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@ Introduction and Problem Statement
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What Is Distributed Estimation in WSNs?

@ Distributed sensors observe their surrounding environment.
@ Process their local observations.

@ Send their processed data to a fusion center (FC).

@ FC performs the ultimate global estimation.
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What Is Distributed Estimation in WSNs?

@ Distributed sensors observe their surrounding environment.
@ Process their local observations.

@ Send their processed data to a fusion center (FC).

@ FC performs the ultimate global estimation.

Goal of Our Paper

Reliably estimating a vector of unknown parameters of a deterministic
function at the fusion center of a WSN from its distributed noisy samples
observed by local sensors and communicated through parallel block-
fading channels.
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Simple Conceptual Example

Two-dimensional Gaussian-shaped function completely known ex-
cept for a set of unknown deterministic parameters:
hight, center, variance in different directions.
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Simple Conceptual Example

K =40 sensors are randomly placed in the domain of the function to
accumulate its noisy samples at their locations.
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Introduction and Problem Statement

Simple Conceptual Example

Basic Question To Be Answered
How can we reliably estimate the parameters associated with function
g(x,y), effectively reconstructing it, using its sparse noisy samples?
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Q System Model Description
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System Model Description
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Two-dimensional function g(x,y) is completely known except for a
set of unknown deterministic parameters 6 = [6,,6;,..., GP]T.
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System Model Description
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@ AWGN local noisy sampling
ri=g(xyi)+wi  wi~N(0,05) SNROd:ef%é

@ Special case: r; = a;" 6 +w;.
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System Model Description
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Two local processing schemes:
@ Analog processing scheme
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e Each sensor acts as a pure relay and transmits amplified version
of its raw analog local observation to the fusion center.
o Maximum-likelihood (ML) estimation at FC.
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System Model Description
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Two local processing schemes:

@ Digital processing scheme

e Each sensor quantizes its local observation and sends its quan-
tized data to the fusion center.

e Expectation maximization (EM) algorithm at FC.
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System Model Description
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Parallel independent flat-fading channels
Zi = h,-u,- +n; nj~N (0, Gcz‘i)
Channel gains are completely known at the fusion center.
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System Model Description

System Model Description
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z=z1,22,-.. ,zK]T is combined at the fusion center to estimate 6.
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e ML Estimation Based on Analog Local Processing
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Main Idea and Final Result

@ Each sensor acts as a pure relay and transmits an amplified version
of its local raw analog observation to FC.

up = oGt

@ o; is known at FC.
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Main Idea and Final Result

@ Each sensor acts as a pure relay and transmits an amplified version
of its local raw analog observation to FC.

up = oGt

@ o; is known at FC.

ML Estimate of 6 Based on Analog Local Processing
@ Non-linear system of equations in unknown parameters:

L[ (5) o)

omL
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ML Estimation Based on Analog Local Processing

Main Idea and Final Result

@ Each sensor acts as a pure relay and transmits an amplified version
of its local raw analog observation to FC.

u; = oGr
@ o; is known at FC.

ML Estimate of 6 Based on Analog Local Processing

@ Non-linear system of equations in unknown parameters:

L[ (5) o)

omL

2
2 def o O, / —1 def
o = 60i+W i =hi g 8i = 8(xi,yi)
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0 ML Estimation Based on Digital Local Processing
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Local Quantization Rule

@ Sensor i quantizes its local observation to b; = log, M; bits.
@ The index of quantized data is sent to FC.
@ Set of quantization thresholds: .Z; = {B;(0),B:(1),...,Bi(M;)}.

u =L = Bil0)<r<Bi(l+1), (=0,1,....M; — 1
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Final Result of ML Estimate in Digital Case
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Final Result of ML Estimate in Digital Case
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@ Non-linear non-convex optimization problem.
@ Efficient numerical methods are needed that converge in a rea-
sonable time.

@ We have developed a linearized expectation maximization (EM)
solution to find the ML estimate of the vector of parameters itera-

tively.

@ Details are omitted due to time constraints.
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e Simulation Results
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Effect of Number of Sensors K

EM estimation based on
digital local processing
(M =28)

ML estimation based on
analog local processing
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Effect of Number of Quantization Levels (M)

EM estimation based on digital local processing I
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Simulation Results

Effect of Channel SNR (SNR¢)

ML estimation based on analog
local processing

EM estimation based on digital
local processing
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Effect of Observation SNR (SNRy)

ML estimation based on analog
local processing

EM estimation based on digital
local processing
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e Conclusions
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Conclusions

@ Distributed estimation of a vector of parameters based on noisy
samples of the underlying function in the context of wireless sensor
networks was studies.

@ ML estimation techniques were developed in two cases of analog
and digital local processing schemes .

@ For the case of digital local processing, linearized expectation max-
imization was applied to iteratively find the ML estimate.
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Thank You Very Much
for Your Attention.

Questions?
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