# Constellation Shaping for Communication Channels with Quantized Outputs

#### Chandana Nannapaneni, Dr. Matthew C. Valenti and Xingyu Xiang

Lane Department of Computer Science and Electrical Engineering West Virginia University

CISS - March 24, 2011

#### Introduction

- 2 Constellation Shaping
- 3 Quantization
- Discrete Memoryless Channel
- Optimization Results
- 6 Implementation



#### Introduction

- 2 Constellation Shaping
- 3 Quantization
- 4 Discrete Memoryless Channel
- 5 Optimization Results
- Implementation





Stephane Y. Le Goff 2007 IEEE , T. Wireless

#### **Receiver Side Optimization**





## Mutual Information( MI ) and Channel Capacity

• MI between two random variables, X and Y is given by,

$$I(X;Y) = E\left[\log\left(\frac{p(Y|X)}{p(Y)}\right)\right]$$

• Channel Capacity is the highest rate at which information can be transmitted over the channel with low error probability. Given the channel and the receiver, capacity is defined as

$$C = \max_{p(x)} I(X;Y)$$

The mutual information between output Y and input X is

$$I(X;Y) = \sum_{j=0}^{M-1} p(x_j) \int p(y|x_j) \log_2 \frac{p(y|x_j)}{p(y)} dy.$$

M - number of input symbols.

This can be solved using Gauss - Hermite Quadratures.



#### Introduction

#### 2 Constellation Shaping

- 3 Quantization
- 4 Discrete Memoryless Channel
- 5 Optimization Results
- 6 Implementation

## Constellation Shaping for PAM

- Our strategy is from S. LeGoff, IEEE T. Wireless, 2007.
- Transmit low-energy symbols more frequently than high-energy symbols.
- Shaping encoder helps in achieving the desired symbol distribution.
- For a fixed average energy, shaping spreads out the symbols with uniform spacing maintained.



(a) Probability of picking low-energy subconstellation = 0.5



(b) Probability of picking low-energy subconstellation = 0.9

$$(\mathcal{E}_s = \sum_{i=0}^{M-1} p(x_i) \mathcal{E}_i = 1)$$

#### Shaping Encoder

We design the shaping encoder to output more zeros than ones. One example is,

| 3 | 3 input bits |   |   |   | 5 output bits |   |   |   |  |  |
|---|--------------|---|---|---|---------------|---|---|---|--|--|
| 0 | 0            | 0 |   | 0 | 0             | 0 | 0 | 0 |  |  |
| 0 | 0            | 1 | T | 0 | 0             | 0 | 0 | 1 |  |  |
| 0 | 1            | 0 |   | 0 | 0             | 0 | 1 | 0 |  |  |
| 0 | 1            | 1 |   | 0 | 0             | 1 | 0 | 0 |  |  |
| 1 | 0            | 0 | T | 0 | 1             | 0 | 0 | 0 |  |  |
| 1 | 0            | 1 |   | 1 | 0             | 0 | 0 | 0 |  |  |
| 1 | 1            | 0 | T | 0 | 0             | 0 | 1 | 1 |  |  |
| 1 | 1            | 1 | 1 | 1 | 0             | 1 | 0 | 0 |  |  |

Table: (5,3) shaping code.

If  $p_0$ ,  $p_1$  represents the probability of the shaping encoder giving out a zero and one respectively, then from the table,

$$p_0 = \frac{31}{40}$$
 and  $p_1 = \frac{9}{40}$ 

**Constellation Shaping** 

#### 16-PAM Constellation and its symbol-labeling map



#### Shaping Operation



Chandana Nannapaneni

CISS - March 24, 2011 10 / 31

16-PAM results with continuous output optimized over  $p_0$ 



11 / 31

#### Introduction

- 2 Constellation Shaping
- 3 Quantization
  - 4 Discrete Memoryless Channel
  - 5 Optimization Results
- Implementation

#### Quantization Basics

- The output of most communications channels must be *quantized* prior to processing.
- Quantizer
  - approximates its input to one of the predefined levels.
  - results in loss of precision.
- The idea of improving information rate by optimizing the quantizer is from the ISIT 2008 paper by Jaspreet Singh.



Quantization

## Importance of Quantizer Spacing



(c) Information Variation with quantizer spacing at SNR = 10dB, uniformly-distributed inputs and 16 quantization levels



(d) Variation of information rate with SNR under quantizer spacing = 0.1, 16 quantization levels and uniformlydistributed inputs

#### Introduction

- 2 Constellation Shaping
- 3 Quantization
- 4 Discrete Memoryless Channel
  - 5 Optimization Results
- Implementation

#### **Discrete Memoryless Channel**

- AWGN channel with discrete inputs and outputs can be modelled by a DMC.
- Channel described by transition or crossover probabilities.



where  $b_i, b_{i+1}$  are the boundaries of the quantization region associated with level  $y_i$ .

#### Information Rate Evaluation

For the DMC and one-dimensional modulation,

$$I(X;Y) = \sum_{j=0}^{M-1} \sum_{i=0}^{N-1} p(x_j) p(y_i|x_j) \log_2\left(\frac{p(y_i|x_j)}{p(y_i)}\right)$$

where,

•  $p(y_i)$  is the probability of observing output  $y_i.$  For finding  $p(y_i),$  we use,

$$p(y_i) = \sum_{j=0}^{M-1} p(y_i|x_j) p(x_j)$$

#### Introduction

- 2 Constellation Shaping
- 3 Quantization
- 4 Discrete Memoryless Channel
- Optimization Results
  - 6 Implementation

## Joint Optimization( Our Contribution )

The variation of information rate with quantizer spacing follows a pattern. We have two values to optimize over,  $\delta$  and  $p_0$ , given the SNR and number of quantization bits( $\ell = \log_2(N)$ ).

The algorithm used is,

- Fix the SNR and number of quantization bits( $\ell$ ).
- **2** Vary  $p_0$  from 0.5 to 0.99 in increments of 0.005.
- For each value of p<sub>0</sub>, find the optimum quantizer spacing and compute the corresponding information rate.
- By the end of step 3, we have an array of information rate values. We then go over the array and find the highest information rate that can be achieved, and the combination of  $p_0$  and  $\delta$  that will produce it.

#### Capacity Results



CISS - March 24, 2011 20 / 31

**Optimization Results** 

## Shaping Gain and its evaluation



**Optimization Results** 

#### Quantization Loss and its evaluation



#### Quantization Loss



Figure: Uniform Distribution

#### **Optimization Results**



(a) Optimal Quantizer Spacing



(b) Optimal  $p_0$  (probability of selecting lower-energy subconstellation)

#### Introduction

- 2 Constellation Shaping
- 3 Quantization
- 4 Discrete Memoryless Channel
- 5 Optimization Results
- 6 Implementation

#### Implementation

#### BICM - ID System



## **BER Curves**

| Table: | Parameters | used | for | simulation | of | а | 16PAM | system. |
|--------|------------|------|-----|------------|----|---|-------|---------|
|--------|------------|------|-----|------------|----|---|-------|---------|

|         | B      | $r_c$     | $r_s$ | Quantizer Spacing |            |            |            |            |  |
|---------|--------|-----------|-------|-------------------|------------|------------|------------|------------|--|
|         | 11     |           |       | $\ell = 8$        | $\ell = 7$ | $\ell = 6$ | $\ell = 5$ | $\ell = 4$ |  |
| Uniform | 2.9940 | 2000/2672 | 1     | 0.0139            | 0.0272     | 0.0534     | 0.1058     | 0.2165     |  |
| Shaping | 2.9836 | 2000/2479 | 7/10  | 0.0172            | 0.0339     | 0.0670     | 0.1270     | 0.2781     |  |



Table: SNR required by 16PAM at rate R = 3.

|             | $\mathcal{E}_b/N_0$ in dB |        |            |            |            |            |            |  |  |  |
|-------------|---------------------------|--------|------------|------------|------------|------------|------------|--|--|--|
|             |                           | Cont   | $\ell = 8$ | $\ell = 7$ | $\ell = 6$ | $\ell = 5$ | $\ell = 4$ |  |  |  |
| Theoretical | Uniform                   | 11.387 | 11.393     | 11.410     | 11.476     | 11.751     | 12.74      |  |  |  |
| Theoretical | Shaping                   | 10.613 | 10.618     | 10.640     | 10.728     | 11.082     | 12.051     |  |  |  |
| Actual      | Uniform                   | 13.378 | 13.394     | 13.585     | 13.703     | 14.184     | 15.524     |  |  |  |
| Actual      | Shaping                   | 12.789 | 12.811     | 12.922     | 13.154     | 13.742     | 15.112     |  |  |  |

The  $\mathcal{E}_b/N_0$  values in actual case are taken at BER =  $10^{-5}$ 

#### Introduction

- 2 Constellation Shaping
- 3 Quantization
- 4 Discrete Memoryless Channel
- 5 Optimization Results
- 6 Implementation

- The simple constellation-shaping strategy considered in this paper can achieve shaping gains of over 0.7 dB.
- When a finite-resolution quantizer is used, there will necessarily be a quantization loss. The loss can be minimized by using an optimal quantizer spacing.
- When properly optimized, a resolution of 8 bits is sufficient to provide performance that is very close to that of an unquantized system.
- This work can be further extended to a more-complex two-dimensional modulations like 16-APSK and to higher-dimensional modulations.
- Using a non-uniform vector quantizer can also be investigated for such systems.



