, once a good design is identified, it
should be simulated using the proposed receiver and an actual
code such as a turbo code, thereby confirming the effectiveness
of the design.

In order to optimize under a bandwidth constraint, the
influence of the system parameters upon bandwidth must be
quantified. First consider an uncoded signal s(t) with power
spectral density (PSD) Φs(f). Given the PSD, the 99% power
bandwidth of the uncoded s(t) is defined as the value of B99

that satisfies∫ B99/2

−B99/2

Φs(f)df = 0.99

∫ ∞
−∞

Φs(f)df. (19)

The PSD Φs(f) of CPFSK is well known and can be found
in texts such as Section 3.4-5 of [8]. When channel coding
is used, the required bandwidth increases as the code rate
decreases. Define the normalized bandwidth of the coded
signal to be

� =
B99

Rb
, (20)

where Rb = r/Ts is the data rate in bits per second and � is
in units of Hz/bps.

Assume that the normalized bandwidth must not exceed a
value �max. The goal of the capacity-based optimization is
to minimize the ℰb/N0 required for reliable communication
under this bandwidth constraint, which is achieved by jointly
optimizing the parameters ℎ and r for the given value of
M , channel type (AWGN or fading), and decoder type (e.g.,
the block length N used by the multisymbol decoder). To
perform the optimization, start with an arbitrary value of ℎ.
For this value of ℎ, there will be a minimum permissible
code rate rmin. Using a code rate lower than rmin with this
ℎ will violate the bandwidth constraint. Next, the symmetric
information rate is computed from (18) and used to determine

the value of ℰs/N0 required to achieve I (X;Y) = rmin, and
the corresponding ℰb/No = (ℰs/No)/rmin is determined. This
will normally be the minimum ℰb/No required for this value
of ℎ. However, due to the noncoherent-combining penalty,
it is possible that a rate higher than rmin will provide a
lower required ℰb/No despite having a normalized bandwidth
that is actually less than �max. Thus, in order to account
for this possibility, all rates r ∈ [rmin, log2M ] must be
considered when searching for the minimum ℰb/No . This
step is especially important when the bandwidth constraint is
loose.

The above procedure will give the minimum ℰb/No and the
optimum code rate for each valid value of ℎ that is considered.
In order to determine the global minimum, then the process
must be repeated for all ℎ. In practice, it is sufficient to
consider closely sampled values of ℎ. Note that there is an
upper limit on ℎ such that even if a rate r = log2M code
were used, the bandwidth constraint would be violated.

Fig. 2 shows results under bandwidth constraint �max = 2
Hz/bps in AWGN with M = 2 tones. Multisymbol reception
with N = 1, 2 and 4 was considered. In the simulations used
to compute the symmetric information rate, the channel block
length is set to L = N . While a larger value of L could have
been selected, the symmetric information rate does not depend
on the value of L provided that L ≥ N and a sufficiently
large number of trials is performed. For each value of N ,
the minimum ℰb/N0 was determined for values of ℎ that are
multiples of 0.01 and within a valid range 0.01 ≤ ℎ ≤ 0.86.
As a point of comparison, the capacity for coherent CPFSK
is shown for specific values of ℎ, namely those ℎ = P/Q
with integer Q satisfying 2 ≤ Q ≤ 5. The values for
coherent reception are from [4] . For each type of receiver, the
required ℰb/N0 is minimized for ℎ = 0.6. The corresponding
code rate for this value of ℎ is r = 0.64 (the bandwidth
constraint is too tight for the noncoherent-combining penalty
to require an r greater than this minimum). For conventional
single-symbol noncoherent detection (N = 1), the system
requires ℰb/N0 = 8.08 dB while for coherent detection the
system requires ℰb/N0 = −0.10 dB. This gap is bridged by
multisymbol noncoherent reception. For N = 2, the required
ℰb/N0 = 5.15 dB while for N = 4 the required ℰb/N0 = 3.67
dB. Thus, these capacity results predict that using length
N = 4 blocks will provide a gain of over 4.4 dB relative
to single-symbol noncoherent detection in an AWGN channel.
However, for M = 2, there is still a loss of about 3.7 dB when
using 4-block multisymbol noncoherent detection instead of
coherent detection.

Fig. 3 shows the performance of multisymbol noncoherent
reception in Rayleigh fading with �max = 2 Hz/bps, M = 2,
and N = {1, 2, 4}. The performance of coherent reception is
not shown because it is not given in [4] and it is generally
not feasible for the coherent receiver to track the phase of
a block fading channel when the blocks are so short. For
this bandwidth constraint, the value of ℎ that minimizes the
required ℰb/N0 is again ℎ = 0.6, and the corresponding code
rate is r = 0.64. The values for the minimum ℰb/N0 are 10.78
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Fig. 3. Minimum ℰb/N0 required for binary CPFSK to achieve an arbitrarily
low error rate versus modulation index ℎ in Rayleigh fading with M = 2
under bandwidth constraint �max = 2 Hz/bps using N -symbol noncoherent
detection with N = {1, 2, 4}.

dB, 8.10 dB, and 6.31 dB for N = 1, 2, and 4, respectively. As
with the AWGN channel, there is a gain of more than 4.4 dB
when length N = 4 blocks are used instead of conventional
single-symbol detection.

Results were also obtained for quaternary CPFSK (M = 4)
and �max = 2 and are shown in Fig. 4 for the AWGN channel
and Fig. 5 for the Rayleigh fading channel. With coherent
reception, the minimum ℰb/N0 in AWGN for M = 4 is −0.32
dB. With multisymbol noncoherent reception, the values for
the minimum ℰb/N0 over the AWGN channel are 5.33 dB,
3.51 dB, and 2.20 dB for N = 1, 2, and 4, respectively. Thus,
the gain of N = 4 multisymbol noncoherent reception in
AWGN is about 3.1 dB relative to single-symbol noncoherent
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Fig. 4. Minimum ℰb/N0 required for binary CPFSK to achieve an arbitrarily
low error rate versus modulation index ℎ in AWGN with M = 4 under
bandwidth constraint �max = 2 Hz/bps using N -symbol noncoherent
detection with N = {1, 2, 4}. As a point of comparison, the minimum ℰb/N0

required for coherent CPFSK is also shown [4]

reception, though N = 4 multisymbol noncoherent reception
has a loss of 2.5 dB relative to coherent reception. The gain
achieved by increasing M from 2 to 4 is only 0.22 dB for the
coherent receiver, but for the noncoherent receiver it is 2.75
dB, 1.64 dB, and 1.47 dB for N = 1, 2, and 4, respectively. It
is observed that the multisymbol noncoherent receiver is better
able to exploit the larger signal set than does the coherent
receiver.

In the Rayleigh fading channel with M = 4, the values
for the minimum ℰb/N0 indicated by Fig. 5 are 8.17 dB,
5.87 dB, and 4.31 dB for N = 1, 2, and 4, respectively.
The gain of N = 4 multisymbol noncoherent reception in the
Rayleigh fading channel with M = 4 is over 3.8 dB relative
to single-symbol noncoherent reception. For the multisymbol
noncoherent receiver, the gain from using M = 4 instead of
M = 2 is 2.61 dB, 2.23 dB, and 2.00 dB for N = 1, 2,
and 4, respectively, again demonstrating that the multisymbol
noncoherent receiver is able to exploit the larger signal set.

VI. TURBO-CODED PERFORMANCE

Simulations were performed to demonstrate the achievable
performance when an actual channel code is used, thereby
confirming the validity of the information-theoretic bounds.
Systems with CPFSK modulation and M = 2 and M = 4
were considered. For systems with M = 2, the modulation
index was set to ℎ = 0.6, which is the optimal value
for the single-symbol noncoherent detector under bandwidth
constraint �max = 2 Hz/bps according to the information-
theoretic analysis given in the last section. The code rate was
set to its corresponding optimal value r = 0.64. Data was
encoded using the turbo code specified by the UMTS standard
[9], which was selected due to its widespread use and its
ability to handle a variety of code rates. The rate r = 0.64
was achieved by using a message length of K = 4800 bits
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Fig. 5. Minimum ℰb/N0 required for binary CPFSK to achieve an arbitrarily
low error rate versus modulation index ℎ in Rayleigh fading with M = 4
under bandwidth constraint �max = 2 Hz/bps using N -symbol noncoherent
detection with N = {1, 2, 4}.

and a codeword length of Nc = 7500 bits. The demodulator
was implemented using the proposed noncoherent N -symbol
demodulator with N = 1, 2 and 4. The turbo code was
decoded using 30 iterations of the log-MAP algorithm [8].
When MN > 2, a BICM-ID receiver was used, in which case
the soft-output from each decoder iteration was used by the
demodulator as a priori information.

Simulations were run for both an AWGN channel and a
Rayleigh fading channel. Fig. 6 shows results for the AWGN
channel with M = 2. Three curves are shown corresponding
to length N = 1, 2, and 4 demodulator blocks. In addition, a
vertical line is shown for each value of N which corresponds
to the minimum ℰb/N0 found from the previously discussed
information-theoretic analysis. The value of ℰb/N0 required
for the turbo-coded system to achieve a BER of 10−5 in
AWGN is 8.90 dB, 6.13 dB, and 4.44 dB for N = 1, 2, and
4, respectively. These values are between 0.80 and 0.98 dB
from the corresponding information-theoretic bounds, indicat-
ing that it is possible to design a system that is capable of
coming within a decibel of the bounds.

Fig. 7 shows results for the Rayleigh fading channel with
M = 2. In the simulations, the fading amplitude was held
constant for blocks of L consecutive symbols and varied
independently from one block to the next. In order to maximize
the number of independent fades per codeword, we set the
value of L to the minimum value required by the multisymbol
noncoherent detector, which is N = L. As in the previous
figure, a vertical line is shown for each value of N which cor-
responds to the minimum ℰb/N0 found from the information-
theoretic analysis. The value of ℰb/N0 required for the turbo-
coded system to achieve a BER of 10−5 in Rayleigh fading
is 12.04 dB, 9.41 dB, and 7.72 dB for N = 1, 2, and 4,
respectively. These values are between 1.26 and 1.41 dB from
the corresponding information-theoretic bounds. While the gap
between the theoretical ℰb/N0 and the value required with the
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Fig. 6. BER vs. ℰb/N0 in AWGN of a CPFSK system using M = 2, ℎ =
0.6, r = 0.64 and N -symbol noncoherent detection with N = {1, 2, 4}.
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Fig. 7. BER vs. ℰb/N0 in Rayleigh fading of a CPFSK system using
M = 2, ℎ = 0.6, r = 0.64 and N -symbol noncoherent detection with
N = {1, 2, 4}.

actual turbo code is slightly higher for Rayleigh fading than it
is for AWGN, it is feasible to design a system that can come
within 1.5 dB of the bounds in Rayleigh fading.

For systems with M = 4, the modulation index was set
to ℎ = 0.67 for the AWGN channel and ℎ = 0.45 for the
Rayleigh fading channel. These are the information-theoretic
optimal values for the single-symbol noncoherent detector
under bandwidth constraint �max = 2 Hz/bps. The UMTS
standard turbo code was again used, with the rate set to
r = 5100/6528 for the AWGN channel and r = 3800/6528
for the Rayleigh fading channel. The codeword length was
6528 bits for both channels. For all values of N , 30 iterations
of BICM-ID reception was performed by using a combination
of the proposed receiver and the log-MAP decoding algorithm.

Fig. 8 shows results for the AWGN channel with M = 4
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Fig. 8. BER vs. ℰb/N0 in AWGN of a CPFSK system using M = 4, ℎ =
0.67, r = 0.78 and N -symbol noncoherent detection with N = {1, 2, 4}.
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Fig. 9. BER vs. ℰb/N0 in Rayleigh fading of a CPFSK system using
M = 4, ℎ = 0.45, r = 0.58 and N -symbol noncoherent detection with
N = {1, 2, 4}.

and three values of N . The value of ℰb/N0 required for the
turbo-coded system to achieve a BER of 10−5 in AWGN
is 6.70 dB, 4.72 dB, and 3.37 dB for N = 1, 2, and 4,
respectively. These values are between 0.94 and 1.37 dB
from the corresponding information-theoretic bounds, which
are indicated by the dashed lines.

Fig. 9 shows results for the Rayleigh fading channel with
M = 4. The value of ℰb/N0 required for the turbo-coded
system to achieve a BER of 10−5 in Rayleigh fading is
9.63 dB, 7.65 dB, and 6.54 dB for N = 1, 2, and 4,
respectively. These values are between 1.44 and 2.13 dB from
the corresponding information-theoretic bounds.

VII. CONCLUSION

Multisymbol noncoherent demodulation is an attractive
compromise between coherent demodulation, which is often

difficult and complex to implement, and single-symbol non-
coherent demodulation, which has poor energy efficiency. The
performance of a multisymbol noncoherent system can be
improved by using a capacity-approaching code, such as a
turbo code. To fully exploit the benefits of the channel code,
the demodulator developed in this paper uses soft-input, soft-
output demodulation over blocks of multiple received symbols.

The performance of a system that uses a capacity-
approaching code and the proposed demodulator may be
predicted by using the symmetric information rate. The per-
formance depends on several parameters, including the choice
of modulation index ℎ and code rate r. When there is a
bandwidth constraint, there is a combination of ℎ and r
that minimizes the ℰb/N0 required for reliable signaling.
The symmetric information rate can be used to identify the
optimal values of these parameters for a particular bandwidth
constraint, modulation order M , demodulator block length N ,
and channel type. When the optimal parameters are chosen
and binary modulation is used, the 4-symbol demodulator
outperforms the single-symbol demodulator by about 4.4-4.5
dB in both AWGN and Rayleigh fading channels, yet is still
about 3.7 dB worse than the coherent demodulator.

Once the optimal parameters have been identified, a com-
plete system can be designed by incorporating an outer error-
correcting code. While the code could be optimized for the
particular system, reasonable performance can be achieved by
using an “off-the-shelf” standardized code. In particular, if the
standardized UMTS turbo-code is used and M = 2 tones, then
performance within 1 dB of the information-theoretic bound
can be achieved in AWGN and performance within 1.5 dB of
the bound can be achieved over a Rayleigh fading channel.
With M = 4 tones are used with the UMTS turbo code,
performance is within 1.4 dB of the information-theoretic
bound in AWGN and within 2.2 dB of the bound in Rayleigh
fading.
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