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Abstract—Physical-layer network coding is considered for the
two-way relay network with realistic assumptions on the co-
herence of the channel. In contrast to analog network coding,
which relays received analog signals plus noise, our system relays
digital network codewords, obtained by digital demodulation and
channel decoding. By using binary frequency-shift keying and
noncoherent reception, the relay may operate without knowledge
of the phases of the signals transmitted simultaneously by the two
sources. The channels between the end nodes and the relay are
modeled as noncoherent block fading channels, and an outer
turbo code is used. A noncoherent receiver is formulated for
the relay, which estimates the fading amplitudes but not the
phases. Several block sizes are considered, and the effect of
block size on error-rate performance is investigated. As a baseline
for performance comparison, the system is also simulated using
perfect knowledge of the fading amplitudes, and it is observed
that the performance lost to channel estimation is negligible
for sufficiently large blocks. An example realization of the
proposed system demonstrates a 32.4% throughput improvement
compared to a similar system that performs network coding at
the link layer.

I. INTRODUCTION

Network coding is a relaying technique that increases
throughput over traditional store-and-forward relaying [1].
The two-way relay channel (TWRC) is the most fundamental
topology that can exploit network coding techniques [2]. The
TWRC is a three-terminal network consisting of a pair of
source nodes N1 and N2 that exchange information via a
single relay node R. Information is exchanged, making Nj
the destination of node Ni, i 6= j. In this topology, network
coding can be applied at either the link layer or the physical
layer [3]. Information may be protected by using an error-
correcting channel code, which is applied either on a link-
by-link basis or on an end-to-end basis [4]. Using link-by-
link channel coding, both the end nodes and the relay apply
channel codes to the data. The channel codes applied by the
end nodes and the relay may be different. Using end-to-end
coding, only nodes N1 and N2 perform channel decoding,
not the relay. Because the decoding operation at the relay
minimizes error propagation and noise accumulation over the
two links, link-by-link channel coding offers potentially better
performance than end-to-end coding at the cost of increased
complexity.

In Fig. 1, link-layer network coding (LNC) is compared
against physical-layer network coding (PNC) in the channel-
coded TWRC. Let ui indicate the message of source node Ni.
The modulated and channel-coded signal transmitted by Ni is
denoted by ΓS(ui). With LNC, which is shown in Fig. 1(a),
nodes N1 and N2 transmit their signals during two disjoint
time slots. Using link-by-link channel coding, the two signals
are demodulated and channel-decoded at the relay to obtain
estimates û1 and û2. Assuming the network code is defined
over finite field GF(2), a network codeword u = û1 ⊕ û2 is
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Fig. 1. (a) Link-layer network coding, and (b) Physical-layer network coding.

formed by taking the modulo-two sum of the two estimated
codewords. During a third time slot, the relay broadcasts signal
ΓR(u), which is a modulated and channel-coded version of
u, and the two destination nodes demodulate and decode
the received versions of this signal, revealing estimates of
u. Finally, node Nj recovers an estimate ũi of source node
Ni’s transmission, i 6= j, by adding its own information to its
estimate û of the network codeword, i.e. ũi = û⊕ uj .

As shown in Fig. 1(b), PNC reduces the number of time
slots required for transmission to two. The source nodes
transmit their signals over a multiple-access channel (MAC)
in the same time slot. The PNC system does not detect
the messages u1 and u2 separately, as in LNC. Instead, the
network-coded message u is detected directly by the relay’s
demodulator from the electromagnetic sum of received signals.
As with the LNC system, each source node obtains an estimate
of the opposite source node’s message by adding its own
information to its estimate û of the network codeword.

The mapping from received signal to transmitted signal at
the relay is critical. One option is for the relay to simply
retransmit the signal it receives, with no demodulation or
decoding. This approach was proposed by Katti et al. in [5],
which calls the scheme analog network coding (ANC). A
refinement to ANC, which reduces power consumption at the
relay by using a Tomlinson-Harashima precoding, is presented
by Hao et. al. [6], which refers to the TWRC channel as the
exchange channel. With ANC, the network codeword u at the
relay is not formed using hard decisions over a finite field, but
rather is defined over an infinite field. For this reason, Zhang et
al. in [7] offer the alternative term PNC over an infinite field
(PNCI) to describe ANC. The main disadvantage of ANC
is that noise received by the relay is amplified, and added
to additional noise during the broadcast step. Furthermore,
because channel decoding is not performed at the relay, ANC
systems cannot use link-by-link channel coding.

An alternative to nonregenerative signal forwarding is to
demodulate and decode the signal at the relay to obtain the
network codeword u, which is then re-encoded and remod-
ulated. In this case, the decoding operation assures that the
network codeword is defined over a finite field (usually the
same field as the channel code). In [7], this scheme is referred
to as PNC over a finite field (PNCF). In this paper, we choose
to use the alternative term digital network coding (DNC)
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Fig. 2. Discrete-time system model.

to emphasize the difference with ANC. Unlike ANC, DNC
removes the noise at the relay. As one of the two signals at
the relay becomes weaker than the other, ANC’s performance
for the weaker signal degenerates. However, for DNC, the loss
is relatively minor for both signals.

Symbol timing is an important consideration in all PNC
systems. Assume that the clocks at the two source nodes are
perfectly synchronized. This synchronization can be achieved
by periodically updating the network timing at all the nodes
and requiring that packet transmissions begin during defined
time slots. Such a process is routine in cellular and other
networks with scheduling mechanisms. Despite the common
clocks at the source nodes, a misalignment or timing offset
occurs when the propagation times of the two signals differ.
The offset is τ = ∆d/c, where ∆d is the difference in link
distances from the two sources to the relay and c is the speed
of light. For this effect to be small, we need τ << Ts/2, where
Ts is the symbol period. Thus, the symbol rate is limited. For
example, if ∆d = 300 m, then Ts >> 2 microsec is needed,
and it is desirable for the symbol rate to be no more than 250
ksym/s. The system can compensate for the misalignment by
delaying the transmission of the closer node by τ , but this
requires the distances to be tracked, and the change in delay
may have other repercussions on the network.

Under the assumptions of perfect power control and phase
synchronization, Zhang et al. [3] derive the bit error proba-
bility at the relay for coherent binary phase-shift keying. The
phase synchronization assumption requires the relative carrier-
phase offset of the two signals to be available to the receiver.
This requires very stable oscillators, an assumption not present
in our work. There is also an additional throughput loss
and overhead cost because measuring the carrier-phase offset
requires the transmission of two non-overlapping preambles.
Thus, coherent DNC is not practical, and a practical DNC
system should use noncoherent demodulation at the relay.

A turbo-coded DNC system which uses orthogonal CPFSK
modulation and a noncoherent relay receiver is presented in
[8]. While the relay receiver does not require knowledge of
the absolute received phases of the two signals, it is able to
exploit other types of channel state information (CSI), such as
the received amplitudes. By properly using CSI, a performance
gain of approximately 10 dB may be achieved relative to
a receiver that does not use CSI. This large performance
improvement is motivation for carefully considering the issue
of fading amplitude estimation, which was not considered
in [8]. A training-based approach to channel estimation for
coherent ANC systems is considered in [9], but such an
approach decreases throughput, and hence is not desirable.

In this paper, we adapt an estimator originally proposed by
Hamkins [10] for use in the noncoherent DNC system. We
assume that the phase differences of the two signals received
at the relay may vary rapidly while the fading amplitudes
remain constant over a fading block. Oscillator instabilities
lead to this type of distortion, which may be mitigated by

using noncoherent FSK [11]. We further assume that symbol-
level synchronization is achieved at the relay with negligible
misalignment. Simulation results are presented for a turbo-
coded system operating over a Rayleigh block-fading channel.
It is shown by example that the proposed DNC system is
capable of achieving a 32.4% higher throughput than an
equivalent LNC system.

II. SYSTEM MODEL

The discrete-time system model shown in Fig. 2 gives
an overview of the processing at all three nodes. Source
node Ni, i ∈ {1, 2}, generates a length-K information se-
quence, ui = [ui,1, ..., ui,K ]. The source nodes channel-
encode and modulate their information sequences using the
function ΓS(·), which is common to both nodes. A rate-rS
turbo code is used, and the resulting length LS = K/rS turbo
codeword generated by Ni is denoted by bi = [bi,1, ...bi,LS

]
(not shown in the diagram). The signal transmitted by node
Ni during signaling interval kTs ≤ t ≤ (k + 1)Ts is

si(t) =

√
2

Ts
cos

[
2π

(
fci +

bi,k
Ts

)
(t− kTs)

]
(1)

where fci is the carrier frequency of node Ni (not assumed to
be exactly the same for both nodes) and Ts is the symbol pe-
riod. Note that (1) is continuous-phase frequency-shift keying
(CPFSK) with a unity modulation index, which is orthogonal
under noncoherent demodulation and has a continuous phase
transition from one symbol to the next [12]. The orthogonally-
modulated signal si(t) may be represented in discrete time by
the 2× LS matrix Xi = [xi,1, ...,xi,LS

] with kth column

xi,k =

{
[ 1 0 ]T if bi,k = 0
[ 0 1 ]T if bi,k = 1. (2)

For the DNC system, the signals are transmitted simulta-
neously by the two source nodes over a MAC channel. The
relay receives the noisy electromagnetic sum of interfered and
faded signals, Y, and applies the demodulation and channel-
decoding function Γ−1S (·). The demodulation operation yields
a soft estimate of the network-and-channel-coded message
b = b1 ⊕ b2 (not shown), while the channel-decoding op-
eration yields a hard-decision on the network-coded message
u = u1⊕u2. With the LNC system, the two sources transmit
during orthogonal time slots. The received versions of X1 and
X2 are demodulated independently to provide soft estimates
of b1 and b2. These soft estimates are combined and turbo
decoded to yield a hard estimate of u. The key distinction
between DNC and LNC is that with the DNC system, the
estimate of b is obtained directly from Y, while with LNC it
is found by independently demodulating the two source signals
and then combining them. See [8] for more detail regarding
this distinction.



During the broadcast phase, the relay encodes and modu-
lates u using the function ΓR(·), which may be different than
the function ΓS(·) used by the sources. The channel code
applied by the relay is a rate rR turbo code, yielding a length
LR = K/rR turbo codeword. While the MAC channel in a
DNC system is subject to interference, the broadcast channel
is not. For this reason, the code for the MAC channel must
typically be stronger than the one for the broadcast channel,
and it is desirable to select rS < rR. The relay broadcasts its
encoded and modulated signal, which may be represented in
discrete-time by the 2 × LR matrix X. The signal traverses
two independent fading channels, and the end nodes receive
independently faded versions of X: Z1 at N1 and Z2 at N2.
The end nodes demodulate and decode their received signals
using the function Γ−1R (·), and form estimates of u. Let û
denote the estimate at N1 and ũ denote the estimate at N2.
Next, estimates of the transmitted information messages are
formed, ũ2 = û ⊕ u1 at N1 and ũ1 = ũ ⊕ u2 at N2. Since
the links in the broadcast phase are conventional point-to-
point links with no interference, specific details of the receiver
formulation will not be presented here. A detailed exposition
of receiver design for turbo-coded CPFSK systems in block
fading channels can be found in [13].

All of the channels in the system are modeled as block-
fading channels. A block is defined as a set of N symbols
that all experience the same fading amplitude. The duration of
each block corresponds roughly to the channel coherence time.
Ideally both sources transmit with the same carrier frequency,
i.e fc1 = fc2 . However, due to instabilities in the source node’s
oscillators and different Doppler shifts due to independent
motion, it is not feasible to assume that these two frequencies
are the same at the relay receiver. At best, the relay receiver
could lock onto one of the two frequencies, in which case
the received phase of the other signal would drift from one
symbol to the next. To model this behavior, we let the phase
shift of each symbol within a block vary independently.

The signal matrix Xi transmitted by node Ni may be
partitioned into Nb = LS/N blocks according to

Xi =
[
X

(1)
i ... X

(Nb)
i

]
(3)

where each block X
(`)
i , 1 ≤ ` ≤ Nb, is a 2 × N matrix,

and Nb is assumed to be an integer. The channel associated
with block X

(`)
i is represented by the 2×N diagonal matrix

H
(`)
i = α

(`)
i × diag(exp{jθ(`)i,1}, ..., exp{jθ(`)i,N}), where α(`)

i

is a real-valued fading amplitude and θ(`)i,k is the phase shift of
the kth symbol. The θ

(`)
i,k’s are independent and identically

distributed over U(0, 2π). The fading amplitudes take into
account not only the small-scale fading, but also the path loss
and transmit power. The `th block at the sampled output of
the relay receiver’s matched-filters is then

Y(`) = X
(`)
1 H

(`)
1 + X

(`)
2 H

(`)
2 + N(`) (4)

where N(`) is a 2×N noise matrix whose elements are i.i.d.
circularly-symmetric complex Gaussian random variables with
zero mean and variance N0.

III. RELAY RECEIVER

At the relay, each block Y(`) of the channel observation
matrix Y is passed to a channel estimator, which computes
estimates of the α(`)

1 and α(`)
2 . A full description of the esti-

mator is given in Section IV. The fading amplitude estimates
and channel observations are used to obtain soft-estimates of

the network-and-channel-coded sequence b. A full description
and derivation of the relay receiver can be found in [8], so we
will only provide an overview of the receiver in this Section.

The demodulator operates on a symbol-by-symbol basis,
and therefore we may focus on a single signaling interval
by dropping the dependence on the symbol interval k and the
block index `. Let b1 and b2 be the turbo-coded bits transmitted
by nodes N1 and N2, and let b = b1⊕b2 be the corresponding
network-coded bit. The relay demodulator computes the log-
likelihood ratio (LLR)

Λ(b) = log
P (b = 1|y)

P (b = 0|y)
= log

P (b1 ⊕ b2 = 1|y)

P (b1 ⊕ b2 = 0|y)
(5)

where y is the corresponding column of Y.
Define the following four mutually-exlusive events:
1) Event E1 = {b1 = 0, b2 = 0}
2) Event E2 = {b1 = 1, b2 = 1}
3) Event E3 = {b1 = 0, b2 = 1}
4) Event E4 = {b1 = 1, b2 = 0}.

The LLR in (5) can be represented in terms of these events
according to

Λ(b) = log
P (E3|y) + P (E4|y)

P (E1|y) + P (E2|y)
. (6)

Let α1 and α2 be the fading amplitudes over the two
channels during this signaling interval, and let θ1 and θ2 be the
received phases. Define α = |α1 exp(jθ1) + α2 exp(jθ2)| =[
α2
1 + 2α1α2 cos(θ) + α2

2

]1/2
, where θ = θ2 − θ1 is the

difference between the two received phases. Since it is the
magnitude of the sum of two zero-mean circularly-symmetric
complex Gaussian variables, it follows that α is Rayleigh.
The phases vary independently for every symbol in each
fading block, so estimating α is not practical. Instead, α2 is
approximated using its mean value: α2 ≈ α2

1 +α2
2. Using this

approximation and Eq. (26) of [8], the LLR may be expressed,
after some algebraic manipulation, as

Λ(b) = max ∗
[
F

(
2α1|y1|
N0

)
+ F

(
2α2|y2|
N0

)
,

F

(
2α2|y1|
N0

)
+ F

(
2α1|y2|
N0

)]
−max ∗

[
F

(
2α|y1|
N0

)
, F

(
2α|y2|
N0

)]
(7)

where max ∗(x, y) = log(ex + ey), F (x) = log[I0(x)], I0(x)
is the zeroth-order modified Bessel function of the first kind,
and the approximation α =

√
α2
1 + α2

2 is used.

IV. CHANNEL ESTIMATOR

The channel estimator computes estimates Â and B̂ of the
fading amplitudes α1 and α2. For a particular block of channel
observations, Y`, the estimator first determines the matched-
filter values to use in computing the fading-amplitude esti-
mates. The appropriate matched filter outputs are determined
by the transmission-case detector, described in Subsection
IV-A. Once the estimator has determined the matched-filter
outputs to use for estimation, the fading amplitudes are
estimated using the algorithm in Subsection IV-B. The fading-
amplitude estimates are then passed to the demodulator. Since
the form of the estimation algorithm is the same for each
block, in the following discussion we can drop the dependence
on ` and denote a block of received symbols by Y.

Note that in expression (7), exchanging the values α1
and α2 does not change the final value of the expression.
Expression (7) is commutative in α1 and α2. Therefore, the



estimates Â and B̂ of the fading amplitudes can be assigned to
α1 and α2 in either order. The relay estimator does not need to
assign the fading-amplitude estimates to particular channels.

A. Transmission-Case Detector
The estimator must first determine the particular matched-

filter outputs to use in computing Â and B̂. Let y = [y1, y2]T

be a column in Y corresponding to a particular channel
observation. It follows that y1 is the matched-filter output
corresponding to tone 1, and y2 is the matched-filter output
corresponding to tone 2, where tone 1 has frequency fc, tone 2
has frequency fc+1/TS , and we assume that fc1 = fc2 = fc.
For each observation y, the estimator performs a hypothesis
test to determine which matched-filter outputs to use:

1) Tone 1 transmitted by both sources. Use y1.
2) Tone 2 transmitted by both sources. Use y2.
3) Separate tones transmitted. Use sum of y1 and y2.
The hypothesis test is performed by choosing the most

likely of the three events according to:

H = argmax
k∈{1,2,3}

gk(y) (8)

where the functions gk(y) are conditional log-likelihoods of
the transmission cases, given y. It follows that H ∈ {1, 2, 3}.

Since the receiver does not yet have knowledge of the
fading amplitudes, the estimator must compute the hypotheses
without channel state information. The functions gk(y) are
found by marginalizing Eq. (20) in [8] with respect to Eq. (30)
in [8]. First, consider the two transmission events in which the
end nodes transmit the same tone

gi(y) = log [P (Ei|y)]

=
|yi|2

N0

(
1 + N0

E1+E2

) − log

[
1 +
E1 + E2
N0

]
(9)

where i ∈ {1, 2} and Ei = E[(α
(`)
i )2] is the energy of node

Ni’s signal received at the relay, which is assumed to be
known. Next, consider the transmission event for which the
end nodes transmit separate tones

g3(y) = log[P (E3|y) + P (E4|y)]

= log

 (E1E2)
2(

1 + E1
N0

)(
1 + E2

N0

)


+ max ∗

 |y1|2

N0

(
1 + N0

E1

) +
|y2|2

N0

(
1 + N0

E2

) ,
|y2|2

N0

(
1 + N0

E1

) +
|y1|2

N0

(
1 + N0

E2

)
 . (10)

Applying the hypothesis test to each channel observation in
the block yields a sequence of N test results, {H1, ...,HN}.
Next, the receiver uses the hypothesis test results to extract
the appropriate matched-filter outputs for every channel ob-
servation,

vi =

y1,i, if Hi = 1
y2,i, if Hi = 2
y1,i + y2,i, if Hi = 3,

(11)

which are placed into the vector v = [v1, ..., vN ].

B. DNC Fading-Amplitude Estimator

The goal of the estimator is to determine estimates Â and B̂
of the magnitudes of α1 and α2 without respect to ordering.
The estimator first computes a pair of averages, which are
then used to determine the fading amplitudes. The averages
computed by the estimator, and the quantities the averages are
approximating, are [10]

X =
1

N

N∑
i=1

||vi||2 ≈ α2
1 + α2

2

Y =
2

N

∑
i:||vi||2>β

||vi||2 ≈ α2
1 + α2

2 +
4α1α2

π
(12)

where β is the median value of v. Rearranging (12) yields the
estimates Â and B̂ of the fading amplitudes

Â =
1

2

(√
X +

π

2
(Y −X) +

√
X +

π

2
(X − Y )

)
B̂ =

1

2

(√
X +

π

2
(Y −X)−

√
X +

π

2
(X − Y )

)
.

(13)

The estimator passes the fading amplitude estimates Â and B̂
to the demodulator, which assigns the estimates to the fading
amplitudes α1 and α2 in the log-likelihood ratio (7) with no
respect to order.

C. Amplitude Estimation for Single-Transmitter Links

During the broadcast phase, there is only a single transmis-
sion and the algorithm described in subsection IV-B cannot
be used. Similarly, it cannot be used by the LNC system
during the MAC phase since the two transmissions are over
orthogonal channels. To estimate the fading amplitudes at the
links involving only a single transmitter and receiver, the
simple averaging technique given by (29) in [14] is used,
which is described as follows. Consider the ith signaling
interval during the `th fading block. Given transmission of
tone k, in the absence of noise, the kth matched-filter output
at the receiver is yk,i = αejθi , having magnitude |yk,i| = α.
All other matched-filter outputs in the ith signaling interval
are 0. An estimate could be formed by taking the maximum
|yk,i| over any column of Y`. In the presence of noise, an
estimate of α can be formed by averaging across all columns
of the fading block

α̂ =
1

N

N∑
i=1

max
k
|yk,i|. (14)

V. SIMULATION STUDY

This section presents simulated performance results for the
relay receiver described in Section III. The simulated link
model is as described in Section II, with specific simulation
parameters given in the following subsections. Unless other-
wise specified, the DNC relay receiver uses the transmission-
case detector of Subsection IV-A and the fading-amplitude
estimator of Subsection IV-B, while the LNC receiver and
destination nodes (i.e. receivers in single-transmitter links) use
(14).
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A. Uncoded Relay Performance
Consider a system that does not use an error-correcting

code. The information frames generated at the end nodes
contain K = 2048 bits per frame. The fading blocks are
length N = {8, 32, 128} symbols per block. The DNC relay
implements (7) and then makes a hard decision on each
information bit.

The bit error-rate performance of the uncoded system is
shown in Fig. 3. Two types of curves are shown in the figure,
one representing performance with a perfect estimator, and the
other using the estimator described in Section IV. A narrow
range of BER’s is shown to better highlight the differences in
performance. In general, smaller fading blocks lead to a less
accurate estimation of the fading amplitudes, as the number
of samples available for estimation decreases. Moving from
block size N = 128 to 32 worsens performance by roughly
0.25 dB, and from N = 32 to 8 by 0.75 dB.

B. Performance with an Outer Turbo Code
Now consider a system that uses an outer turbo code.

The end nodes each encode length K = 1229 information
sequences into length L = 2048 codewords, using a rate
rS ≈ 0.6 UMTS turbo code [15]. The relay performs turbo de-
coding using the codeword LLR’s computed by Eqn. (7). The
fading-block lengths simulated are N = {8, 16, 32, 64, 128}
symbols per block.

The error performance of the coded system is shown in
Fig. 4, both with perfect channel estimates and with estimated
fading amplitudes. A good tradeoff between diversity and
estimation accuracy is achieved at block size N = 16, where
the difference between the estimated and perfect-amplitude
knowledge systems is about 0.7 dB.

The SNR value required to reach an error rate of 10−4

in both systems is shown in Fig. 5 as a function of block
length N . The performance of the LNC system degrades
with increasing block size, as diversity is lost. With the DNC
system, there is a tradeoff between diversity (short blocks) and
estimator effectiveness (long blocks). The best performance
for the DNC system is observed at N = 16.

An error-rate performance comparison between DNC and
LNC is shown in Fig. 6. Both systems use the same-rate
turbo code. The LNC system outperforms the DNC system by
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margins ranging between 4 and 6 dB. While the LNC system is
more energy efficient than the DNC when the same-rate turbo
code is used, the throughput of the LNC system is worse than
that of the DNC system. The loss in energy efficiency from
using DNC versus LNC can be recovered by having the source
nodes use a lower-rate turbo code. Consider the performance
comparison shown in Fig. 7 for block size N = 32. DNC at
code rate rS = 4500/6400 matches the error-rate performance
of LNC at code rate rS = 4500/5056, at Eb/N0 ≈ 24 dB. At
24 dB, the end-to-end throughput of DNC is higher than LNC,
even though DNC uses a lower channel-code rate transmitting
to the relay. The throughput gain results from the time slot
DNC saves over LNC, as shown in Fig. 1.

To illustrate DNC throughput improvement over LNC,
consider the following transmission schedule for the two
systems. Assume the end nodes use rate rS = 4500/6400
in DNC, and rS = 4500/5056 in LNC. Assume operation at
Eb/N0 = 24 dB, yielding approximately equal relay error-rate
performance. Further, assume that both systems use code rate
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Fig. 7. Comparison of the performance of turbo-coded DNC and LNC at
the relay with block size N = 32. For the DNC system, two code rates are
shown, with the lower rate code offering comparable performance to the LNC
system.

rR = 4500/5056 for relay broadcast, yielding approximately
equal end-to-end performance. DNC requires 6400 channel
uses for transmission to the relay versus 2×5056 = 10112 for
LNC. Both systems require 5056 channel uses for relay broad-
cast. Throughput for DNC is thus T (DNC) = 9000/(6400 +
5056) = 9000/11, 456 bits per channel use, and for LNC
T (LNC) = 9000/(3× 5056) = 9000/15, 168 bits per channel
use. The percentage throughput increase of DNC over LNC
is thus (T (DNC)/T (LNC) − 1)× 100 ≈ 32.4%.

The effectiveness of the transmission-case detector of Sub-
section IV-A was also investigated through simulation. In
particular, simulations were run comparing the performance
of DNC both with perfect knowledge of the transmission
case and using the transmission-case detector. In both cases,
the fading amplitudes were estimated using the estimator
of Subsection IV-B. For all block sizes and SNR values,
the degradation due to estimating the transmission case was
less than 0.1 dB. This small performance gap provides no
incentive to refine transmission-case estimates by feeding a
priori information back from the turbo decoder, which would
also increase the processing delay.

VI. CONCLUSION

A throughput-improving technique for relaying in the two-
way relay network, digital network coding, is refined for prac-
tical operation. The system operates noncoherently, providing
advantages over coherent operation: there are no requirements
for perfect power control, phase synchronism, or estimates of
carrier-phase offset.

A computationally simple technique for estimating fading
amplitudes at the relay is implemented. Error-rate performance
in the noncoherent Rayleigh block-fading channel at several
block sizes is presented. The system is simulated with and
without an outer error-correcting code. The coded error-rate
performance of the system using estimation differs from that
with ideal estimates by margins between 0.7− 1.5 dB.

When the same-rate turbo code is used, digital network
coding has a higher throughput but lower energy-efficiency
than link-layer network coding . The energy loss of DNC can
be recovered by using a lower-rate turbo code during the MAC
phase. Even when the loss of spectral efficiency due to the
lower-rate turbo code is taken into account, the DNC system
is able to achieve a higher throughput than LNC at the same
energy-efficiency. In the particular example presented in this
paper, the DNC system is capable of achieving throughputs
that are 32% larger than that of the equivalent LNC system,
while operating at the same energy efficiency.
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