Constellation Shaping for Bit-Interleaved Coded APSK

Dr. Matthew C. Valenti, Xingyu Xiang

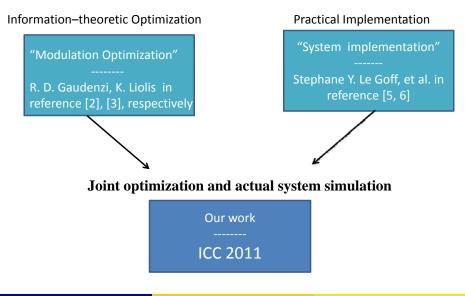
Lane Department of Computer Science and Electrical Engineering West Virginia University

ICC - June 6, 2011

- 2 Constellation Shaping
- Optimization Results
- Implementation
- **5** Conclusion

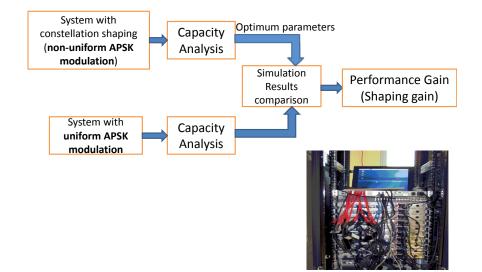
- Constellation Shaping
- Optimization Results
- Implementation
- 5 Conclusion

Two Definitions


Constellation Shaping

- Idea: transmit constellation signal points with lower energy more frequently than those with higher energy
- Goal: save transmit power, or achieve performance gain under the same transmit power
- How: we use non-linear short length shaping code in our paper

APSK (Amplitude phase-shift keying)


- Included in DVB-S2 (second generation of the Digital Video Broadcasting Satellite) and other communication standards
- both spectral and energy efficient, well suited for nonlinear channels

Background

Introduction

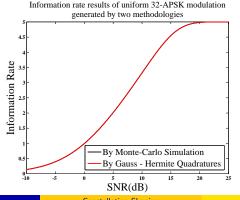
General flowchart

Mutual Information(MI) and Channel Capacity

• MI between two random variables, X and Y is given by,

$$I(X;Y) = E\left[\log\left(\frac{p(Y|X)}{p(Y)}\right)\right]$$

• Channel Capacity is the highest rate at which information can be transmitted over the channel with low error probability. Given the channel and the receiver, capacity is defined as


$$C = \max_{p(x)} I(X;Y)$$

The mutual information between output Y and input X is

$$I(X;Y) = \sum_{j=0}^{M-1} p(x_j) \int p(y|x_j) \log_2 \frac{p(y|x_j)}{p(y)} dy.$$

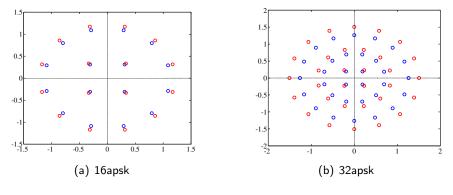
M - number of input symbols.

The integration can be solved using Gauss - Hermite Quadratures in AWGN channel.

Introduction

2 Constellation Shaping

3 Optimization Results


Implementation

5 Conclusion

Constellation Shaping

Constellation Shaping for APSK

- Our strategy is from S. LeGoff, IEEE T. Wireless, 2007.
- Use shaping code to choose low-energy symbols more frequently
- For a fixed average energy, shaping strategy spreads out the symbols

$$(\mathcal{E}_s = \sum_{i=0}^{M-1} p(x_i) \mathcal{E}_i = 1)$$

Shaping Encoder

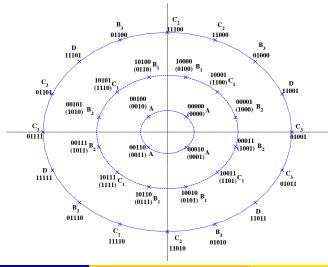
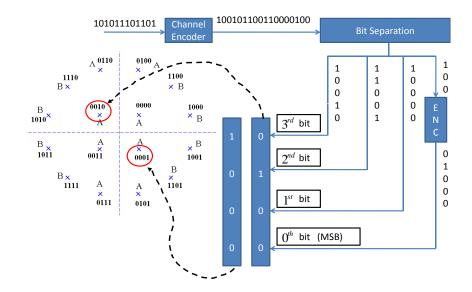
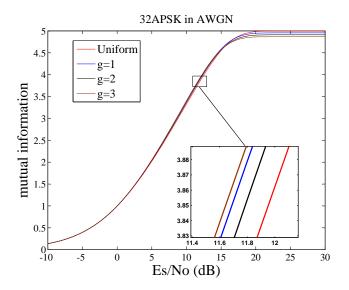

We design the shaping encoder to output more zeros than ones. One example is,

Table: (5,3) shaping code.


3	in	οι	ıt	data	bits	5	ou	tp	ut	CO	dev	vord	bits	5
0	0		0			0	0		0	0	0			
0	0		1			0	0		0	0	1			
0	1		0			0	0		0	1	0			٦
0	1		1			0	0		1	0	0			
1	0		0			0	1		0	0	0			
1	0		1			1	0		0	0	0			
1	1		0			0	0		0	1	1			
1	1		1			1	0		1	0	0			1

- p_0 : the probability of 0 in the codeword table, $(p_0 = \frac{31}{40} \text{ above})$
- p_1 : the probability of 1 in the codeword table, $(p_1 = \frac{9}{40} \text{ above})$

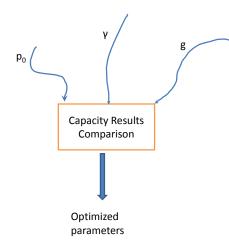

16/32 APSK symbol-labeling map based on DVB-S2 standard

Shaping Operation

32-APSK results with continuous output optimized over p_0

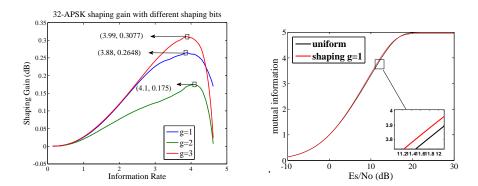
Xingyu Xiang

Introduction

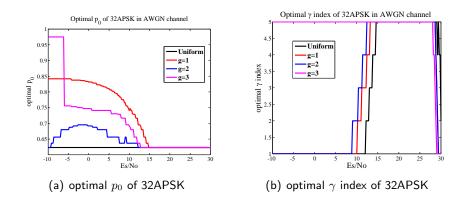

2 Constellation Shaping

Optimization Results

Implementation


5 Conclusion

Algorithm used for jointly optimization

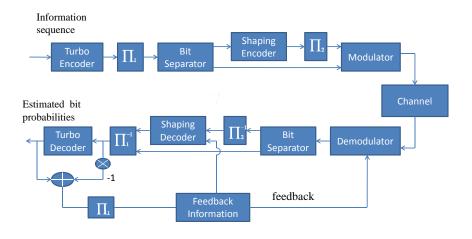


- Fix the SNR, radius ratios γ, number of shaping bits(g).
- **2** Vary p_0 from 0.5 to 0.99 in increments of 0.005.
- For each value of p₀, compute the corresponding information rate.
- Go over the information rate array and find the highest information rate, record the values of p₀ and γ, g that produce it.

Shaping Gain and its evaluation

optimum p_0 and γ

Introduction


- 2 Constellation Shaping
- 3 Optimization Results

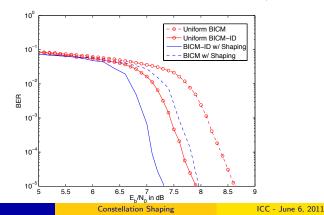
Implementation

5 Conclusion

Implementation

BICM-ID (bit-interleaved coded-modulation with iterative decoding) System

Maximum shaping gain achieved in AWGN for M-APSK with g shaping bits. The optimized p_0 and γ are shown. The related information rate and SNR value(in dB) are also listed.


Μ	g	R	\mathcal{E}_b/N_0 (capacity value)	gain	p_0	γ
16	1	3.09	4.714 dB	0.091 dB	0.623	2.70
10	2	2.95	4.077 dB	0.322 dB	0.688	2.57
32	1	3.88	5.915 dB	0.265 dB	0.716	{2.64,4.64}
32	2	4.06	6.517 dB	0.175 dB	0.623	{2.53,4.30}
	3	3.89	5.898 dB	0.310 dB	0.656	{2.53,4.30}

BER Curves

Parameters used for the 32-APSK simulation

γ	R	R_c	R_s	$ \mathcal{E}_b/N_0$ (capacity value)
{2.64,4.64}		5000/6491	1	6.092 dB
2.04,4.04	3.858	5000/6190	7/9	5.834 dB

BER curves of 32-APSK in AWGN at rate R=3.85 bits/symbol

Xingyu Xiang

Introduction

- 2 Constellation Shaping
- Optimization Results
- Implementation
- **5** Conclusion

- The simple constellation-shaping strategy considered in this paper can achieve shaping gains of about 0.6 dB.
- This work can be further extended to include LDPC code, which will make the system fully compatible with DVB-S2 standard
- Extrinsic information transfer chart (EXIT chart) can be used to optimize the parameter of the error correction code

